Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Potential Involvement of Extracellular Citrate in Brain Tumor Progression

Author(s): Katrin Jordan, Evan H. Stanton, Vladimir M. Milenkovic, Marianne Federlin, Konstantin Drexler, Wolfgang Buchalla, Andreas Gaumann, Jerzy Adamski, Martin Proescholdt, Sebastian Haferkamp*, Edward K. Geissler and Maria E. Mycielska*

Volume 22, Issue 6, 2022

Published on: 04 January, 2022

Page: [506 - 513] Pages: 8

DOI: 10.2174/1566524021666210302143802

Price: $65

Abstract

Brain tissue is known to have elevated citrate levels, necessary to regulate ion chelation, neuron excitability, and are also necessary for the supply of necessary energy substrates to neurons. Importantly, citrate also acts as a central substrate in cancer metabolism. Recent studies have shown that extracellular citrate levels in the brain undergo significant changes during tumor development and may play a dual role in tumor progression, as well as cancer cell aggressiveness. In the present article, we review available literature describing changes of citrate levels in brain tissue, blood, and cerebrospinal fluid, as well as intracellular alterations during tumor development before and after metastatic progression. Based on the available literature and our recent findings, we hypothesize that changes in extracellular citrate levels may be related to the increased consumption of this metabolite by cancer cells. Interestingly, cancerassociated cells, including reactive astrocytes, might be a source of citrate. Extracellular citrate uptake mechanisms, as well as potential citrate synthesis and release by surrounding stroma, could provide novel targets for anti-cancer treatments of primary brain tumors and brain metastases.

Keywords: Brain tumor, metabolism, citrate, cancer associated stroma, astrocytes, anti-cancer.

[1]
Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 2001; 21(10): 1133-45.
[http://dx.doi.org/10.1097/00004647-200110000-00001] [PMID: 11598490]
[2]
Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 1999; 22(5): 208-15.
[http://dx.doi.org/10.1016/S0166-2236(98)01349-6] [PMID: 10322493]
[3]
Mycielska ME, Milenkovic VM, Wetzel CH, Rümmele P, Geissler EK. Extracellular citrate in health and disease. Curr Mol Med 2015; 15(10): 884-91.
[http://dx.doi.org/10.2174/1566524016666151123104855] [PMID: 26592250]
[4]
Bouzier-Sore AK, Pellerin L. Unraveling the complex metabolic nature of astrocytes. Front Cell Neurosci 2013; 7: 179.
[http://dx.doi.org/10.3389/fncel.2013.00179] [PMID: 24130515]
[5]
Sonnewald U, Westergaard N, Petersen SB, Unsgård G, Schousboe A. Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 1993; 61(3): 1179-82.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb03641.x] [PMID: 8103082]
[6]
Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A. Multiple compartments with different metabolic characteristics are involved in biosynthesis of intracellular and released glutamine and citrate in astrocytes. Glia 2001; 35(3): 246-52.
[http://dx.doi.org/10.1002/glia.1089] [PMID: 11494415]
[7]
Hertz L, Dringen R, Schousboe A, Robinson SR. Astrocytes: glutamate producers for neurons. J Neurosci Res 1999; 57(4): 417-28.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19990815)57:4<417:AID-JNR1>3.0.CO;2-N] [PMID: 10440891]
[8]
Yodoya E, Wada M, Shimada A, et al. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons. J Neurochem 2006; 97(1): 162-73.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03720.x] [PMID: 16524379]
[9]
Brauburger K, Burckhardt G, Burckhardt BC. The sodium-dependent di- and tricarboxylate transporter, NaCT, is not responsible for the uptake of D-, L-2-hydroxyglutarate and 3-hydroxyglutarate into neurons. J Inherit Metab Dis 2011; 34(2): 477-82.
[http://dx.doi.org/10.1007/s10545-010-9268-2] [PMID: 21264516]
[10]
Bhutia YD, Kopel JJ, Lawrence JJ, Neugebauer V, Ganapathy V. Plasma membrane na(+)-coupled citrate transporter (slc13a5) and neonatal epileptic encephalopathy. Molecules 2017; 22(3): 22.
[http://dx.doi.org/10.3390/molecules22030378] [PMID: 28264506]
[11]
Westergaard N, Sonnewald U, Schousboe A. Metabolic trafficking between neurons and astrocytes: the glutamate/glutamine cycle revisited. Dev Neurosci 1995; 17(4): 203-11.
[http://dx.doi.org/10.1159/000111288] [PMID: 8575339]
[12]
Shabtay-Orbach A, Amit M, Binenbaum Y, Na’ara S, Gil Z. Paracrine regulation of glioma cells invasion by astrocytes is mediated by glial-derived neurotrophic factor. Int J Cancer 2015; 137(5): 1012-20.
[http://dx.doi.org/10.1002/ijc.29380] [PMID: 25487790]
[13]
Mycielska ME, Dettmer K, Rümmele P, et al. Extracellular citrate affects critical elements of cancer cell metabolism and supports cancer development in vivo. Cancer Res 2018; 78(10): 2513-23.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2959] [PMID: 29510993]
[14]
Mycielska ME, Mohr MTJ, Schmidt K, et al. Potential use of gluconate in cancer therapy. Front Oncol 2019; 9: 522.
[http://dx.doi.org/10.3389/fonc.2019.00522] [PMID: 31275855]
[15]
Mann KG, Whelihan MF, Butenas S, Orfeo T. Citrate anticoagulation and the dynamics of thrombin generation. J Thromb Haemost 2007; 5(10): 2055-61.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02710.x] [PMID: 17883701]
[16]
Rimer JD, Sakhaee K, Maalouf NM. Citrate therapy for calcium phosphate stones. Curr Opin Nephrol Hypertens 2019; 28(2): 130-9.
[http://dx.doi.org/10.1097/MNH.0000000000000474] [PMID: 30531474]
[17]
Mashima T, Seimiya H, Tsuruo T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer 2009; 100(9): 1369-72.
[http://dx.doi.org/10.1038/sj.bjc.6605007] [PMID: 19352381]
[18]
Wang F, Bhat K, Doucette M, et al. Docosahexaenoic acid (DHA) sensitizes brain tumor cells to etoposide-induced apoptosis. Curr Mol Med 2011; 11(6): 503-11.
[http://dx.doi.org/10.2174/156652411796268740] [PMID: 21663587]
[19]
Haferkamp SDK, Federlin M, Schlitt HJ, et al. Extracellular citrate fuels cancer cell metabolism and growth [in press]. Front Cell Dev Biol 2020; 8: 602476.
[20]
Rocha CM, Carrola J, Barros AS, et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of blood plasma. J Proteome Res 2011; 10(9): 4314-24.
[http://dx.doi.org/10.1021/pr200550p] [PMID: 21744875]
[21]
Silva FR, Nabeshima CT, Bellini MH, Courrol LC. Early diagnosis of prostate cancer by citrate determination in urine with europium-oxytetracycline complex. Appl Spectrosc 2012; 66(8): 958-61.
[http://dx.doi.org/10.1366/11-06546] [PMID: 22800985]
[22]
Giskeødegård GF, Bertilsson H, Selnæs KM, et al. Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS One 2013; 8(4): e62375.
[http://dx.doi.org/10.1371/journal.pone.0062375] [PMID: 23626811]
[23]
Lima AR, Pinto J, Bastos ML, Carvalho M, Guedes de Pinho P. Nmr-based metabolomics studies of human prostate cancer tissue. Metabolomics : Official journal of the Metabolomic Society 2018; 14: 88.
[24]
Mörén L, Wibom C, Bergström P, Johansson M, Antti H, Bergenheim AT. Characterization of the serum metabolome following radiation treatment in patients with high-grade gliomas. Radiat Oncol 2016; 11: 51.
[http://dx.doi.org/10.1186/s13014-016-0626-6] [PMID: 27039175]
[25]
St-Coeur PD, Poitras JJ, Cuperlovic-Culf M, Touaibia M, Morin P Jr. Investigating a signature of temozolomide resistance in GBM cell lines using metabolomics. J Neurooncol 2015; 125(1): 91-102.
[http://dx.doi.org/10.1007/s11060-015-1899-6] [PMID: 26311249]
[26]
Hlouschek J, Hansel C, Jendrossek V, Matschke J. The mitochondrial citrate carrier (slc25a1) sustains redox homeostasis and mitochondrial metabolism supporting radioresistance of cancer cells with tolerance to cycling severe hypoxia. Front Oncol 2018; 8: 170.
[http://dx.doi.org/10.3389/fonc.2018.00170] [PMID: 29888201]
[27]
Garufi A, Traversi G, Gilardini Montani MS, et al. Reduced chemotherapeutic sensitivity in high glucose condition: implication of antioxidant response. Oncotarget 2019; 10(45): 4691-702.
[http://dx.doi.org/10.18632/oncotarget.27087] [PMID: 31384396]
[28]
Tian T, Li J, Li Y, et al. Melatonin enhances sorafenib-induced cytotoxicity in FLT3-ITD acute myeloid leukemia cells by redox modification. Theranostics 2019; 9(13): 3768-79.
[http://dx.doi.org/10.7150/thno.34327] [PMID: 31281512]
[29]
Cheng KC, Lin RJ, Cheng JY, et al. FAM129B, an antioxidative protein, reduces chemosensitivity by competing with Nrf2 for Keap1 binding. EBioMedicine 2019; 45: 25-38.
[http://dx.doi.org/10.1016/j.ebiom.2019.06.022] [PMID: 31262713]
[30]
Yin H, Zhou Y, Wen C, et al. Curcumin sensitizes glioblastoma to temozolomide by simultaneously generating ROS and disrupting AKT/mTOR signaling. Oncol Rep 2014; 32(4): 1610-6.
[http://dx.doi.org/10.3892/or.2014.3342] [PMID: 25050915]
[31]
Icard P, Poulain L, Lincet H. Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta 2012; 1825(1): 111-6.
[PMID: 22101401]
[32]
Lowry OH, Berger SJ, Carter JG, et al. Diversity of metabolic patterns in human brain tumors: enzymes of energy metabolism and related metabolites and cofactors. J Neurochem 1983; 41(4): 994-1010.
[http://dx.doi.org/10.1111/j.1471-4159.1983.tb09043.x] [PMID: 6619861]
[33]
Yeom KW, Lober RM, Nelson MD Jr, Panigrahy A, Blüml S. Citrate concentrations increase with hypoperfusion in pediatric diffuse intrinsic pontine glioma. J Neurooncol 2015; 122(2): 383-9.
[http://dx.doi.org/10.1007/s11060-015-1726-0] [PMID: 25670389]
[34]
Seymour ZA, Panigrahy A, Finlay JL, Nelson MD Jr, Blüml S. Citrate in pediatric CNS tumors? AJNR Am J Neuroradiol 2008; 29(5): 1006-11.
[http://dx.doi.org/10.3174/ajnr.A1018] [PMID: 18272551]
[35]
Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012; 4(147): 147ra111.
[http://dx.doi.org/10.1126/scitranslmed.3003748] [PMID: 22896675]
[36]
Nakamizo S, Sasayama T, Shinohara M, et al. GC/MS-based metabolomic analysis of cerebrospinal fluid (CSF) from glioma patients. J Neurooncol 2013; 113(1): 65-74.
[http://dx.doi.org/10.1007/s11060-013-1090-x] [PMID: 23456655]
[37]
Kingsmore KM, Vaccari A, Abler D, et al. Mri analysis to map interstitial flow in the brain tumor microenvironment. APL bioengineering 2018; 2(3): 031905.
[38]
Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci 2007; 8(8): 610-22.
[http://dx.doi.org/10.1038/nrn2175] [PMID: 17643088]
[39]
Petroff OA, Yu RK, Ogino T. High-resolution proton magnetic resonance analysis of human cerebrospinal fluid. J Neurochem 1986; 47(4): 1270-6.
[http://dx.doi.org/10.1111/j.1471-4159.1986.tb00750.x] [PMID: 3746301]
[40]
An YJ, Cho HR, Kim TM, et al. 2015.
[41]
Gritsenko PG, Ilina O, Friedl P. Interstitial guidance of cancer invasion. J Pathol 2012; 226(2): 185-99.
[http://dx.doi.org/10.1002/path.3031] [PMID: 22006671]
[42]
Buccione R, Orth JD, McNiven MA. Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 2004; 5(8): 647-57.
[http://dx.doi.org/10.1038/nrm1436] [PMID: 15366708]
[43]
Scott KE, Wheeler FB, Davis AL, et al. Metabolic regulation of invadopodia and invasion by acetyl-CoA carboxylase 1 and de novo lipogenesis. PLoS One 2012; 7(1): e29761.
[http://dx.doi.org/10.1371/journal.pone.0029761] [PMID: 22238651]
[44]
Clavreul A, Etcheverry A, Tétaud C, et al. Identification of two glioblastoma-associated stromal cell subtypes with different carcinogenic properties in histologically normal surgical margins. J Neurooncol 2015; 122(1): 1-10.
[http://dx.doi.org/10.1007/s11060-014-1683-z] [PMID: 25503303]
[45]
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19(11): 1423-37.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[46]
James EL, Michalek RD, Pitiyage GN, et al. Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease. J Proteome Res 2015; 14(4): 1854-71.
[http://dx.doi.org/10.1021/pr501221g] [PMID: 25690941]
[47]
Okolie O, Bago JR, Schmid RS, et al. Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro-oncol 2016; 18(12): 1622-33.
[PMID: 27298311]
[48]
Placone AL, Quiñones-Hinojosa A, Searson PC. The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumour Biol 2016; 37(1): 61-9.
[http://dx.doi.org/10.1007/s13277-015-4242-0] [PMID: 26493995]
[49]
Lin Q, Liu Z, Ling F, Xu G. Astrocytes protect glioma cells from chemotherapy and upregulate survival genes via gap junctional communication. Mol Med Rep 2016; 13(2): 1329-35.
[http://dx.doi.org/10.3892/mmr.2015.4680] [PMID: 26676970]
[50]
Marchetti D, Li J, Shen R. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res 2000; 60(17): 4767-70.
[PMID: 10987284]
[51]
Le DM, Besson A, Fogg DK, et al. Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. J Neurosci 2003; 23(10): 4034-43.
[PMID: 12764090]
[52]
Wang L, Cossette SM, Rarick KR, et al. Astrocytes directly influence tumor cell invasion and metastasis in vivo. PLoS One 2013; 8(12): e80933.
[http://dx.doi.org/10.1371/journal.pone.0080933] [PMID: 24324647]
[53]
Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2011; 481(7381): 380-4.
[http://dx.doi.org/10.1038/nature10602] [PMID: 22101433]
[54]
Davidson SM, Papagiannakopoulos T, Olenchock BA, et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab 2016; 23(3): 517-28.
[http://dx.doi.org/10.1016/j.cmet.2016.01.007] [PMID: 26853747]
[55]
Marin-Valencia I, Yang C, Mashimo T, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 2012; 15(6): 827-37.
[http://dx.doi.org/10.1016/j.cmet.2012.05.001] [PMID: 22682223]
[56]
Yang L, Achreja A, Yeung TL, et al. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab 2016; 24(5): 685-700.
[http://dx.doi.org/10.1016/j.cmet.2016.10.011] [PMID: 27829138]
[57]
Icard P, Fournel L, Alifano M, Lincet H. Extracellular citrate and cancer metabolism-letter. Cancer Res 2018; 78(17): 5176.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1666] [PMID: 30115701]
[58]
Mycielska ME, Geissler EK. Extracellular citrate and cancer metabolism-response. Cancer Res 2018; 78(17): 5177.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1899] [PMID: 30115700]
[59]
Mazurek MP, Prasad PD, Gopal E, et al. Molecular origin of plasma membrane citrate transporter in human prostate epithelial cells. EMBO Rep 2010; 11(6): 431-7.
[http://dx.doi.org/10.1038/embor.2010.51] [PMID: 20448665]
[60]
Costello LC, Franklin RB. Plasma citrate homeostasis: How it is regulated; and its physiological and clinical implications. An important, but neglected, relationship in medicine. HSOA journal of human endocrinology 2016; 1(1): 005.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy