Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Towards Consistency in Geometry Restraints for Carbohydrates in the Pyranose form: Modern Dictionary Generators Reviewed

Author(s): Robbie P. Joosten, Robert A. Nicholls and Jon Agirre*

Volume 29, Issue 7, 2022

Published on: 02 September, 2021

Page: [1193 - 1207] Pages: 15

DOI: 10.2174/0929867328666210902140754

open access plus

Abstract

Macromolecular restrained refinement is nowadays the most used method for improving the agreement between an atomic structural model and experimental data. Restraint dictionaries, a key tool behind the success of the method, allow fine-tuning geometric properties such as distances and angles between atoms beyond simplistic expectations. Dictionary generators can provide restraint target estimates derived from different sources, from fully theoretical to experimental and any combination in between. Carbohydrates are stereochemically complex biomolecules and, in their pyranose form, have clear conformational preferences. As such, they pose unique problems to dictionary generators and in the course of this study, require special attention from software developers. Functional differences between restraint generators will be discussed, as well as the process of achieving consistent results with different software designs. The study will conclude a set of practical considerations, as well as recommendations for the generation of new restraint dictionaries, using the improved software alternatives discussed.

Keywords: Geometry restraints, ring conformation, pyranose, structural biology, dictionaries, refinement.

[1]
Taylor, R.; Kennard, O. ChemInform abstract: The molecular structures of nucleosides and nucleotides. Part 1. The influence of protonation on the geometries of nucleic acid constituents; Chemischer Informationsdienst, 1982.
[http://dx.doi.org/10.1002/chin.198215076]
[2]
Engh, R.A.; Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. A, 1991, 392-400.
[http://dx.doi.org/10.1107/S0108767391001071]
[3]
Allen, F.H.; Lipscomb, K.J. The cambridge structural database.Encyclopedia of supramolecular chemistry; , 2004, pp. 161-168.
[http://dx.doi.org/10.1081/E-ESMC-120012882]
[4]
Long, F.; Nicholls, R.A.; Emsley, P.; Graǽulis, S.; Merkys, A.; Vaitkus, A.; Murshudov, G.N. Validation and extraction of molecular-geometry information from small-molecule databases. Acta Crystallogr. D Struct. Biol., 2017, 73(Pt 2), 103-111.
[http://dx.doi.org/10.1107/S2059798317000079] [PMID: 28177306]
[5]
Gražulis, S.; Merkys, A.; Vaitkus, A. Crystallography open database (COD).Handbook of materials modeling; , 2018, pp. 1-19.
[http://dx.doi.org/10.1007/978-3-319-42913-7_66-1]
[6]
Agirre, J.; Ariza, A.; Offen, W.A.; Turkenburg, J.P.; Roberts, S.M.; McNicholas, S.; Harris, P.V.; McBrayer, B.; Dohnalek, J.; Cowtan, K.D.; Davies, G.J.; Wilson, K.S. Three-dimensional structures of two heavily N-glycosylated Aspergillus sp. family GH3 β-D-glucosidases. Acta Crystallogr. D Struct. Biol., 2016, 72(Pt 2), 254-265.
[http://dx.doi.org/10.1107/S2059798315024237] [PMID: 26894673]
[7]
Agirre, J.; Davies, G.; Wilson, K.; Cowtan, K. Carbohydrate anomalies in the PDB. Nat. Chem. Biol., 2015, 11(5), 303.
[http://dx.doi.org/10.1038/nchembio.1798] [PMID: 25885951]
[8]
Joosten, R.P.; Lütteke, T. Carbohydrate 3D structure validation. Curr. Opin. Struct. Biol., 2017, 44, 9-17.
[http://dx.doi.org/10.1016/j.sbi.2016.10.010] [PMID: 27816840]
[9]
Atanasova, M.; Bagdonas, H.; Agirre, J. Structural glycobiology in the age of electron cryo-microscopy. Curr. Opin. Struct. Biol., 2020, 62, 70-78.
[http://dx.doi.org/10.1016/j.sbi.2019.12.003] [PMID: 31874387]
[10]
Emsley, P.; Crispin, M. Structural analysis of glycoproteins: building N-linked glycans with Coot. Acta Crystallogr. D Struct. Biol., 2018, 74(Pt 4), 256-263.
[http://dx.doi.org/10.1107/S2059798318005119] [PMID: 29652253]
[11]
Agirre, J. Strategies for carbohydrate model building, refinement and validation. Acta Crystallogr. D Struct. Biol., 2017, 73(Pt 2), 171-186.
[http://dx.doi.org/10.1107/S2059798316016910] [PMID: 28177313]
[12]
Steiner, R.A.; Tucker, J.A. Keep it together: restraints in crystallographic refinement of macromolecule-ligand complexes. Acta Crystallogr. D Struct. Biol., 2017, 73(Pt 2), 93-102.
[http://dx.doi.org/10.1107/S2059798316017964] [PMID: 28177305]
[13]
Vagin, A. A.; Steiner, R. A.; Lebedev, A. A.; Potterton, L.; McNicholas, S.; Long, F.; Murshudov, G. N. REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr, 2004, 60(Pt 12 Pt 1), 2184-2195.
[14]
Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.W.; McCoy, A.; McNicholas, S.J.; Murshudov, G.N.; Pannu, N.S.; Potterton, E.A.; Powell, H.R.; Read, R.J.; Vagin, A.; Wilson, K.S. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr., 2011, 67(Pt 4), 235-242.
[http://dx.doi.org/10.1107/S0907444910045749] [PMID: 21460441]
[15]
Agirre, J.; Iglesias-Fernández, J.; Rovira, C.; Davies, G.J.; Wilson, K.S.; Cowtan, K.D. Privateer: software for the conformational validation of carbohydrate structures. Nat. Struct. Mol. Biol., 2015, 22(11), 833-834.
[http://dx.doi.org/10.1038/nsmb.3115] [PMID: 26581513]
[16]
Gristick, H.B.; Wang, H.; Bjorkman, P.J. X-ray and EM structures of a natively glycosylated HIV-1 envelope trimer. Acta Crystallogr. D Struct. Biol., 2017, 73(Pt 10), 822-828.
[http://dx.doi.org/10.1107/S2059798317013353] [PMID: 28994411]
[17]
Cifuente, J.O.; Comino, N.; Madariaga-Marcos, J.; López-Fernández, S.; García-Alija, M.; Agirre, J.; Albesa-Jové, D.; Guerin, M.E. Structural basis of glycogen biosynthesis regulation in bacteria. Structure, 2016, 24(9), 1613-1622.
[http://dx.doi.org/10.1016/j.str.2016.06.023] [PMID: 27545622]
[18]
Agirre, J.; Moroz, O.; Meier, S.; Brask, J.; Munch, A.; Hoff, T.; Andersen, C.; Wilson, K.S.; Davies, G.J. The structure of the AliC GH13 α-amylase from Alicyclobacillus sp. reveals the accommodation of starch branching points in the α-amylase family. Acta Crystallogr. D Struct. Biol., 2019, 75(Pt 1), 1-7.
[http://dx.doi.org/10.1107/S2059798318014900] [PMID: 30644839]
[19]
Ji, S.; Dix, S.R.; Aziz, A.A.; Sedelnikova, S.E.; Baker, P.J.; Rafferty, J.B.; Bullough, P.A.; Tzokov, S.B.; Agirre, J.; Li, F-L.; Rice, D.W. The molecular basis of endolytic activity of a multidomain alginate lyase from, a representative of a new lyase family, PL39. J. Biol. Chem., 2019, 294(48), 18077-18091.
[http://dx.doi.org/10.1074/jbc.RA119.010716] [PMID: 31624143]
[20]
Chemical component dictionary. Availalble from: https://www.wwpdb.org/data/ccd [Accessed Mar 10, 2021]
[21]
Feng, Z.; Westbrook, J.D.; Sala, R.; Smart, O.S.; Bricogne, G.; Matsubara, M.; Yamada, I.; Tsuchiya, S.; Aoki-Kinoshita, K.F.; Hoch, J.C.; Kurisu, G.; Velankar, S.; Burley, S.K.; Young, J.Y. Enhanced validation of small-molecule ligands and carbohydrates in the Protein Data Bank. Structure, 2021, 29(4), 393-400.e1.
[http://dx.doi.org/10.1016/j.str.2021.02.004] [PMID: 33657417]
[22]
Allen, F.H.; Taylor, R. Research applications of the Cambridge Structural Database (CSD). Chem. Soc. Rev., 2004, 33(8), 463-475.
[http://dx.doi.org/10.1039/b309040j] [PMID: 15480471]
[23]
Croll, T.I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol., 2018, 74(Pt 6), 519-530.
[http://dx.doi.org/10.1107/S2059798318002425] [PMID: 29872003]
[24]
Janowski, P.A.; Moriarty, N.W.; Kelley, B.P.; Case, D.A.; York, D.M.; Adams, P.D.; Warren, G.L. Improved ligand geometries in crystallographic refinement using AFITT in PHENIX. Acta Crystallogr. D Struct. Biol., 2016, 72(Pt 9), 1062-1072.
[http://dx.doi.org/10.1107/S2059798316012225] [PMID: 27599738]
[25]
Borbulevych, O.Y.; Plumley, J.A.; Martin, R.I.; Merz, K.M., Jr; Westerhoff, L.M. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(Pt 5), 1233-1247.
[http://dx.doi.org/10.1107/S1399004714002260] [PMID: 24816093]
[26]
Nicholls, R.A.; Fischer, M.; McNicholas, S.; Murshudov, G.N. Conformation-independent structural comparison of macromolecules with ProSMART. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(Pt 9), 2487-2499.
[http://dx.doi.org/10.1107/S1399004714016241] [PMID: 25195761]
[27]
van Beusekom, B.; Touw, W.G.; Tatineni, M.; Somani, S.; Rajagopal, G.; Luo, J.; Gilliland, G.L.; Perrakis, A.; Joosten, R.P. Homology-based hydrogen bond information improves crystallographic structures in the PDB. Protein Sci., 2018, 27(3), 798-808.
[http://dx.doi.org/10.1002/pro.3353] [PMID: 29168245]
[28]
Website Smart, O.S.; Womack, T.O.; Sharff, A.; Flensburg, C.; Keller, P.; Paciorek, W.; Vonrhein, C.; Bricogne, G. Grade, version 1.2.20. Cambridge, United Kingdom, Global Phasing Ltd. 2011. Availalble from: https://www. globalphasing.com [Accessed Apr 22, 2021]
[29]
BUSTER distribution. Availalble from: https://www. globalphasing.com/buster/ [Accessed Apr 22, 2021]
[30]
Moriarty, N.W.; Grosse-Kunstleve, R.W.; Adams, P.D. electronic ligand builder and optimization workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D Biol. Crystallogr., 2009, 65(Pt 10), 1074-1080.
[http://dx.doi.org/10.1107/S0907444909029436] [PMID: 19770504]
[31]
Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkóczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; Moriarty, N.W.; Oeffner, R.D.; Poon, B.K.; Prisant, M.G.; Read, R.J.; Richardson, J.S.; Richardson, D.C.; Sammito, M.D.; Sobolev, O.V.; Stockwell, D.H.; Terwilliger, T.C.; Urzhumtsev, A.G.; Videau, L.L.; Williams, C.J.; Adams, P.D. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol., 2019, 75(Pt 10), 861-877.
[http://dx.doi.org/10.1107/S2059798319011471] [PMID: 31588918]
[32]
Long, F.; Nicholls, R.A.; Emsley, P.; Graǽulis, S.; Merkys, A.; Vaitkus, A.; Murshudov, G.N. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr. D Struct. Biol., 2017, 73(Pt 2), 112-122.
[http://dx.doi.org/10.1107/S2059798317000067] [PMID: 28177307]
[33]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[34]
Bruno, I.J.; Cole, J.C.; Kessler, M.; Luo, J.; Motherwell, W.D.S.; Purkis, L.H.; Smith, B.R.; Taylor, R.; Cooper, R.I.; Harris, S.E.; Orpen, A.G. Retrieval of crystallographically-derived molecular geometry information. J. Chem. Inf. Comput. Sci., 2004, 44(6), 2133-2144.
[http://dx.doi.org/10.1021/ci049780b] [PMID: 15554684]
[35]
Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc., 1985, 3902-3909.
[http://dx.doi.org/10.1021/ja00299a024]
[36]
Rocha, G.B.; Freire, R.O.; Simas, A.M.; Stewart, J.J.P. RM1: a reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem., 2006, 27(10), 1101-1111.
[http://dx.doi.org/10.1002/jcc.20425] [PMID: 16691568]
[37]
Vimr, E.R.; Kalivoda, K.A.; Deszo, E.L.; Steenbergen, S.M. Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. Rev., 2004, 68(1), 132-153.
[http://dx.doi.org/10.1128/MMBR.68.1.132-153.2004] [PMID: 15007099]
[38]
Mulligan, C.; Fischer, M.; Thomas, G.H. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol. Rev., 2011, 35(1), 68-86.
[http://dx.doi.org/10.1111/j.1574-6976.2010.00236.x] [PMID: 20584082]
[39]
Website Landrum, G. RDKit: open-source cheminformatics., 2006. Availalble from: http://www.rdkit.org [Accessed Apr 22, 2021].
[40]
Grosse-Kunstleve, R.W.; Sauter, N.K.; Moriarty, N.W.; Adams, P.D. The computational crystallography toolbox: Crystallographic algorithms in a reusable software framework. J. Appl. Cryst., 2002, 35, 126-136.
[http://dx.doi.org/10.1107/S0021889801017824]
[41]
Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(Pt 4), 486-501.
[http://dx.doi.org/10.1107/S0907444910007493] [PMID: 20383002]
[42]
Debreczeni, J.É.; Emsley, P. Handling ligands with Coot. Acta Crystallogr. D Biol. Crystallogr., 2012, 68(Pt 4), 425-430.
[http://dx.doi.org/10.1107/S0907444912000200] [PMID: 22505262]
[43]
Emsley, P. Tools for ligand validation in Coot. Acta Crystallogr. D Struct. Biol., 2017, 73(Pt 3), 203-210.
[http://dx.doi.org/10.1107/S2059798317003382] [PMID: 28291755]
[44]
Cremer, D.; Pople, J.A. General definition of ring puckering coordinates. J. Am. Chem. Soc., 1975, 1354-1358.
[http://dx.doi.org/10.1021/ja00839a011]
[45]
Hendrickx, J.; Tran, V.; Sanejouand, Y-H. Numerous severely twisted N-acetylglucosamine conformations found in the protein databank. Proteins, 2020, 88(10), 1376-1383.
[http://dx.doi.org/10.1002/prot.25957] [PMID: 32506721]
[46]
McNicholas, S.; Potterton, E.; Wilson, K.S.; Noble, M.E.M. Presenting your structures: the CCP4 mg molecular-graphics software. Acta Crystallogr. D Biol. Crystallogr., 2011, 67(Pt 4), 386-394.
[http://dx.doi.org/10.1107/S0907444911007281] [PMID: 21460457]
[47]
Nicholls, R.A.; Joosten, R.P.; Long, F.; Wojdyr, M.; Lebedev, A.; Krissinel, E.; Catapano, L.; Fischer, M.; Emsley, P.; and Murshudov, G.N. Modelling covalent linkages in CCP4. Acta Crystallographica Section D: Structural Biology, 2021, 77(6), 712-726.
[http://dx.doi.org/10.1107/S2059798321001753]
[48]
Lütteke, T. Analysis and validation of carbohydrate three-dimensional structures. Acta Crystallogr. D Biol. Crystallogr., 2009, 65(Pt 2), 156-168.
[http://dx.doi.org/10.1107/S0907444909001905] [PMID: 19171971]
[49]
Lütteke, T.; von der Lieth, C-W. pdb-care (PDB carbohydrate residue check): a program to support annotation of complex carbohydrate structures in PDB files. BMC Bioinforma., 2004, 5, 69.
[http://dx.doi.org/10.1186/1471-2105-5-69] [PMID: 15180909]
[50]
Lütteke, T.; Frank, M.; von der Lieth, C.W. Carbohydrate structure suite (CSS): analysis of carbohydrate 3D structures derived from the PDB. Nucleic Acids Res., 2005, 33(Database issue), D242-D246.
[http://dx.doi.org/10.1093/nar/gki013] [PMID: 15608187]
[51]
International Union of Pure. International union of biochemistry; Molecular biology joint commission on biochemical nomenclature* Prepared for publication by Alan D. McNaught. Nomenclature of carbohydrates. In: Glycoscience; Springer: Berlin, Heidelberg, 1996; pp. 2727-2838.
[52]
Tanaka, K.; Aoki-Kinoshita, K.F.; Kotera, M.; Sawaki, H.; Tsuchiya, S.; Fujita, N.; Shikanai, T.; Kato, M.; Kawano, S.; Yamada, I.; Narimatsu, H. WURCS: the Web3 unique representation of carbohydrate structures. J. Chem. Inf. Model., 2014, 54(6), 1558-1566.
[http://dx.doi.org/10.1021/ci400571e] [PMID: 24897372]
[53]
Matsubara, M.; Aoki-Kinoshita, K.F.; Aoki, N.P.; Yamada, I.; Narimatsu, H. WURCS 2.0 update to encapsulate ambiguous carbohydrate structures. J. Chem. Inf. Model., 2017, 57(4), 632-637.
[http://dx.doi.org/10.1021/acs.jcim.6b00650] [PMID: 28263066]
[54]
Bagdonas, H.; Ungar, D.; Agirre, J. Leveraging glycomics data in glycoprotein 3D structure validation with Privateer. Beilstein J. Org. Chem., 2020, 16, 2523-2533.
[http://dx.doi.org/10.3762/bjoc.16.204] [PMID: 33093930]
[55]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic. Acids Res., 2019, 47, D520-D528.
[http://dx.doi.org/10.1093/nar/gky949]
[56]
RCSB PDB: Homepage. Availalble from: www.rcsb.org [Accessed Mar 16, 2021].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy