Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Aromatic Interactions in Glycochemistry: From Molecular Recognition to Catalysis

Author(s): Andrés González Santana, Laura Díaz-Casado, Laura Montalvillo, Ester Jiménez-Moreno, Enrique Mann and Juan Luis Asensio*

Volume 29, Issue 7, 2022

Published on: 09 July, 2021

Page: [1208 - 1218] Pages: 11

DOI: 10.2174/0929867328666210709120216

Price: $65

Abstract

Aromatic platforms are ubiquitous recognition motifs occurring in protein carbohydrate- binding domains (CBDs), RNA receptors and enzymes. They stabilize the glycoside/ receptor complexes by participating in stacking CH/π interactions with either the α- or β- face of the corresponding pyranose units. In addition, the role played by aromatic units in the stabilization of glycoside cationic transition states has started being recognized in recent years. Extensive studies carried out during the last decade have allowed the dissection of the main contributing forces that stabilize the carbohydrate/aromatic complexes, while helping delineate not only the standing relationship between the glycoside/ aromatic chemical structures and the strength of this interaction but also their potential influence on glycoside reactivity.

Keywords: Carbohydrate recognition, stacking CH/π interactions, cation/π interactions, structure-stability relationships, glycosidic bond formation, carbohydrate-binding domains.

[1]
Gabius, H.J.; André, S.; Jiménez-Barbero, J.; Romero, A.; Solís, D. From lectin structure to functional glycomics: Principles of the sugar code. Trends Biochem. Sci., 2011, 36(6), 298-313.
[http://dx.doi.org/10.1016/j.tibs.2011.01.005] [PMID: 21458998]
[2]
Varki, A. Executive Editor, Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Prestegard, G. H.; Schnaar, R. L.; Seeberger, P. H.. Essentials of Glycobiology [Internet].3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. , 2015–2017.
[PMID: 27010055]
[3]
Dube, D.H.; Bertozzi, C.R. Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat. Rev. Drug Discov., 2005, 4(6), 477-488.
[http://dx.doi.org/10.1038/nrd1751] [PMID: 15931257]
[4]
Pang, P.C.; Chiu, P.C.; Lee, C.L.; Chang, L.Y.; Panico, M.; Morris, H.R.; Haslam, S.M.; Khoo, K.H.; Clark, G.F.; Yeung, W.S.; Dell, A. Human sperm binding is mediated by the sialyl-Lewis(x) oligosaccharide on the zona pellucida. Science, 2011, 333(6050), 1761-1764.
[http://dx.doi.org/10.1126/science.1207438] [PMID: 21852454]
[5]
Vyas, N.K. Atomic features of protein-carbohydrate interactions. Curr. Opin. Struct. Biol., 1991, 1, 732-740.
[http://dx.doi.org/10.1016/0959-440X(91)90172-P]
[6]
Quiocho, F.A. Carbohydrate-binding proteins: Tertiary structures and protein-sugar interactions. Annu. Rev. Biochem., 1986, 55, 287-315.
[http://dx.doi.org/10.1146/annurev.bi.55.070186.001443] [PMID: 3527044]
[7]
Vyas, N.K.; Vyas, M.N.; Quiocho, F.A. Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Science, 1988, 242(4883), 1290-1295.
[http://dx.doi.org/10.1126/science.3057628] [PMID: 3057628]
[8]
Nicolaou, K.C.; Mitchell, H.J. Adventures in carbohydrate chemistry: New synthetic technologies, chemical synthesis, molecular design, and chemical biology a list of abbreviations can be found at the end of this article. telemachos charalambous was an inspiring teacher at the pancyprian gymnasium, nicosia, cyprus. Angew. Chem. Int. Ed. Engl., 2001, 40(9), 1576-1624.
[http://dx.doi.org/10.1002/1521-3773(20010504)40:9<1576:AID-ANIE15760>3.0.CO;2-G] [PMID: 11353467]
[9]
Talaska, A.E.; Schacht, J. Aminoglycoside antibiotics: From chemical biology to drug discovery, Arya, D. P., Ed.; Wiley series in drug discovery and development. 2007.
[10]
Schroeder, R.; Waldsich, C.; Wank, H. Modulation of RNA function by aminoglycoside antibiotics. EMBO J., 2000, 19(1), 1-9.
[http://dx.doi.org/10.1093/emboj/19.1.1] [PMID: 10619838]
[11]
Vicens, Q.; Westhof, E. RNA as a drug target: The case of aminoglycosides. ChemBioChem, 2003, 4(10), 1018-1023.
[http://dx.doi.org/10.1002/cbic.200300684] [PMID: 14523919]
[12]
Sucheck, S.J.; Wong, C.H. RNA as a target for small molecules. Curr. Opin. Chem. Biol., 2000, 4(6), 678-686.
[http://dx.doi.org/10.1016/S1367-5931(00)00142-3] [PMID: 11102874]
[13]
Boraston, A.B.; Bolam, D.N.; Gilbert, H.J.; Davies, G.J. Carbohydrate-binding modules: Fine-tuning polysaccharide recognition. Biochem. J., 2004, 382(Pt 3), 769-781.
[http://dx.doi.org/10.1042/BJ20040892] [PMID: 15214846]
[14]
Schwefel, D.; Maierhofer, C.; Beck, J.G.; Seeberger, S.; Diederichs, K.; Möller, H.M.; Welte, W.; Wittmann, V. Structural basis of multivalent binding to wheat germ agglutinin. J. Am. Chem. Soc., 2010, 132(25), 8704-8719.
[http://dx.doi.org/10.1021/ja101646k] [PMID: 20527753]
[15]
Asensio, J.L.; Ardá, A.; Cañada, F.J.; Jiménez-Barbero, J. Carbohydrate-aromatic interactions. Acc. Chem. Res., 2013, 46(4), 946-954.
[http://dx.doi.org/10.1021/ar300024d] [PMID: 22704792]
[16]
Asensio, J.L.; Cañada, F.J.; Bruix, M.; González, C.; Khiar, N.; Rodríguez-Romero, A.; Jiménez-Barbero, J. NMR investigations of protein-carbohydrate interactions: Refined three-dimensional structure of the complex between hevein and methyl beta-chitobioside. Glycobiology, 1998, 8(6), 569-577.
[http://dx.doi.org/10.1093/glycob/8.6.569] [PMID: 9592123]
[17]
Jiménez-Barbero, J.; Javier Cañada, F.; Asensio, J.L.; Aboitiz, N.; Vidal, P.; Canales, A.; Groves, P.; Gabius, H.J.; Siebert, H.C. Hevein domains: An attractive model to study carbohydrate-protein interactions at atomic resolution. Adv. Carbohydr. Chem. Biochem., 2006, 60, 303-354.
[http://dx.doi.org/10.1016/S0065-2318(06)60007-3] [PMID: 16750446]
[18]
Chávez, M.I.; Andreu, C.; Vidal, P.; Aboitiz, N.; Freire, F.; Groves, P.; Asensio, J.L.; Asensio, G.; Muraki, M.; Cañada, F.J.; Jiménez-Barbero, J. On the importance of carbohydrate-aromatic interactions for the molecular recognition of oligosaccharides by proteins: NMR studies of the structure and binding affinity of AcAMP2-like peptides with non-natural naphthyl and fluoroaromatic residues. Chemistry, 2005, 11(23), 7060-7074.
[http://dx.doi.org/10.1002/chem.200500367] [PMID: 16220560]
[19]
Asensio, J.L.; Siebert, H.C.; von Der Lieth, C.W.; Laynez, J.; Bruix, M.; Soedjanaamadja, U.M.; Beintema, J.J.; Cañada, F.J.; Gabius, H.J.; Jiménez-Barbero, J. NMR investigations of protein-carbohydrate interactions: Studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N′,N”-triacetylchitotriose. Proteins, 2000, 40(2), 218-236.
[http://dx.doi.org/10.1002/(SICI)1097-0134(20000801)40: 2<218:AID-PROT50>3.0.CO;2-P] [PMID: 10842338]
[20]
Muraki, M. The importance of CH/pi interactions to the function of carbohydrate binding proteins. Protein Pept. Lett., 2002, 9(3), 195-209.
[http://dx.doi.org/10.2174/0929866023408751] [PMID: 12144516]
[21]
Screen, J.; Stanca-Kaposta, E.C.; Gamblin, D.P.; Liu, B.; Macleod, N.A.; Snoek, L.C.; Davis, B.G.; Simons, J.P. IR-spectral signatures of aromatic-sugar complexes: Probing carbohydrate-protein interactions. Angew. Chem. Int. Ed. Engl., 2007, 46(20), 3644-3648.
[http://dx.doi.org/10.1002/anie.200605116] [PMID: 17385782]
[22]
Lucas, R.; Gómez-Pinto, I.; Aviñó, A.; Reina, J.J.; Eritja, R.; González, C.; Morales, J.C. Highly polar carbohydrates stack onto DNA duplexes via CH/π interactions. J. Am. Chem. Soc., 2011, 133(6), 1909-1916.
[http://dx.doi.org/10.1021/ja108962j] [PMID: 21244028]
[23]
del Carmen Fernández-Alonso, M.; Cañada, F.J.; Jiménez-Barbero, J.; Cuevas, G. Molecular recognition of saccharides by proteins. Insights on the origin of the carbohydrate-aromatic interactions. J. Am. Chem. Soc., 2005, 127(20), 7379-7386.
[http://dx.doi.org/10.1021/ja051020+] [PMID: 15898786]
[24]
Ramírez-Gualito, K.; Alonso-Ríos, R.; Quiroz-García, B.; Rojas-Aguilar, A.; Díaz, D.; Jiménez-Barbero, J.; Cuevas, G. Enthalpic nature of the CH/π interaction involved in the recognition of carbohydrates by aromatic compounds, confirmed by a novel interplay of NMR, calorimetry, and theoretical calculations. J. Am. Chem. Soc., 2009, 131(50), 18129-18138.
[http://dx.doi.org/10.1021/ja903950t] [PMID: 19928848]
[25]
Hudson, K.L.; Bartlett, G.J.; Diehl, R.C.; Agirre, J.; Gallagher, T.; Kiessling, L.L.; Wollfson, D.N. Carbohydrate-aromatic interactions in proteins. J. Am. Chem. Soc., 2015, 137(48), 15152-15160.
[PMID: 26561965]
[26]
Schubert, M.; Bleuler-Martinez, S.; Butschi, A.; Wälti, M.A.; Egloff, P.; Stutz, K.; Yan, S.; Collot, M.; Mallet, J.M.; Wilson, I.B.; Hengartner, M.O.; Aebi, M.; Allain, F.H.; Künzler, M. Plasticity of the β-trefoil protein fold in the recognition and control of invertebrate predators and parasites by a fungal defence system. PLoS Pathog., 2012, 8(5), e1002706.
[http://dx.doi.org/10.1371/journal.ppat.1002706] [PMID: 22615566]
[27]
Ferrand, Y.; Crump, M.P.; Davis, A.P. A synthetic lectin analog for biomimetic disaccharide recognition. Science, 2007, 318(5850), 619-622.
[http://dx.doi.org/10.1126/science.1148735] [PMID: 17962557]
[28]
Ke, C.; Destecroix, H.; Crump, M.P.; Davis, A.P. A simple and accessible synthetic lectin for glucose recognition and sensing. Nat. Chem., 2012, 4(9), 718-723.
[http://dx.doi.org/10.1038/nchem.1409] [PMID: 22914192]
[29]
Vacca, A.; Nativi, C.; Cacciarini, M.; Pergoli, R.; Roelens, S. A new tripodal receptor for molecular recognition of monosaccharides. A paradigm for assessing glycoside binding affinities and selectivities by 1H NMR spectroscopy. J. Am. Chem. Soc., 2004, 126(50), 16456-16465.
[http://dx.doi.org/10.1021/ja045813s] [PMID: 15600348]
[30]
Nativi, C.; Cacciarini, M.; Francesconi, O.; Vacca, A.; Moneti, G.; Ienco, A.; Roelens, S. Pyrrolic tripodal receptors effectively recognizing monosaccharides. Affinity assessment through a generalized binding descriptor. J. Am. Chem. Soc., 2007, 129(14), 4377-4385.
[http://dx.doi.org/10.1021/ja068754m] [PMID: 17362009]
[31]
Laughrey, Z.R.; Kiehna, S.E.; Riemen, A.J.; Waters, M.L. Carbohydrate-pi interactions: What are they worth? J. Am. Chem. Soc., 2008, 130(44), 14625-14633.
[http://dx.doi.org/10.1021/ja803960x] [PMID: 18844354]
[32]
Kiehna, S.E.; Laughrey, Z.R.; Waters, M.L. Evaluation of a carbohydrate-π interaction in a peptide model system. Chem. Commun. (Camb.), 2007, 39(39), 4026-4028.
[http://dx.doi.org/10.1039/b711431a] [PMID: 17912404]
[33]
Meyer, E.A.; Castellano, R.K.; Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. Engl., 2003, 42(11), 1210-1250.
[http://dx.doi.org/10.1002/anie.200390319] [PMID: 12645054]
[34]
Nishio, M.; Hirota, M.; Umezawa, Y. The CH/π interaction. Evidence, nature, and consequences; Wiley-VCH: New York, 1998.
[35]
Nishio, M. The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys. Chem. Chem. Phys., 2011, 13(31), 13873-13900.
[http://dx.doi.org/10.1039/c1cp20404a] [PMID: 21611676]
[36]
Tsuzuki, S.; Fujii, A. Nature and physical origin of CH/π interaction: Significant difference from conventional hydrogen bonds. Phys. Chem. Chem. Phys., 2008, 10(19), 2584-2594.
[http://dx.doi.org/10.1039/b718656h] [PMID: 18464973]
[37]
Fujii, A.; Shibasaki, K.; Kazama, T.; Itaya, R.; Mikami, N.; Tsuzuki, S. Experimental and theoretical determination of the accurate interaction energies in benzene-halomethane: The unique nature of the activated CH/π interaction of haloalkanes. Phys. Chem. Chem. Phys., 2008, 10(19), 2836-2843.
[http://dx.doi.org/10.1039/b717053j] [PMID: 18465001]
[38]
Nishio, M.; Umezawa, Y.; Fantini, J.; Weiss, M.S.; Chakrabarti, P. CH-π hydrogen bonds in biological macromolecules. Phys. Chem. Chem. Phys., 2014, 16(25), 12648-12683.
[http://dx.doi.org/10.1039/C4CP00099D] [PMID: 24836323]
[39]
Nerinckx, W.; Desmet, T.; Claeyssens, M. A hydrophobic platform as a mechanistically relevant transition state stabilising factor appears to be present in the active centre of all glycoside hydrolases. FEBS Lett., 2003, 538(1-3), 1-7.
[http://dx.doi.org/10.1016/S0014-5793(03)00148-0] [PMID: 12633843]
[40]
Iglesias-Fernández, J.; Hanckock, S.M.; Lee, S.S.; Khan, M.; Kirkpatrick, J.; Oldham, N.J.; McAuley, K.; Fordham-Skelton, A.; Rovira, C.; Davis, B.G. A front-face ‘SNi synthase’ engineered from a retaining ‘double-SN2’ hydrolase. Nat. Chem. Biol., 2017, 13, 874-886.
[41]
Yamamoto-Katayama, S.; Ariyoshi, M.; Ishihara, K.; Hirano, T.; Jingami, H.; Morikawa, K. Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities. J. Mol. Biol., 2002, 316(3), 711-723.
[http://dx.doi.org/10.1006/jmbi.2001.5386] [PMID: 11866528]
[42]
Jiménez-Moreno, E.; Gómez, A.M.; Bastida, A.; Corzana, F.; Jiménez-Oses, G.; Jiménez-Barbero, J.; Asensio, J.L. Modulating weak interactions for molecular recognition: A dynamic combinatorial analysis for assessing the contribution of electrostatics to the stability of CH-π bonds in water. Angew. Chem. Int. Ed. Engl., 2015, 54(14), 4344-4348.
[http://dx.doi.org/10.1002/anie.201411733] [PMID: 25664754]
[43]
Carter, A.P.; Clemons, W.M.; Brodersen, D.E.; Morgan-Warren, R.J.; Wimberly, B.T.; Ramakrishnan, V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature, 2000, 407(6802), 340-348.
[http://dx.doi.org/10.1038/35030019] [PMID: 11014183]
[44]
François, B.; Russell, R.J.M.; Murray, J.B.; Aboul-ela, F.; Masquida, B.; Vicens, Q.; Westhof, E. Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: Role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic Acids Res., 2005, 33(17), 5677-5690.
[http://dx.doi.org/10.1093/nar/gki862] [PMID: 16214802]
[45]
Magnet, S.; Blanchard, J.S.J. Molecular insights into aminoglycoside action and resistance. Chem. Rev., 2005, 105(2), 477-498.
[http://dx.doi.org/10.1021/cr0301088] [PMID: 15700953]
[46]
Bernacchi, S.; Freisz, S.; Maechling, C.; Spiess, B.; Marquet, R.; Dumas, P.; Ennifar, E. Aminoglycoside binding to the HIV-1 RNA dimerization initiation site: Thermodynamics and effect on the kissing-loop to duplex conversion. Nucleic Acids Res., 2007, 35(21), 7128-7139.
[http://dx.doi.org/10.1093/nar/gkm856] [PMID: 17942426]
[47]
Smith, C.A.; Baker, E.N. Aminoglycoside antibiotic resistance by enzymatic deactivation. Curr. Drug Targets Infect. Disord., 2002, 2(2), 143-160.
[http://dx.doi.org/10.2174/1568005023342533] [PMID: 12462145]
[48]
Maurice, F.; Broutin, I.; Podglajen, I.; Benas, P.; Collatz, E.; Dardel, F. Enzyme structural plasticity and the emergence of broad-spectrum antibiotic resistance. EMBO Rep., 2008, 9(4), 344-349.
[http://dx.doi.org/10.1038/embor.2008.9] [PMID: 18292754]
[49]
Vacas, T.; Corzana, F.; Jiménez-Osés, G.; González, C.; Gómez, A.M.; Bastida, A.; Revuelta, J.; Asensio, J.L. Role of aromatic rings in the molecular recognition of aminoglycoside antibiotics: Implications for drug design. J. Am. Chem. Soc., 2010, 132(34), 12074-12090.
[http://dx.doi.org/10.1021/ja1046439] [PMID: 20698528]
[50]
Salonen, L.M.; Bucher, C.; Banner, D.W.; Haap, W.; Mary, J-L.; Benz, J.; Kuster, O.; Seiler, P.; Schweizer, W.B.; Diederich, F. Cation-π interactions at the active site of factor Xa: Dramatic enhancement upon stepwise N-alkylation of ammonium ions. Angew. Chem. Int. Ed. Engl., 2009, 48(4), 811-814.
[http://dx.doi.org/10.1002/anie.200804695] [PMID: 19101972]
[51]
Santana, A.G.; Jiménez-Moreno, E.; Gómez, A.M.; Corzana, F.; González, C.; Jiménez-Oses, G.; Jiménez-Barbero, J.; Asensio, J.L. A dynamic combinatorial approach for the analysis of weak carbohydrate/aromatic complexes: Dissecting facial selectivity in CH/π stacking interactions. J. Am. Chem. Soc., 2013, 135(9), 3347-3350.
[http://dx.doi.org/10.1021/ja3120218] [PMID: 23418701]
[52]
Jiménez-Moreno, E.; Jiménez-Osés, G.; Gómez, A.M.; Santana, A.G.; Corzana, F.; Bastida, A.; Jiménez-Barbero, J.; Asensio, J.L. A thorough experimental study of CH/π interactions in water: Quantitative structure-stability relationships for carbohydrate/aromatic complexes. Chem. Sci. (Camb.), 2015, 6(11), 6076-6085.
[http://dx.doi.org/10.1039/C5SC02108A] [PMID: 28717448]
[53]
Isorna, P.; Polaina, J.; Latorre-García, L.; Cañada, F.J.; González, B.; Sanz-Aparicio, J. Crystal structures of Paenibacillus polymyxa beta-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases. J. Mol. Biol., 2007, 371(5), 1204-1218.
[http://dx.doi.org/10.1016/j.jmb.2007.05.082] [PMID: 17585934]
[54]
Shen, X.; Saburi, W.; Gai, Z.; Kato, K.; Ojima-Kato, T.; Yu, J.; Komoda, K.; Kido, Y.; Matsui, H.; Mori, H.; Yao, M. Structural analysis of the α-glucosidase HaG provides new insights into substrate specificity and catalytic mechanism. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(Pt 6), 1382-1391.
[http://dx.doi.org/10.1107/S139900471500721X] [PMID: 26057678]
[55]
Ma, J.C.; Dougherty, D.A. The cation-π interaction. Chem. Rev., 1997, 97(5), 1303-1324.
[http://dx.doi.org/10.1021/cr9603744] [PMID: 11851453]
[56]
Adero, P.O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich, D. The experimental evidence in support of glycosylation mechanisms at the sn1-sn2 interface. Chem. Rev., 2018, 118(17), 8242-8284.
[http://dx.doi.org/10.1021/acs.chemrev.8b00083] [PMID: 29846062]
[57]
Santana, A.G.; Montalvillo-Jiménez, L.; Díaz-Casado, L.; Corzana, F.; Merino, P.; Cañada, F.J.; Jiménez-Osés, G.; Jiménez-Barbero, J.; Gómez, A.M.; Asensio, J.L. Dissecting the essential role of anomeric β-triflates in glycosylation reactions. J. Am. Chem. Soc., 2020, 142(28), 12501-12514.
[http://dx.doi.org/10.1021/jacs.0c05525] [PMID: 32579343]
[58]
Santana, A.G.; Montalvillo-Jiménez, L.; Díaz-Casado, L.; Mann, E.; Jiménez-Barbero, J.; Gómez, A.M.; Asensio, J.L. Single-step glycosylations with 13 c-labelled sulfoxide donors: A low-temperature nmr cartography of the distinguishing mechanistic intermediates. Chemistry, 2021, 27(6), 2030-2042.
[http://dx.doi.org/10.1002/chem.202003850] [PMID: 32969069]
[59]
Martin, A.; Ardá, A.; Désiré, J.; Martin-Mingot, A.; Probst, N.; Sinaÿ, P.; Jiménez-Barbero, J.; Thibaudeau, S.; Blériot, Y. Catching elusive glycosyl cations in a condensed phase with HF/SbF5 superacid. Nat. Chem., 2016, 8(2), 186-191.
[http://dx.doi.org/10.1038/nchem.2399] [PMID: 26791903]
[60]
Lillelund, V.H.; Jensen, H.H.; Liang, X.; Bols, M. Recent developments of transition-state analogue glycosidase inhibitors of non-natural product origin. Chem. Rev., 2002, 102(2), 515-553.
[http://dx.doi.org/10.1021/cr000433k] [PMID: 11841253]
[61]
Zechel, D.L.; Withers, S.G. Glycosidase mechanisms: Anatomy of a finely tuned catalyst. Acc. Chem. Res., 2000, 33(1), 11-18.
[http://dx.doi.org/10.1021/ar970172] [PMID: 10639071]
[62]
Cuétara-Guadarrama, F.; Hernández-Huerta, E.; Rojo-Portillo, T.; Reyes-López, E.; Jiménez-Barbero, J.; Cuevas, G. Experimental and theoretical study of the role of CH/π interactions in the aminolysis reaction of acetyl galactoside. Carbohydr. Res., 2019, 486, 107821.
[http://dx.doi.org/10.1016/j.carres.2019.107821] [PMID: 31580966]
[63]
Montalvillo-Jiménez, L.; Santana, A.G.; Corzana, F.; Jiménez-Osés, G.; Jiménez-Barbero, J.; Gómez, A.M.; Asensio, J.L. Impact of aromatic stacking on glycoside reactivity: Balancing ch/π and cation/π interactions for the stabilization of glycosyl-oxocarbenium ions. J. Am. Chem. Soc., 2019, 141(34), 13372-13384.
[http://dx.doi.org/10.1021/jacs.9b03285] [PMID: 31390207]
[64]
Bartoli, S.; Roelens, S. Binding of acetylcholine and tetramethylammonium to a cyclophane receptor: Anion’s contribution to the cation-π interaction. J. Am. Chem. Soc., 2002, 124(28), 8307-8315.
[http://dx.doi.org/10.1021/ja025884w] [PMID: 12105911]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy