Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Molecular Docking Studies, Chemical Composition, Antioxidant, Cytotoxicity, Antibacterial and Antifungal Activities of Globularia alypum Extract

Author(s): Najla Hajji*, Sihem Bayar, Nacim Zouari, Hisham Altayb, Hichem Sebai and Kamel Chaieb

Volume 18, Issue 3, 2022

Published on: 31 August, 2021

Article ID: e310821195995 Pages: 14

DOI: 10.2174/1573407217666210831160746

Price: $65

Abstract

Background: Globularia alypum L. is a Mediterranean plant of the Globulariaceae family which has been used in folk medicine to cure several diseases. Different studies have been done in vitro and in vivo using diverse G. alypum extracts to understand this traditional use.

Methods: In this study, Tunisian G. alypum leaf methanol extract (GAME) was chemically identified using LC-ESI-MS, then examined in vitro for its antioxidant, antibacterial, and antifungal activities. Besides, a molecular docking study was also conducted.

Results: Nineteen phenolic compounds were detected, with trans-cinnamic acid (45.14%) and luteolin 7-O-glucoside (19.82%) being the dominant ones. The GAME demonstrated important antioxidant activities, especially against 2, 2-diphenyl-l-1-picrylhydrazil (DPPH) radical (IC50 = 16.1±1.1 μg.ml-1) and exhibited an anti-proliferative effect against Vero cells with (IC50 2091 ± 177 μg.ml-1). Data also reveals that the GAME inhibited the growth of oral bacteria, in particular Streptococcus oralis (MICs value ranged from 2560 to 20480 μg.ml-1). In addition, GAME has a significant antifungal action, especially against Candida albicans ATCC 90028 (MIC=2560 μg.ml-1). Docking study identified one of the major molecules (luteolin 7-O-glucoside) present in the GAME extract, displaying a good interaction with tyrosinase (docking score -9.6 kcal.mol-1) and other antibacterial (tyrosyl-tRNA synthetase, gyrase, deformylase) and antifungal (n-myristoyltransferase, chitinase) target proteins.

Conclusion: This study illustrates that GAME has potent sources of antioxidants and antimicrobials useful in combating oral bacteria. Hence GAME can be of reasonable use in food technology, processing, as well as the medical field.

Keywords: Globularia alypum, chemical composition, antioxidant, antimicrobial, molecular docking, citotoxicity.

Graphical Abstract

[1]
Uysal, A.; Ozer, O.Y.; Zengin, G.; Stefanucci, A.; Mollica, A.; Picot-Allain, C.M.N.; Mahomoodally, M.F. Multifunctional approaches to provide potential pharmacophores for the pharmacy shelf: Heracleum sphondylium L. subsp. ternatum (Velen.) Brummitt. Comput. Biol. Chem., 2019, 78, 64-73.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.11.018] [PMID: 30500554]
[2]
Della Valle, A.; Dimmito, M.P.; Zengin, G.; Pieretti, S.; Mollica, A.; Locatelli, M.; Cichelli, A.; Novellino, E.; Ak, G.; Yerlikaya, S.; Baloglu, M.C.; Celik Altunoglu, Y.; Stefanucci, A. Exploring the nutraceutical potential of dried pepper Capsicum annuum L. on market from altino in abruzzo region. Antioxidants, 2020, 9(5), 400.
[http://dx.doi.org/10.3390/antiox9050400] [PMID: 32397242]
[3]
Bibi Sadeer, N.; Llorent-Martínez, E.J.; Bene, K.; Fawzi Mahomoodally, M.; Mollica, A.; Ibrahime Sinan, K.; Stefanucci, A.; Ruiz-Riaguas, A.; Fernández-de Córdova, M.L.; Zengin, G. Chemical profiling, antioxidant, enzyme inhibitory and molecular modelling studies on the leaves and stem bark extracts of three African medicinal plants. J. Pharm. Biomed. Anal., 2019, 174, 19-33.
[http://dx.doi.org/10.1016/j.jpba.2019.05.041] [PMID: 31153134]
[4]
Mollica, A.; Stefanucci, A.; Feliciani, F.; Lucente, G.; Pinnen, F. Synthesis of (S)-5, 6-dibromo-tryptophan derivatives as building blocks for peptide chemistry. Tetrahedron Lett., 2011, 52(20), 2583-2585.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.041]
[5]
Caldes, G.; Prescott, B.; King, J.R. A potential antileukemic substance present in Globularia alypum. Planta Med., 1975, 27(1), 72-76.
[http://dx.doi.org/10.1055/s-0028-1097763] [PMID: 1161880]
[6]
Ziyyat, A.; Legssyer, A.; Mekhfi, H.; Dassouli, A.; Serhrouchni, M.; Benjelloun, W. Phytotherapy of hypertension and diabetes in oriental Morocco. J. Ethnopharmacol., 1997, 58(1), 45-54.
[http://dx.doi.org/10.1016/S0378-8741(97)00077-9] [PMID: 9324004]
[7]
Ghlissi, Z.; Kallel, R.; Sila, A.; Harrabi, B.; Atheymen, R.; Zeghal, K.; Bougatef, A.; Sahnoun, Z. Globularia alypum methanolic extract improves burn wound healing process and inflammation in rats and possesses antibacterial and antioxidant activities. Biomed. Pharmacother., 2016, 84, 1488-1495.
[http://dx.doi.org/10.1016/j.biopha.2016.11.051] [PMID: 27876335]
[8]
Fehri, B.; Aiache, J.M.; Ahmed, K.M. Active spermatogenesis induced by a reiterated administration of Globularia alypum L. aqueous leaf extract. Pharmacognosy Res., 2012, 4(3), 138-147.
[http://dx.doi.org/10.4103/0974-8490.99073] [PMID: 22923951]
[9]
Ghlissi, Z.; Krichen, F.; Kallel, R.; Amor, I.B.; Boudawara, T.; Gargouri, J.; Zeghal, K.; Hakim, A.; Bougatef, A.; Sahnoun, Z. Sulfated polysaccharide isolated from Globularia alypum L.: Structural characterization, in vivo and in vitro anticoagulant activity, and toxicological profile. Int. J. Biol. Macromol., 2019, 123, 335-342.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.044] [PMID: 30419328]
[10]
Mohamed, T.; Souiy, Z.; Achour, L.; Hamden, K. Anti-obesity, anti-hyperglycaemic, anti-antipyretic and analgesic activities of Globularia alypum extracts. Arch. Physiol. Biochem., 2020, 1-8.
[http://dx.doi.org/10.1080/13813455.2020.1773865] [PMID: 32536285]
[11]
Friščić, M.; Bucar, F.; Hazler Pilepić, K. LC-PDA-ESI-MSn analysis of phenolic and iridoid compounds from Globularia spp. J. Mass Spectrom., 2016, 51(12), 1211-1236.
[http://dx.doi.org/10.1002/jms.3844] [PMID: 27621087]
[12]
Taghzouti, O.K.; Balouiri, M.; Ouedrhiri, W.; Ech, A. In vitro evaluation of the antioxidant and antimicrobial effects of Globularia alypum L. extracts. J. Mater. Environ. Sci., 2016, 7, 1988-1995.
[13]
Friščić, M.; Maslo, S.; Garić, R.; Maleš, Ž.; Pilepić, K.H. Comparative analysis of specialized metabolites and antioxidant capacity in vitro of different natural populations of Globularia spp. Acta Bot. Croat., 2018, 77(1), 1-9.
[http://dx.doi.org/10.1515/botcro-2017-0017]
[14]
Khantouche, L.; Guesmi, F.; Motri, S.; Mejri, M.; Abderabba, M. Nutritional Composition, Analysis of Secondary Metabolites and Antioxidative Effects of the Leaves of Globularia alypum L. Indian J. Pharm. Sci., 2018, 80(2), 274-281.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000355]
[15]
Hajji, N.; Wannes, D.; Jabri, M.A.; Rtibi, K.; Tounsi, H.; Abdellaoui, A.; Sebai, H. Purgative/laxative actions of Globularia alypum aqueous extract on gastrointestinal-physiological function and against loperamide-induced constipation coupled to oxidative stress and inflammation in rats. Neurogastroenterol. Motil., 2020, 32(8), e13858.
[http://dx.doi.org/10.1111/nmo.13858] [PMID: 32337785]
[16]
Kraza, L.; Mourad, S.M.; Halis, Y. in vitro investigation of the antioxidant and antimicrobial effects of hydro-alcoholic and aqueous extracts of Globularia alypum L. Acta Scientifica Naturalis., 2020, 7(1), 46-58.
[http://dx.doi.org/10.2478/asn-2020-0006]
[17]
Ergene, A.; Guler, P.; Tan, S.; Hamzaoglu, E.; Duran, A. Antibacterial and antifungal activity of Heracleum sphondylium subsp. artvinense. Afr. J. Biotechnol., 2006, 5(11), 1087.
[18]
Annadurai, P.; Annadurai, V.; Yongkun, M.; Pugazhendhi, A.; Dhandayuthapani, K. Phytochemical composition, antioxidant and antimicrobial activities of Plecospermum spinosum Trecul. Process Biochem., 2021, 100, 107-116.
[http://dx.doi.org/10.1016/j.procbio.2020.09.031]
[19]
Ong, G.; Kasi, R.; Subramaniam, R. A review on plant extracts as natural additives in coating applications. Prog. Org. Coat., 2021, 151, 106091.
[http://dx.doi.org/10.1016/j.porgcoat.2020.106091]
[20]
Khlifi, D.; Hamdi, M.; El Hayouni, A.; Cazaux, S.; Souchard, J.P.; Couderc, F.; Bouajila, J. Global chemical composition and antioxidant and anti-tuberculosis activities of various extracts of Globularia alypum L. (Globulariaceae) leaves. Molecules, 2011, 16(12), 10592-10603.
[http://dx.doi.org/10.3390/molecules161210592] [PMID: 22183884]
[21]
Abdelah Bogdadi, H.A.; Kokoska, L.; Havlik, J.; Kloucek, P.; Rada, V.; Vorisek, K. in vitro. Antimicrobial Activity of Some Libyan Medicinal Plant Extracts. Pharm. Biol., 2007, 45(5), 386-391.
[http://dx.doi.org/10.1080/13880200701215026]
[22]
Soumia, K.; Tahar, D.; Lynda, L.; Saida, B.; Chabane, C.; Hafidha, M. Antioxidant and antimicrobial activities of selected medicinal plants from. J. Coast. Life Med., 2014, 2(6), 478-483.
[23]
Jridi, M.; Hajji, S.; Ayed, H.B.; Lassoued, I.; Mbarek, A.; Kammoun, M.; Souissi, N.; Nasri, M. Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films. Int. J. Biol. Macromol., 2014, 67, 373-379.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.03.054] [PMID: 24709012]
[24]
Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J-M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem., 2009, 57(5), 1768-1774.
[http://dx.doi.org/10.1021/jf803011r] [PMID: 19199445]
[25]
Koleva, I.I.; van Beek, T.A.; Linssen, J.P.; de Groot, A.; Evstatieva, L.N. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem. Anal., 2002, 13(1), 8-17.
[http://dx.doi.org/10.1002/pca.611] [PMID: 11899609]
[26]
Abdelhedi, O.; Nasri, R.; Souissi, N.; Nasri, M.; Jridi, M. Sulfated polysaccharides from common smooth hound: Extraction and assessment of anti-ACE, antioxidant and antibacterial activities. Carbohydr. Polym., 2016, 152, 605-614.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.048] [PMID: 27516310]
[27]
Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi, A.B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother. Res., 2007, 21(6), 501-506.
[http://dx.doi.org/10.1002/ptr.2124] [PMID: 17380552]
[28]
Touati, I.; Chaieb, K.; Bakhrouf, A.; Gaddour, K. Screening of antimicrobial activity of marine sponge extracts collected from Tunisian coast. J. Mycol. Med., 2007, 17(3), 183-187.
[http://dx.doi.org/10.1016/j.mycmed.2007.05.005]
[29]
Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; Fagan, P.; Marvin, J.; Padilla, D.; Ravichandran, V.; Schneider, B.; Thanki, N.; Weissig, H.; Westbrook, J.D.; Zardecki, C. The protein data bank. Acta Crystallogr. D Biol. Crystallogr., 2002, 58(Pt 6 No 1), 899-907.
[http://dx.doi.org/10.1107/S0907444902003451] [PMID: 12037327]
[30]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[31]
De Maria, C.; Trugo, L.; Miranda, L.D.M. The content of individual caffeoylquinic acids in edible vegetables. J. Food Compos. Anal., 1999, 12(4), 289-292.
[http://dx.doi.org/10.1006/jfca.1999.0833]
[32]
Hajji, N.; Jabri, M-A.; Tounsi, H.; Wanes, D.; Ali, I.B.E.H.; Boulila, A. Phytochemical analysis by HPLC-PDA/ESI-MS of Globularia alypum aqueous extract and mechanism of its protective effect on experimental colitis induced by acetic acid in rat. J. Funct. Foods, 2018, 47, 220-228.
[http://dx.doi.org/10.1016/j.jff.2018.05.058]
[33]
Li, X.; Saleh, A.S.; Wang, P.; Wang, Q.; Yang, S.; Zhu, M. Characterization of Organogel Prepared from Rice Bran Oil with Cinnamic Acid. Food Biophys., 2017, 12(3), 356-364.
[http://dx.doi.org/10.1007/s11483-017-9491-6]
[34]
Ilan, D.I.S.; Bock, C.H.; Hazir, S. Xenorhabdus szentirmaii metabolites, trans-cinnamic acid, and analogs thereof as enhancers of fungicidal activity. Google Patents, 2018.
[35]
Chung, J.; Kim, S.; Lee, H.A.; Park, M.H.; Kim, S.; Song, Y.R.; Na, H.S. Trans-cinnamic aldehyde inhibits Aggregatibacter actinomycetemcomitans-induced inflammation in THP-1-derived macrophages via autophagy activation. J. Periodontol., 2018, 89(10), 1262-1271.
[http://dx.doi.org/10.1002/JPER.17-0727] [PMID: 29761921]
[36]
Chen, S.; Yang, B.; Xu, Y.; Rong, Y.; Qiu, Y. Protection of Luteolin-7-O-glucoside against apoptosis induced by hypoxia/reoxygenation through the MAPK pathways in H9c2 cells. Mol. Med. Rep., 2018, 17(5), 7156-7162.
[http://dx.doi.org/10.3892/mmr.2018.8774] [PMID: 29568918]
[37]
Lee, H-Z.; Yang, W-H.; Bao, B-Y.; Lo, P-L. Proteomic analysis reveals ATP-dependent steps and chaperones involvement in luteolin-induced lung cancer CH27 cell apoptosis. Eur. J. Pharmacol., 2010, 642(1-3), 19-27.
[http://dx.doi.org/10.1016/j.ejphar.2010.05.053] [PMID: 20553912]
[38]
Chograni, H.; Riahi, L.; Zaouali, Y.; Boussaid, M. Polyphenols, flavonoids, antioxidant activity in leaves and flowers of Tunisian Globularia alypum L.(Globulariaceae). Afr. J. Ecol., 2013, 51(2), 343-347.
[http://dx.doi.org/10.1111/aje.12041]
[39]
Ferrare, K.; Bidel, L.P.R.; Awwad, A.; Poucheret, P.; Cazals, G.; Lazennec, F.; Azay-Milhau, J.; Tournier, M.; Lajoix, A.D.; Tousch, D. Increase in insulin sensitivity by the association of chicoric acid and chlorogenic acid contained in a natural chicoric acid extract (NCRAE) of chicory (Cichorium intybus L.) for an antidiabetic effect. J. Ethnopharmacol., 2018, 215(6), 241-248.
[http://dx.doi.org/10.1016/j.jep.2017.12.035] [PMID: 29325917]
[40]
El-Desoky, A.H.; Abdel-Rahman, R.F.; Ahmed, O.K.; El-Beltagi, H.S.; Hattori, M. Anti-inflammatory and antioxidant activities of naringin isolated from Carissa carandas L.: in vitro and in vivo evidence. Phytomedicine, 2018, 42, 126-134.
[http://dx.doi.org/10.1016/j.phymed.2018.03.051] [PMID: 29655678]
[41]
Lim, Y.J.; Kim, J.H.; Pan, J.H.; Kim, J.K.; Park, T.S.; Kim, Y.J.; Lee, J.H.; Kim, J.H. Naringin protects pancreatic β-cells against oxidative stress-induced apoptosis by inhibiting both intrinsic and extrinsic pathways in insulin-deficient diabetic mice. Mol. Nutr. Food Res., 2018, 62(5)
[http://dx.doi.org/10.1002/mnfr.201700810] [PMID: 29314619]
[42]
Yakoub, A.R.B.; Abdehedi, O.; Jridi, M.; Elfalleh, W.; Nasri, M.; Ferchichi, A. Flavonoids, phenols, antioxidant, and antimicrobial activities in various extracts from Tossa jute leave (Corchorus olitorus L.). Ind. Crops Prod., 2018, 118, 206-213.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.047]
[43]
Xuan, T.D.; Khang, D.T. Effects of exogenous application of protocatechuic acid and vanillic acid to chlorophylls, phenolics and antioxidant enzymes of rice (Oryza sativa L.) in submergence. Molecules, 2018, 23(3), 620.
[http://dx.doi.org/10.3390/molecules23030620] [PMID: 29522438]
[44]
Rahbardar, M.G.; Amin, B.; Mehri, S.; Mirnajafi-Zadeh, S.J.; Hosseinzadeh, H. Rosmarinic acid attenuates development and existing pain in a rat model of neuropathic pain: An evidence of anti-oxidative and anti-inflammatory effects. Phytomedicine, 2018, 40, 59-67.
[http://dx.doi.org/10.1016/j.phymed.2018.01.001] [PMID: 29496176]
[45]
Li, F.; Jin, H.; Xiao, J.; Yin, X.; Liu, X.; Li, D.; Huang, Q. The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent. Food Res. Int., 2018, 111, 351-360.
[http://dx.doi.org/10.1016/j.foodres.2018.05.038] [PMID: 30007696]
[46]
Varshney, R.; Varshney, R.; Mishra, R.; Gupta, S.; Sircar, D.; Roy, P. Kaempferol alleviates palmitic acid-induced lipid stores, endoplasmic reticulum stress and pancreatic β-cell dysfunction through AMPK/mTOR-mediated lipophagy. J. Nutr. Biochem., 2018, 57, 212-227.
[http://dx.doi.org/10.1016/j.jnutbio.2018.02.017] [PMID: 29758481]
[47]
Wu, Y-L.; Chang, J-C.; Lin, W-Y.; Li, C-C.; Hsieh, M.; Chen, H-W.; Wang, T.S.; Wu, W.T.; Liu, C.S.; Liu, K.L. Caffeic acid and resveratrol ameliorate cellular damage in cell and Drosophila models of spinocerebellar ataxia type 3 through upregulation of Nrf2 pathway. Free Radic. Biol. Med., 2018, 115, 309-317.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.011] [PMID: 29247688]
[48]
Peres, D.D.A.; Sarruf, F.D.; de Oliveira, C.A.; Velasco, M.V.R.; Baby, A.R. Ferulic acid photoprotective properties in association with UV filters: Multifunctional sunscreen with improved SPF and UVA-PF. J. Photochem. Photobiol. B, 2018, 185, 46-49.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.05.026] [PMID: 29864725]
[49]
Chan, C-L.; Gan, R-y.; Shah, N.P.; Corke, H. Polyphenols from selected dietary spices and medicinal herbs differentially affect common food-borne pathogenic bacteria and lactic acid bacteria. Food Control, 2018, 92, 437-443.
[http://dx.doi.org/10.1016/j.foodcont.2018.05.032]
[50]
Mitani, T.; Ota, K.; Inaba, N.; Kishida, K.; Koyama, H.A. Antimicrobial activity of the phenolic compounds of prunus mume against Enterobacteria. Biol. Pharm. Bull., 2018, 41(2), 208-212.
[http://dx.doi.org/10.1248/bpb.b17-00711] [PMID: 29386480]
[51]
Ge, L.; Zhu, M.; Li, X.; Xu, Y.; Ma, X.; Shi, R. Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocoll., 2018, 83, 308-316.
[http://dx.doi.org/10.1016/j.foodhyd.2018.04.052]
[52]
Torres, C.A.; Pérez Zamora, C.M.; Nuñez, M.B.; Gonzalez, A.M. in vitro antioxidant, antilipoxygenase and antimicrobial activities of extracts from seven climbing plants belonging to the Bignoniaceae. J. Integr. Med., 2018, 16(4), 255-262.
[http://dx.doi.org/10.1016/j.joim.2018.04.009] [PMID: 29759936]
[53]
Sun, L.; Liao, K.; Hang, C. Caffeic acid phenethyl ester synergistically enhances the antifungal activity of fluconazole against resistant Candida albicans. Phytomedicine, 2018, 40, 55-58.
[http://dx.doi.org/10.1016/j.phymed.2017.12.033] [PMID: 29496175]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy