Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

SARS-COV-2 in Type 2 Diabetic Patients: Possible Roles of Exercise Training as a Medicine

Author(s): Mehdi Kushkestani, Mohsen Parvani* and Yaser Kazemzadeh

Volume 18, Issue 7, 2022

Published on: 18 January, 2022

Article ID: e010921196029 Pages: 7

DOI: 10.2174/1573399817666210901121824

Price: $65

Abstract

SARS-COV-2 is the novel type of beta coronavirus that was first evolved in December 2019 in Wuhan, China. People with type 2 diabetes are the most vulnerable group to SARS-COV-2 and its associated complications. Many factors such as medication, pathophysiologic-induced compensatory mechanisms, and alterations in protein expression and immune system function can all contribute to severe outcomes in diabetics. In this review article, we first described the possible mechanisms of increased risk and more severe complications rate of SARS-COV-2 in diabetic patients. Secondly, we discussed the crucial role of exercise in diabetic patients in balancing the RAS system (ACE2/ACE). Finally, we examine the possible roles of acute and chronic exercise in reducing SARS-COV-2 severe outcomes in people with diabetes in accordance with the latest evidence. We concluded that regular exercise (especially moderate-intensity exercise) can play a role in immune- enhancing, anti-inflammatory, and anti-oxidant activities and can balance the ACE2/ACE ratio (decreasing ANG2 levels) in diabetic subjects.

Keywords: SARS-COV-2, diabetes, angiotensin-converting enzyme inhibitors, beta-blockers, exercise, angiotensin-converting enzyme 2, angiotensin II, health.

[1]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[2]
Dara N, Hosseini A, Sayyari AA, Gaman M-A, Fatahi S. Gastrointestinal manifestations and dynamics of liver enzymes in children and adolescents with COVID-19 infection: A systematic review and meta-analysis. Iran J Pediatr 2020; 30(5)
[http://dx.doi.org/10.5812/ijp.106935]
[3]
Spinelli A, Pellino G. COVID-19 pandemic: perspectives on an unfolding crisis. Br J Surg 2020; 107(7): 785-7.
[http://dx.doi.org/10.1002/bjs.11627] [PMID: 32191340]
[4]
Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-92. e6.
[http://dx.doi.org/10.1016/j.cell.2020.11.032]
[5]
Wu J, Zhang J, Sun X, et al. Influence of diabetes mellitus on the severity and fatality of SARS-CoV-2 (COVID-19) infection. Diabetes Obes Metab 2020; 22(10): 1907-14.
[http://dx.doi.org/10.1111/dom.14105] [PMID: 32496012]
[6]
Uhal BD, Li X, Xue A, Gao X, Abdul-Hafez A. Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1-7/Mas axis. Am J Physiol Lung Cell Mol Physiol 2011; 301(3): L269-74.
[http://dx.doi.org/10.1152/ajplung.00222.2010] [PMID: 21665960]
[7]
Ramírez-Sánchez M, Prieto I, Wangensteen R, et al. The renin-angiotensin system: New insight into old therapies. Curr Med Chem 2013; 20(10): 1313-22.
[http://dx.doi.org/10.2174/0929867311320100008] [PMID: 23409710]
[8]
Li G, He X, Zhang L, et al. Assessing ACE2 expression patterns in lung tissues in the pathogenesis of COVID-19. J Autoimmun 2020; 112: 102463.
[http://dx.doi.org/10.1016/j.jaut.2020.102463] [PMID: 32303424]
[9]
Wysocki J, Ye M, Rodriguez E, et al. Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: Prevention of angiotensin II-dependent hypertension. Hypertension 2010; 55(1): 90-8.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.138420] [PMID: 19948988]
[10]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[11]
Kushkestani M, Parvani M, Nosrani SE, Rezaei S, Karimi M. Lipid profile and hepatic enzymes differences between pre-diabetes and normal staff. J Sports Sci 2020; 8: 67-75.
[12]
Kushkestani M, Parvani M, Nosrani SEP, Rezaei S. The relationship between anthropometric indices and lipid profiles in-officeemployees. J Sports Sci 2020; 8: 76-82.
[13]
Angelidi AM, Belanger MJ, Mantzoros CS. Commentary: COVID-19 and diabetes mellitus: What we know, how our patients should be treated now, and what should happen next. Metabolism 2020; 107: 154245.
[http://dx.doi.org/10.1016/j.metabol.2020.154245] [PMID: 32320742]
[14]
Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab 2020; 318(5): E736-41.
[http://dx.doi.org/10.1152/ajpendo.00124.2020] [PMID: 32228322]
[15]
Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci 2017; 18(3): 563.
[http://dx.doi.org/10.3390/ijms18030563] [PMID: 28273875]
[16]
Chen X, Hu W, Ling J, Mo P, Zhang Y, Jiang Q, et al. Hypertension and diabetes delay the viral clearance in COVID-19 patients. medRxiv 2020.
[17]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[18]
Heffernan KS, Jae SY. Exercise as medicine for COVID-19: An ACE in the hole? Med Hypotheses 2020; 142: 109835.
[http://dx.doi.org/10.1016/j.mehy.2020.109835] [PMID: 32428811]
[19]
Nunes-Silva A, Rocha GC, Magalhaes DM, Vaz LN, Salviano de Faria MH, Simoes E Silva AC. Physical exercise and ACE2-angiotensin-(1-7)-mas receptor axis of the renin angiotensin system. Protein Pept Lett 2017; 24(9): 809-16.
[http://dx.doi.org/10.2174/0929866524666170728151401] [PMID: 28758593]
[20]
Wong C-M, Lai H-K, Ou C-Q, et al. Is exercise protective against influenza-associated mortality? PLoS One 2008; 3(5): e2108.
[http://dx.doi.org/10.1371/journal.pone.0002108] [PMID: 18461130]
[21]
Lowder T, Padgett DA, Woods JA. Moderate exercise protects mice from death due to influenza virus. Brain Behav Immun 2005; 19(5): 377-80.
[http://dx.doi.org/10.1016/j.bbi.2005.04.002] [PMID: 15922557]
[22]
Balanzá-Martínez V, Atienza-Carbonell B, Kapczinski F, De Boni RB. Lifestyle behaviours during the COVID-19-time to connect.Wiley Online Library 2020.
[http://dx.doi.org/10.1111/acps.13177]
[23]
Liu M, Wang T, Zhou Y, Zhao Y, Zhang Y, Li J. Potential role of ACE2 in coronavirus disease 2019 (COVID-19) prevention and management. J Transl Int Med 2020; 8(1): 9-19.
[http://dx.doi.org/10.2478/jtim-2020-0003] [PMID: 32435607]
[24]
Kushkestani M, Parvani M, maria Teixeira A. Physical activity is a preventive factor against SARSCOV-2 in healthy subjects (possible cellular and molecular mechanisms). Biomed J Sci Tech Res 2020; 29(3): 22429-36.
[25]
Brodin P, Davis MM. Human immune system variation. Nat Rev Immunol 2017; 17(1): 21-9.
[http://dx.doi.org/10.1038/nri.2016.125] [PMID: 27916977]
[26]
Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 diabetes and its impact on the immune system. Curr Diabetes Rev 2020; 16(5): 442-9.
[http://dx.doi.org/10.2174/1573399815666191024085838] [PMID: 31657690]
[27]
Hodgson K, Morris J, Bridson T, Govan B, Rush C, Ketheesan N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology 2015; 144(2): 171-85.
[http://dx.doi.org/10.1111/imm.12394] [PMID: 25262977]
[28]
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[29]
Wu C, Chen X, Cai Y, Zhou X, Xu S, Huang H, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020; 180(7): 934-43.
[30]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[31]
AlGhatrif M, Cingolani O, Lakatta EG. The dilemma of coronavirus disease 2019, aging, and cardiovascular disease: insights from cardiovascular aging science. JAMA Cardiol 2020; 5(7): 747-8.
[http://dx.doi.org/10.1001/jamacardio.2020.1329] [PMID: 32242886]
[32]
Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARS-CoV-2. J Endocrinol Invest 2020; 43(6): 867-9.
[http://dx.doi.org/10.1007/s40618-020-01236-2] [PMID: 32222956]
[33]
Simpson RJ, Campbell JP, Gleeson M, et al. Can exercise affect immune function to increase susceptibility to infection? Exerc Immunol Rev 2020; 26: 8-22.
[PMID: 32139352]
[34]
Hespel P, Lijnen P, Van Hoof R, et al. Effects of physical endurance training on the plasma renin-angiotensin-aldosterone system in normal man. J Endocrinol 1988; 116(3): 443-9.
[http://dx.doi.org/10.1677/joe.0.1160443] [PMID: 3280723]
[35]
Silva SD Jr, Jara ZP, Peres R, et al. Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: Role for local angiotensin II reduction. PLoS One 2017; 12(12): e0189535.
[http://dx.doi.org/10.1371/journal.pone.0189535] [PMID: 29232407]
[36]
Gomes-Santos IL, Fernandes T, Couto GK, et al. Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats. PLoS One 2014; 9(5): e98012.
[http://dx.doi.org/10.1371/journal.pone.0098012] [PMID: 24859374]
[37]
Echeverría-Rodríguez O, Gallardo-Ortíz IA, Del Valle-Mondragón L, Villalobos-Molina R. Angiotensin-(1-7) participates in enhanced skeletal muscle insulin sensitivity after a bout of exercise. J Endocr Soc 2020; 4(2): bvaa007.
[38]
Magalhães DM, Nunes-Silva A, Rocha GC, et al. Two protocols of aerobic exercise modulate the counter-regulatory axis of the renin-angiotensin system. Heliyon 2020; 6(1): e03208.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03208] [PMID: 31989052]
[39]
Hull JH, Loosemore M, Schwellnus M. Respiratory health in athletes: facing the COVID-19 challenge. Lancet Respir Med 2020; 8(6): 557-8.
[http://dx.doi.org/10.1016/S2213-2600(20)30175-2] [PMID: 32277869]
[40]
Teixeira JAC, Teixeira MF, Teixeira PS, Jorge JG. The athlete’s return in the post-covid-19. Int J Cardiovasc Sci 2021; 341(5)
[41]
Silva FB, da , Fonseca B, et al. Athletes health during pandemic times: Hospitalization rates and variables related to COVID-19 prevalence among endurance athletes. Int J Cardiovasc Sci 2021; 34(3)
[42]
Orhant E, Carling C, Cox A. A three-year prospective study of illness in professional soccer players. Res Sports Med 2010; 18(3): 199-204.
[http://dx.doi.org/10.1080/15438627.2010.490462] [PMID: 20623436]
[43]
Jaworski CA, Rygiel V. Acute illness in the athlete. Clin Sports Med 2019; 38(4): 577-95.
[http://dx.doi.org/10.1016/j.csm.2019.05.001] [PMID: 31472768]
[44]
Minuzzi LG, Rama L, Bishop NC, et al. Lifelong training improves anti-inflammatory environment and maintains the number of regulatory T cells in masters athletes. Eur J Appl Physiol 2017; 117(6): 1131-40.
[http://dx.doi.org/10.1007/s00421-017-3600-6] [PMID: 28391394]
[45]
Shephard RJ, Kavanagh T, Mertens DJ, Qureshi S, Clark M. Personal health benefits of Masters athletics competition. Br J Sports Med 1995; 29(1): 35-40.
[http://dx.doi.org/10.1136/bjsm.29.1.35] [PMID: 7788216]
[46]
Laddu DR, Lavie CJ, Phillips SA, Arena R. Physical activity for immunity protection: Inoculating populations with healthy living medicine in preparation for the next pandemic. Prog Cardiovasc Dis 2021; 64: 102-4.
[http://dx.doi.org/10.1016/j.pcad.2020.04.006] [PMID: 32278694]
[47]
Kushkestani M, Parvani M, Ebrahimpour Nosrani S, Bathaeezadeh SY. The relationship between body composition with blood pressure and sleep quality in male dormitory student at Allameh Tabataba’i University. New Approaches Sport Sci 2020; 1(2): 77-92.
[48]
Jenkins DW, Jenks A. Exercise and diabetes: A narrative review. J Foot Ankle Surg 2017; 56(5): 968-74.
[http://dx.doi.org/10.1053/j.jfas.2017.06.019] [PMID: 28842107]
[49]
Melo LC, Dativo-Medeiros J, Menezes-Silva CE, et al. Physical exercise on inflammatory markers in type 2 diabetes patients: A systematic review of randomized controlled trials. Oxid Med Cell Longev 2017; 2017: 8523728.
[http://dx.doi.org/10.1155/2017/8523728]
[50]
Pedersen BK. Anti-inflammatory effects of exercise: Role in diabetes and cardiovascular disease. Eur J Clin Invest 2017; 47(8): 600-11.
[http://dx.doi.org/10.1111/eci.12781] [PMID: 28722106]
[51]
Hopps E, Canino B, Caimi G. Effects of exercise on inflammation markers in type 2 diabetic subjects. Acta Diabetol 2011; 48(3): 183-9.
[http://dx.doi.org/10.1007/s00592-011-0278-9] [PMID: 21431832]
[52]
Colberg SR, Sigal RJ, Yardley JE, et al. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care 2016; 39(11): 2065-79.
[http://dx.doi.org/10.2337/dc16-1728] [PMID: 27926890]
[53]
Voulgari C, Pagoni S, Vinik A, Poirier P. Exercise improves cardiac autonomic function in obesity and diabetes. Metabolism 2013; 62(5): 609-21.
[http://dx.doi.org/10.1016/j.metabol.2012.09.005] [PMID: 23084034]
[54]
Wijnant SRA, Jacobs M, Van Eeckhoutte HP, et al. Expression of ACE2, the SARS-CoV-2 receptor, in lung tissue of patients with type 2 diabetes. Diabetes 2020; 69(12): 2691-9.
[http://dx.doi.org/10.2337/db20-0669] [PMID: 33024003]
[55]
Pinto BGG, Oliveira AER, Singh Y, et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J Infect Dis 2020; 222(4): 556-63.
[http://dx.doi.org/10.1093/infdis/jiaa332] [PMID: 32526012]
[56]
Higa TS, Spinola AV, Fonseca-Alaniz MH, Evangelista FS. Remodeling of white adipose tissue metabolism by physical training prevents insulin resistance. Life Sci 2014; 103(1): 41-8.
[http://dx.doi.org/10.1016/j.lfs.2014.02.039] [PMID: 24631137]
[57]
Santos AB. The role of exercise training in the renin-angiotensin system: A brief review. Educ Física Em Rev 2015; 9(3)
[58]
Tabony AM, Yoshida T, Galvez S, Higashi Y, Sukhanov S, Chandrasekar B, et al. Angiotensin ii upregulates pp2cα and inhibits ampk signaling and energy balance leading to skeletal muscle wasting. Hypertension 2011; 58(4): 643.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.174839] [PMID: 21844485]
[59]
Pahlavani M, Kalupahana NS, Ramalingam L, Moustaid-Moussa N. Regulation and functions of the renin-angiotensin system in white and brown adipose tissue. Compr Physiol 2017; 7(4): 1137-50.
[http://dx.doi.org/10.1002/cphy.c160031] [PMID: 28915321]
[60]
Ramalingam L, Menikdiwela K, LeMieux M, et al. The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1106-14.
[http://dx.doi.org/10.1016/j.bbadis.2016.07.019] [PMID: 27497523]
[61]
Santos RA, Simoes e Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 2003; 100(14): 8258-63.
[http://dx.doi.org/10.1073/pnas.1432869100] [PMID: 12829792]
[62]
Evangelista FS. Physical exercise and the renin angiotensin system: prospects in the COVID-19. Front Physiol 2020; 11: 561403.
[http://dx.doi.org/10.3389/fphys.2020.561403] [PMID: 33178033]
[63]
Silva SD Jr, Zampieri TT, Ruggeri A, et al. Downregulation of the vascular renin-angiotensin system by aerobic training - focus on the balance between vasoconstrictor and vasodilator axes -. Circ J 2015; 79(6): 1372-80.
[http://dx.doi.org/10.1253/circj.CJ-14-1179] [PMID: 25808225]
[64]
Improta Caria AC, Nonaka CKV, Pereira CS, et al. Exercise training-induced changes in MicroRNAs: Beneficial regulatory effects in hypertension, type 2 diabetes, and obesity. Int J Mol Sci 2018; 19(11): 3608.
[http://dx.doi.org/10.3390/ijms19113608] [PMID: 30445764]
[65]
Américo ALV, Muller CR, Vecchiatto B, Martucci LF, Fonseca-Alaniz MH, Evangelista FS. Aerobic exercise training prevents obesity and insulin resistance independent of the renin angiotensin system modulation in the subcutaneous white adipose tissue. PLoS One 2019; 14(4): e0215896.
[http://dx.doi.org/10.1371/journal.pone.0215896] [PMID: 31022246]
[66]
Elmer DJ, Laird RH, Barberio MD, Pascoe DD. Inflammatory, lipid, and body composition responses to interval training or moderate aerobic training. Eur J Appl Physiol 2016; 116(3): 601-9.
[http://dx.doi.org/10.1007/s00421-015-3308-4] [PMID: 26721463]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy