Mini-Review Article

外泌体对促进肿瘤形成和进展的主要途径的影响

卷 22, 期 6, 2022

发表于: 02 September, 2021

页: [491 - 505] 页: 15

弟呕挨: 10.2174/1566524021666210902113824

价格: $65

摘要

外泌体囊泡包裹并携带广泛的生物分子,如核酸、脂质和蛋白质,并在细胞之间转移它们。 在癌症中,被提及的细胞可以是同一肿瘤微环境中的相邻细胞,彼此交流,或者它们可以定位在身体的遥远部位,为转移提供合适的条件。 无论哪种方式,生理或病理条件下的细胞通过外泌体分泌产生串扰是一个具体的事实。 这篇综述通过最近的研究探讨了外泌体货物与癌症机制之间的关系。

关键词: 细胞外囊泡、肿瘤体、EMT、癌症代谢、耐药性、存活、增殖、外泌体串扰。

[1]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[3]
Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in Cancer. In: Nature Reviews Cancer. Nature Publishing Group 2018; pp. 128-34.
[http://dx.doi.org/10.1038/nrc.2017.118]
[4]
Lowe SW, Lin AW. Apoptosis in Cancer. In: Carcinogenesis. Oxford University Press 2000; pp. 485-95.
[http://dx.doi.org/10.1093/carcin/21.3.485]
[5]
Kiwerska K, Szyfter K. DNA repair in cancer initiation, progression, and therapy—a double-edged sword. J Appl Genet 2019; 60(3-4): 329-34.
[http://dx.doi.org/10.1007/s13353-019-00516-9]
[6]
Housman G, Byler S, Heerboth S, et al. Drug Resistance in Cancer: An Overview. Cancers 2014; 6(3): 1769-92.
[http://dx.doi.org/10.3390/cancers6031769]
[7]
Vander Heiden MG, DeBerardinis RJ. Understanding the Intersections between Metabolism and Cancer Biology. Cell 2017; 168(4): 657-69.
[http://dx.doi.org/10.1016/j.cell.2016.12.039]
[8]
Kalluri R. The Biology and Function of Exosomes in Cancer. J Clin Invest 2016; 126(4): 1208-15.
[http://dx.doi.org/10.1172/JCI81135]
[9]
Hoshino A, Kim HS, Bojmar L, et al. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell 2020; 182(4): 1044-1061.e18.
[http://dx.doi.org/10.1016/j.cell.2020.07.009] [PMID: 32795414]
[10]
Van Niel G, D’Angelo G, Raposo G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat Rev Mol Cell Biol 2018; 213-28.
[http://dx.doi.org/10.1038/nrm.2017.125]
[11]
Kalluri R, LeBleu V S. The biology, function, and biomedical applications of exosomes. Science 2020; 7; 367(6478): eaau6977.
[http://dx.doi.org/10.1126/science.aau6977]
[12]
Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: Small particle, big player. J Hematol Oncol 2015; 8: 83.
[http://dx.doi.org/10.1186/s13045-015-0181-x]
[13]
Ukrainskaya VM, Rubtsov YP, Knorre VD, Maschan MA, Gabibov AG, Stepanov AV. The Role of Tumor-Derived Vesicles in the Regulation of Antitumor Immunity. Acta Naturae 2019; 11(4): 33-41.
[http://dx.doi.org/10.32607/20758251-2019-11-4-33-41]
[14]
Martins VR, Dias MS, Hainaut P. Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Curr Opin Oncol 2013; 25(1): 66-75.
[http://dx.doi.org/10.1097/CCO.0b013e32835b7c81] [PMID: 23165142]
[15]
Liu F, Gu LN, Shan BE, Geng CZ, Sang MX. Biomarkers for EMT and MET in Breast Cancer: An Update (Review). Oncol Lett 2016; 4869-76.
[http://dx.doi.org/10.3892/ol.2016.5369]
[16]
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15(3): 178-96.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[17]
Aiello NM, Kang Y. Context-Dependent EMT Programs in Cancer Metastasis. J Exp Med 2019; 216(5): 1016-26.
[http://dx.doi.org/10.1084/jem.20181827]
[18]
Their JP. Epithelial-Mesenchymal Transitions in Tumor Progression. Nat Rev Cancer 2002; 2: 442-54.
[http://dx.doi.org/10.1038/nrc822]
[19]
Wang H, Wei H, Wang J, Li L, Chen A, Li Z. MicroRNA-181d-5p-Containing Exosomes Derived from CAFs Promote EMT by Regulating CDX2/HOXA5 in Breast Cancer. Mol Ther Nucleic Acids 2020; 19: 654-67.
[http://dx.doi.org/10.1016/j.omtn.2019.11.024] [PMID: 31955007]
[20]
Lin Q, Zhou CR, Bai MJ, et al. Exosome-mediated miRNA delivery promotes liver cancer EMT and metastasis. Am J Transl Res 2020; 12(3): 1080-95.
[PMID: 32269736]
[21]
Wang D, Wang X, Si M, et al. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett 2020; 474: 36-52.
[http://dx.doi.org/10.1016/j.canlet.2020.01.005] [PMID: 31931030]
[22]
Li CL, Nie H, Wang M, et al. microRNA-155 is downregulated in gastric cancer cells and involved in cell metastasis. Oncol Rep 2012; 27(6): 1960-6.
[http://dx.doi.org/10.3892/or.2012.1719] [PMID: 22426647]
[23]
Kirave P, Gondaliya P, Kulkarni B, et al. Exosome mediated miR-155 delivery confers cisplatin chemoresistance in oral cancer cells via epithelial-mesenchymal transition. Oncotarget 2020; 11(13): 1157-71.
[http://dx.doi.org/10.18632/oncotarget.27531] [PMID: 32284792]
[24]
Zang X, Gu J, Zhang J, et al. Exosome-transmitted lncRNA UFC1 promotes non-small-cell lung cancer progression by EZH2-mediated epigenetic silencing of PTEN expression. Cell Death Dis 2020; 11(4): 215.
[http://dx.doi.org/10.1038/s41419-020-2409-0] [PMID: 32242003]
[25]
Hardin H, Helein H, Meyer K, et al. Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of lncRNAs. Lab Invest 2018; 98(9): 1133-42.
[http://dx.doi.org/10.1038/s41374-018-0065-0] [PMID: 29967342]
[26]
Eguchi T, Sogawa C, Ono K, et al. Cell Stress Induced Stressome Release Including Damaged Membrane Vesicles and Extracellular HSP90 by Prostate Cancer Cells. Cells 2020; 9(3): E755.
[http://dx.doi.org/10.3390/cells9030755] [PMID: 32204513]
[27]
Jeong K, Yu YJ, You JY, Rhee WJ, Kim JA. Exosome-mediated microRNA-497 delivery for anti-cancer therapy in a microfluidic 3D lung cancer model. Lab Chip 2020; 20(3): 548-57.
[http://dx.doi.org/10.1039/C9LC00958B] [PMID: 31942592]
[28]
Zhang H, Liao Z, Liu F, et al. Long noncoding RNA HULC promotes hepatocellular carcinoma progression. Aging (Albany NY) 2019; 11(20): 9111-27.
[http://dx.doi.org/10.18632/aging.102378] [PMID: 31645479]
[29]
Takahashi K, Ota Y, Kogure T, et al. Circulating extracellular vesicle-encapsulated HULC is a potential biomarker for human pancreatic cancer. Cancer Sci 2020; 111(1): 98-111.
[http://dx.doi.org/10.1111/cas.14232] [PMID: 31715081]
[30]
Wan FZ, Chen KH, Sun YC, et al. Exosomes overexpressing miR-34c inhibit malignant behavior and reverse the radioresistance of nasopharyngeal carcinoma. J Transl Med 2020; 18(1): 12.
[http://dx.doi.org/10.1186/s12967-019-02203-z] [PMID: 31915008]
[31]
Liu K, Gao L, Ma X, et al. Long Non-Coding RNAs Regulate Drug Resistance in Cancer. Mol Cancer 2020; 19: 54.
[http://dx.doi.org/10.1186/s12943-020-01162-0]
[32]
Expulsion of small molecules in vesicles shed by cancer cells: Association with gene expression and chemosensitivity profiles. Available from: https://pubmed.ncbi.nlm.nih.gov/12907600/
[33]
Mohammadi S, Yousefi F, Shabaninejad Z, et al. Exosomes and cancer: From oncogenic roles to therapeutic applications. IUBMB Life 2020; 724-48.
[http://dx.doi.org/10.1002/iub.2182]
[34]
Asare-Werehene M, Nakka K, Reunov A, et al. The exosome-mediated autocrine and paracrine actions of plasma gelsolin in ovarian cancer chemoresistance. Oncogene 2020; 39(7): 1600-16.
[http://dx.doi.org/10.1038/s41388-019-1087-9] [PMID: 31700155]
[35]
Zhang H, Deng T, Liu R, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer 2020; 19(1): 43.
[http://dx.doi.org/10.1186/s12943-020-01168-8] [PMID: 32106859]
[36]
Guo H, Ha C, Dong H, Yang Z, Ma Y, Ding Y. Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A. Cancer Cell Int 2019; 19(1): 347.
[http://dx.doi.org/10.1186/s12935-019-1051-3] [PMID: 31889899]
[37]
Lu X, Chen F, Yuan D, et al. Exosome-Derived PTENP1 Suppresses Cisplatin Resistance of Bladder Cancer (BC) by Suppressing Cell Proliferation, Migration and Inducing Apoptosis: Via the MiR-103a/PDCD4 Axis. RSC Advances 2019; 9(64): 37642-51.
[http://dx.doi.org/10.1039/C9RA07823A]
[38]
Li Z, Yan-Qing W, Xiao Y, et al. Exosomes secreted by chemoresistant ovarian cancer cells promote angiogenesis. J Ovarian Res 2021; 14(1): 7.
[http://dx.doi.org/10.1186/s13048-020-00758-w] [PMID: 33413589]
[39]
Ho M, Chen T, Liu J, et al. Targeting histone deacetylase 3 (HDAC3) in the bone marrow microenvironment inhibits multiple myeloma proliferation by modulating exosomes and IL-6 trans-signaling. Leukemia 2020; 34(1): 196-209.
[http://dx.doi.org/10.1038/s41375-019-0493-x] [PMID: 31142847]
[40]
Lou G, Chen L, Xia C, et al. MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. J Exp Clin Cancer Res 2020; 39(1): 4.
[http://dx.doi.org/10.1186/s13046-019-1512-5] [PMID: 31898515]
[41]
Wang X, Pei X, Guo G, et al. Exosome-mediated transfer of long noncoding RNA H19 induces doxorubicin resistance in breast cancer. J Cell Physiol 2020; 235(10): 6896-904.
[http://dx.doi.org/10.1002/jcp.29585] [PMID: 31994191]
[42]
Shan G, Zhou X, Gu J, et al. Downregulated exosomal microRNA-148b-3p in cancer associated fibroblasts enhance chemosensitivity of bladder cancer cells by downregulating the Wnt/β-catenin pathway and upregulating PTEN. Cell Oncol (Dordr) 2021; 44(1): 45-59.
[http://dx.doi.org/10.1007/s13402-020-00500-0] [PMID: 33423167]
[43]
Azuma Y, Yokobori T, Mogi A, et al. Cancer exosomal microRNAs from gefitinib-resistant lung cancer cells cause therapeutic resistance in gefitinib-sensitive cells. Surg Today 2020; 50(9): 1099-106.
[http://dx.doi.org/10.1007/s00595-020-01976-x] [PMID: 32052182]
[44]
Chen X, Wang Z, Tong F, Dong X, Wu G, Zhang R. lncRNA UCA1 Promotes Gefitinib Resistance as a ceRNA to Target FOSL2 by Sponging miR-143 in Non-small Cell Lung Cancer. Mol Ther Nucleic Acids 2020; 19: 643-53.
[http://dx.doi.org/10.1016/j.omtn.2019.10.047] [PMID: 31951852]
[45]
Liu X, Jiang T, Li X, et al. Exosomes transmit T790M mutation-induced resistance in EGFR-mutant NSCLC by activating PI3K/AKT signalling pathway. J Cell Mol Med 2020; 24(2): 1529-40.
[http://dx.doi.org/10.1111/jcmm.14838] [PMID: 31894895]
[46]
Chen X, Liu J, Zhang Q, et al. Exosome-mediated transfer of miR-93-5p from cancer-associated fibroblasts confer radioresistance in colorectal cancer cells by downregulating FOXA1 and upregulating TGFB3. J Exp Clin Cancer Res 2020; 39(1): 65.
[http://dx.doi.org/10.1186/s13046-019-1507-2] [PMID: 32293494]
[47]
Ding C, Yi X, Wu X, et al. Exosome-mediated transfer of circRNA CircNFIX enhances temozolomide resistance in glioma. Cancer Lett 2020; 479: 1-12.
[http://dx.doi.org/10.1016/j.canlet.2020.03.002] [PMID: 32194140]
[48]
Wang X, Zhang H, Yang H, et al. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol Oncol 2020; 14(3): 539-55.
[http://dx.doi.org/10.1002/1878-0261.12629] [PMID: 31901148]
[49]
Han M, Hu J, Lu P, et al. Exosome-transmitted miR-567 reverses trastuzumab resistance by inhibiting ATG5 in breast cancer. Cell Death Dis 2020; 11(1): 43.
[http://dx.doi.org/10.1038/s41419-020-2250-5] [PMID: 31969559]
[50]
Han M, Gu Y, Lu P, et al. Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activating ERBB2 translation. Mol Cancer 2020; 19(1): 26.
[http://dx.doi.org/10.1186/s12943-020-1145-5] [PMID: 32020881]
[51]
Liu J, Zhu S, Tang W, Huang Q, Mei Y, Yang H. Exosomes from tamoxifen-resistant breast cancer cells transmit drug resistance partly by delivering miR-9-5p. Cancer Cell Int 2021; 21(1): 55.
[http://dx.doi.org/10.1186/s12935-020-01659-0] [PMID: 33451320]
[52]
Peak TC, Panigrahi GK, Praharaj PP, et al. Syntaxin 6-mediated exosome secretion regulates enzalutamide resistance in prostate cancer. Mol Carcinog 2020; 59(1): 62-72.
[http://dx.doi.org/10.1002/mc.23129] [PMID: 31674708]
[53]
Yang Z, Zhao N, Cui J, Wu H, Xiong J, Peng T. Exosomes derived from cancer stem cells of gemcitabine-resistant pancreatic cancer cells enhance drug resistance by delivering miR-210. Cell Oncol (Dordr) 2020; 43(1): 123-36.
[http://dx.doi.org/10.1007/s13402-019-00476-6] [PMID: 31713003]
[54]
Meier P, Finch A, Evan G. Apoptosis in Development. Nature 2000; 796-801.
[http://dx.doi.org/10.1038/35037734]
[55]
Reed JC. Warner-Lambert/Parke Davis Award Lecture: Mechanisms of Apoptosis. Am J Pathol 2000; 157(5): 1415-30.
[http://dx.doi.org/10.1016/S0002-9440(10)64779-7]
[56]
Wang B, Wang Y, Yan Z, Sun Y, Su C. Colorectal cancer cell-derived exosomes promote proliferation and decrease apoptosis by activating the ERK pathway. Int J Clin Exp Pathol 2019; 12(7): 2485-95.
[PMID: 31934075]
[57]
Balmanno K, Cook SJ. Tumour Cell Survival Signalling by the ERK1/2 Pathway. Cell Death and Differ 2009; 368-77.
[http://dx.doi.org/10.1038/cdd.2008.148]
[58]
Huang J, Ding Z, Luo Q, Xu W. Cancer cell-derived exosomes promote cell proliferation and inhibit cell apoptosis of both normal lung fibroblasts and non-small cell lung cancer cell through delivering alpha-smooth muscle actin. Am J Transl Res 2019; 11(3): 1711-23.
[PMID: 30972195]
[59]
Wang S, Su X, Xu M, et al. Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of Hippo signaling pathway. Stem Cell Res Ther 2019; 10(1): 117.
[http://dx.doi.org/10.1186/s13287-019-1220-2] [PMID: 30971292]
[60]
Wang L, Zhao F, Xiao Z, Yao L. Exosomal microRNA-205 is involved in proliferation, migration, invasion, and apoptosis of ovarian cancer cells via regulating VEGFA. Cancer Cell Int 2019; 19(1): 281.
[http://dx.doi.org/10.1186/s12935-019-0990-z] [PMID: 31719795]
[61]
Xu Y, Shen L, Li F, Yang J, Wan X, Ouyang M. microRNA-16-5p-containing exosomes derived from bone marrow-derived mesenchymal stem cells inhibit proliferation, migration, and invasion, while promoting apoptosis of colorectal cancer cells by downregulating ITGA2. J Cell Physiol 2019; 234(11): 21380-94.
[http://dx.doi.org/10.1002/jcp.28747] [PMID: 31102273]
[62]
Deng M, Yuan H, Liu S, Hu Z, Xiao H. Exosome-transmitted LINC00461 promotes multiple myeloma cell proliferation and suppresses apoptosis by modulating microRNA/BCL-2 expression. Cytotherapy 2019; 21(1): 96-106.
[http://dx.doi.org/10.1016/j.jcyt.2018.10.006] [PMID: 30409700]
[63]
Piao HY, Guo S, Wang Y, Zhang J. Exosomal Long Non-Coding RNA CEBPA-AS1 Inhibits Tumor Apoptosis and Functions as a Non-Invasive Biomarker for Diagnosis of Gastric Cancer. OncoTargets Ther 2020; 13: 1365-74.
[http://dx.doi.org/10.2147/OTT.S238706] [PMID: 32110038]
[64]
Li Z, Qin X, Bian W, et al. Exosomal lncRNA ZFAS1 regulates esophageal squamous cell carcinoma cell proliferation, invasion, migration and apoptosis via microRNA-124/STAT3 axis. J Exp Clin Cancer Res 2019; 38(1): 477.
[http://dx.doi.org/10.1186/s13046-019-1473-8] [PMID: 31775815]
[65]
Shen T, Huang Z, Shi C, et al. Pancreatic cancer-derived exosomes induce apoptosis of T lymphocytes through the p38 MAPK-mediated endoplasmic reticulum stress. FASEB J 2020; 34(6): 8442-58.
[http://dx.doi.org/10.1096/fj.201902186R] [PMID: 32350913]
[66]
van Niel G, Porto-Carreiro I, Simoes S, Raposo G. Exosomes: a common pathway for a specialized function. J Biochem 2006; 140(1): 13-21.
[http://dx.doi.org/10.1093/jb/mvj128] [PMID: 16877764]
[67]
Warburg O, Wind F, Negelein E. The Metabolism of Tumors in the Body. J Gen Physiol 1927; 8(6): 519-30.
[http://dx.doi.org/10.1085/jgp.8.6.519] [PMID: 19872213]
[68]
Cori CF, Cori GT. THE CARBOHYDRATE METABOLISM OF TUMORS. J Biol Chem 1925; 65(2): 397-405.
[http://dx.doi.org/10.1016/S0021-9258(18)84849-9]
[69]
Li Y, Zhao Z, Liu W, Li X. SNHG3 Functions as miRNA Sponge to Promote Breast Cancer Cells Growth Through the Metabolic Reprogramming. Appl Biochem Biotechnol 2020; 191(3): 1084-99.
[http://dx.doi.org/10.1007/s12010-020-03244-7] [PMID: 31956955]
[70]
Wu X, Zhou Z, Xu S, et al. Extracellular vesicle packaged LMP1-activated fibroblasts promote tumor progression via autophagy and stroma-tumor metabolism coupling. Cancer Lett 2020; 478: 93-106.
[http://dx.doi.org/10.1016/j.canlet.2020.03.004] [PMID: 32160975]
[71]
Pavlides S, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 2009; 8(23): 3984-4001.
[http://dx.doi.org/10.4161/cc.8.23.10238] [PMID: 19923890]
[72]
Wang C, Xu J, Yuan D, et al. Exosomes carrying ALDOA and ALDH3A1 from irradiated lung cancer cells enhance migration and invasion of recipients by accelerating glycolysis. Mol Cell Biochem 2020; 469(1-2): 77-87.
[http://dx.doi.org/10.1007/s11010-020-03729-3] [PMID: 32297178]
[73]
Lin X, Ling Q, Lv Y, et al. Plasma exosome-derived microRNA-532 as a novel predictor for acute myeloid leukemia. Cancer Biomark 2020; 28(2): 151-8.
[http://dx.doi.org/10.3233/CBM-191164] [PMID: 32176633]
[74]
Clement E, Lazar I, Attané C, et al. Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. EMBO J 2020; 39(3): e102525-5.
[http://dx.doi.org/10.15252/embj.2019102525] [PMID: 31919869]
[75]
Wu Q, Sun S, Li Z, et al. Tumour-Originated Exosomal MiR-155 Triggers Cancer-Associated Cachexia to Promote Tumour Progression 11 Medical and Health Sciences 1112 Oncology and Carcinogenesis 06 Biological Sciences 0601 Biochemistry and Cell Biology. Mol Cancer 2018; 17(1): 1-7.
[http://dx.doi.org/10.1186/s12943-018-0899-5] [PMID: 29304823]
[76]
Logozzi M, Spugnini E, Mizzoni D, Di Raimo R, Fais S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev 2019; 38(1-2): 93-101.
[http://dx.doi.org/10.1007/s10555-019-09783-8] [PMID: 30715644]
[77]
Logozzi M, Mizzoni D, Capasso C, et al. Plasmatic exosomes from prostate cancer patients show increased carbonic anhydrase IX expression and activity and low pH. J Enzyme Inhib Med Chem 2020; 35(1): 280-8.
[http://dx.doi.org/10.1080/14756366.2019.1697249] [PMID: 31790614]
[78]
Hilvo M, Baranauskiene L, Salzano AM, et al. Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes. J Biol Chem 2008; 283(41): 27799-809.
[http://dx.doi.org/10.1074/jbc.M800938200] [PMID: 18703501]
[79]
Eylem CC, Yilmaz M, Derkus B, et al. Untargeted multi-omic analysis of colorectal cancer-specific exosomes reveals joint pathways of colorectal cancer in both clinical samples and cell culture. Cancer Lett 2020; 469: 186-94.
[http://dx.doi.org/10.1016/j.canlet.2019.10.038] [PMID: 31669517]
[80]
Liu C, Su C. Design Strategies and Application Progress of Therapeutic Exosomes. In: Theranostics. Ivyspring International Publisher 2019; pp. 1015-28.
[http://dx.doi.org/10.7150/thno.30853]
[81]
Datta A, Kim H, McGee L, et al. High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: A drug repurposing strategy for advanced cancer. Sci Rep 2018; 8(1): 8161.
[http://dx.doi.org/10.1038/s41598-018-26411-7] [PMID: 29802284]
[82]
Shin H, Oh S, Hong S, et al. Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes. ACS Nano 2020; 14(5): 5435-44.
[http://dx.doi.org/10.1021/acsnano.9b09119] [PMID: 32286793]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy