Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Novel Non-pharmaceutical Advancements in Heart Failure Management: The Emerging Role of Technology

Author(s): Mark T. Nolan*, Neville Tan and Christopher J. Neil

Volume 18, Issue 4, 2022

Published on: 03 March, 2022

Article ID: e310821195984 Pages: 7

DOI: 10.2174/1573403X17666210831144141

Price: $65

Abstract

Purpose of Review: To summarise and discuss the implications of recent technological advances in heart failure care.

Recent Findings: Heart failure remains a significant source of morbidity and mortality in the US population despite multiple classes of approved pharmacological treatments. Novel cardiac devices and technologies may offer an opportunity to improve outcomes. Baroreflex Activation Therapy and Cardiac Contractility Remodelling may improve myocardial contractility by altering neurohormonal stimulation of the heart. Implantable Pulmonary Artery Monitors and Biatrial Shunts may prevent heart failure admissions by altering the trajectory of progressive congestion. Phrenic Nerve Stimulation offers potentially effective treatment for comorbid conditions. Smartphone applications offer an intriguing strategy for improving medication adherence.

Summary: Novel heart failure technologies offer promise for reducing this public health burden. Randomized controlled studies are indicated for assessing the future role of these novel therapies.

Keywords: Heart failure, technology, cardiac device, pulmonary artery pressure monitoring, phrenic nerve stimulation, baroreflex activation therapy, biatrial shunts, cardiac contractility, modulation healthcare mobile phone applications.

Graphical Abstract

[1]
Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation 2012; 125(1): e2-e220.
[PMID: 22179539]
[2]
Blecker S, Paul M, Taksler G, Ogedegbe G, Katz S. Heart failure–associated hospitalizations in the United States. J Am Coll Cardiol 2013; 61(12): 1259-67.
[http://dx.doi.org/10.1016/j.jacc.2012.12.038] [PMID: 23500328]
[3]
Armstrong PW, Pieske B, Anstrom KJ, et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med 2020; 382(20): 1883-93.
[http://dx.doi.org/10.1056/NEJMoa1915928] [PMID: 32222134]
[4]
McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014; 371(11): 993-1004.
[http://dx.doi.org/10.1056/NEJMoa1409077] [PMID: 25176015]
[5]
Yancy CW, Januzzi JL Jr, Allen LA, et al. 2017 ACC expert consensus decision pathway for optimization of heart failure treatment: answers to 10 pivotal issues about heart failure with reduced ejection fraction: a report of the american college of cardiology task force on expert consensus decision pathways. J Am Coll Cardiol 2018; 71(2): 201-30.
[http://dx.doi.org/10.1016/j.jacc.2017.11.025] [PMID: 29277252]
[6]
Lam CSP, Voors AA, de Boer RA, Solomon SD, van Veldhuisen DJ. Heart failure with preserved ejection fraction: from mechanisms to therapies. Eur Heart J 2018; 39(30): 2780-92.
[http://dx.doi.org/10.1093/eurheartj/ehy301] [PMID: 29905796]
[7]
Hussein AA, Wilkoff BL. Cardiac implantable electronic device therapy in heart failure. Circ Res 2019; 124(11): 1584-97.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313571] [PMID: 31120815]
[8]
Okumura N, Jhund PS, Gong J, et al. Importance of clinical worsening of heart failure treated in the outpatient setting: evidence from the prospective comparison of arni with acei to determine impact on global mortality and morbidity in heart failure trial (PARADIGM-HF). Circulation 2016; 133(23): 2254-62.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.020729] [PMID: 27143684]
[9]
Klein L. (Re)discovering the neurohormonal and hemodynamic duality of heart failure. J Am Coll Cardiol 2017; 70(15): 1887-9.
[http://dx.doi.org/10.1016/j.jacc.2017.08.058] [PMID: 28982502]
[10]
Givertz MM, Stevenson LW, Costanzo MR, et al. Pulmonary artery pressure-guided management of patients with heart failure and reduced ejection fraction. J Am Coll Cardiol 2017; 70(15): 1875-86.
[http://dx.doi.org/10.1016/j.jacc.2017.08.010] [PMID: 28982501]
[11]
Adamson PB, Abraham WT, Bourge RC, et al. Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circ Heart Fail 2014; 7(6): 935-44.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.001229] [PMID: 25286913]
[12]
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37(27): 2129-200.
[http://dx.doi.org/10.1093/eurheartj/ehw128] [PMID: 27206819]
[13]
Schmier JK, Ong KL, Fonarow GC. Cost-effectiveness of remote cardiac monitoring with the CardioMEMS heart failure system. Clin Cardiol 2017; 40(7): 430-6.
[http://dx.doi.org/10.1002/clc.22696] [PMID: 28272808]
[14]
Khayat R, Jarjoura D, Porter K, et al. Sleep disordered breathing and post-discharge mortality in patients with acute heart failure. Eur Heart J 2015; 36(23): 1463-9.
[http://dx.doi.org/10.1093/eurheartj/ehu522] [PMID: 25636743]
[15]
Bekfani T, Abraham WT. Current and future developments in the field of central sleep apnoea. Europace 2016; 18(8): 1123-34.
[http://dx.doi.org/10.1093/europace/euv435] [PMID: 27234869]
[16]
Khayat R, Abraham W, Patt B, et al. Central sleep apnea is a predictor of cardiac readmission in hospitalized patients with systolic heart failure. J Card Fail 2012; 18(7): 534-40.
[http://dx.doi.org/10.1016/j.cardfail.2012.05.003] [PMID: 22748486]
[17]
Cowie MR, Woehrle H, Wegscheider K, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med 2015; 373(12): 1095-105.
[http://dx.doi.org/10.1056/NEJMoa1506459] [PMID: 26323938]
[18]
Costanzo MR, Ponikowski P, Javaheri S, et al. Transvenous neurostimulation for central sleep apnoea: a randomised controlled trial. Lancet 2016; 388(10048): 974-82.
[http://dx.doi.org/10.1016/S0140-6736(16)30961-8] [PMID: 27598679]
[19]
Costanzo MR, Ponikowski P, Javaheri S, et al. Sustained 12 month benefit of phrenic nerve stimulation for central sleep apnea. Am J Cardiol 2018; 121(11): 1400-8.
[http://dx.doi.org/10.1016/j.amjcard.2018.02.022] [PMID: 29735217]
[20]
Costanzo MR, Ponikowski P, Coats A, et al. Phrenic nerve stimulation to treat patients with central sleep apnoea and heart failure. Eur J Heart Fail 2018; 20(12): 1746-54.
[http://dx.doi.org/10.1002/ejhf.1312] [PMID: 30303611]
[21]
McKelvie RS, Moe GW, Cheung A, et al. The 2011 Canadian Cardiovascular Society heart failure management guidelines update: focus on sleep apnea, renal dysfunction, mechanical circulatory support, and palliative care. Can J Cardiol 2011; 27(3): 319-38.
[http://dx.doi.org/10.1016/j.cjca.2011.03.011] [PMID: 21601772]
[22]
Schwartz PJ, La Rovere MT, De Ferrari GM, Mann DL. Autonomic modulation for the management of patients with chronic heart failure. Circ Heart Fail 2015; 8(3): 619-28.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.114.001964] [PMID: 25991804]
[23]
Gold MR, Van Veldhuisen DJ, Hauptman PJ, et al. Vagus Nerve Stimulation for the Treatment of Heart Failure: The INOVATE-HF Trial. J Am Coll Cardiol 2016; 68(2): 149-58.
[http://dx.doi.org/10.1016/j.jacc.2016.03.525] [PMID: 27058909]
[24]
Lohmeier TE, Irwin ED, Rossing MA, Serdar DJ, Kieval RS. Prolonged activation of the baroreflex produces sustained hypotension. Hypertension 2004; 43(2): 306-11.
[http://dx.doi.org/10.1161/01.HYP.0000111837.73693.9b] [PMID: 14707159]
[25]
Heusser K, Tank J, Engeli S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 2010; 55(3): 619-26.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.140665] [PMID: 20101001]
[26]
Lohmeier TE, Iliescu R, Dwyer TM, Irwin ED, Cates AW, Rossing MA. Sustained suppression of sympathetic activity and arterial pressure during chronic activation of the carotid baroreflex. Am J Physiol Heart Circ Physiol 2010; 299(2): H402-9.
[http://dx.doi.org/10.1152/ajpheart.00372.2010] [PMID: 20511410]
[27]
Abraham WT, Zile MR, Weaver FA, et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail 2015; 3(6): 487-96.
[http://dx.doi.org/10.1016/j.jchf.2015.02.006] [PMID: 25982108]
[28]
Mann JA, Abraham WT. Cardiac contractility modulation and baroreflex activation therapy in heart failure patients. Curr Heart Fail Rep 2019; 16(1): 38-46.
[http://dx.doi.org/10.1007/s11897-019-0422-3] [PMID: 30762177]
[29]
Borisenko O, Müller-Ehmsen J, Lindenfeld J, Rafflenbeul E, Hamm C. An early analysis of cost-utility of baroreflex activation therapy in advanced chronic heart failure in Germany. BMC Cardiovasc Disord 2018; 18(1): 163.
[http://dx.doi.org/10.1186/s12872-018-0898-x] [PMID: 30092774]
[30]
Pfeffer MA, Shah AM, Borlaug BA. Heart failure with preserved ejection fraction in perspective. Circ Res 2019; 124(11): 1598-617.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.313572] [PMID: 31120821]
[31]
Shah SJ, Katz DH, Selvaraj S, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 2015; 131(3): 269-79.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.010637] [PMID: 25398313]
[32]
Kaye DM, Nanayakkara S. Interatrial shunt device for heart failure with preserved ejection fraction. Front Cardiovasc Med 2019; 6: 143.
[http://dx.doi.org/10.3389/fcvm.2019.00143] [PMID: 31620452]
[33]
Feldman T, Mauri L, Kahwash R, et al. Transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction (REDUCE LAP-HF I [reduce elevated left atrial pressure in patients with heart failure]): a phase 2, randomized, sham-controlled trial. Circulation 2018; 137(4): 364-75.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.032094] [PMID: 29142012]
[34]
Kaye DM, Hasenfuß G, Neuzil P, et al. One-year outcomes after transcatheter insertion of an interatrial shunt device for the management of heart failure with preserved ejection fraction. Circ Heart Fail 2016; 9(12): 9.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.116.003662] [PMID: 27852653]
[35]
Rodés-Cabau J, Bernier M, Amat-Santos IJ, et al. Interatrial shunting for heart failure: early and late results from the first-in-human experience with the v-wave system. JACC Cardiovasc Interv 2018; 11(22): 2300-10.
[http://dx.doi.org/10.1016/j.jcin.2018.07.001] [PMID: 30391390]
[36]
Osmanska J, Hawkins NM, Toma M, Ignaszewski A, Virani SA. Eligibility for cardiac resynchronization therapy in patients hospitalized with heart failure. ESC Heart Fail 2018; 5(4): 668-74.
[http://dx.doi.org/10.1002/ehf2.12297] [PMID: 29938922]
[37]
Borggrefe M, Mann DL. Cardiac contractility modulation in 2018. Circulation 2018; 138(24): 2738-40.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.036460] [PMID: 30565990]
[38]
Lawo T, Borggrefe M, Butter C, et al. Electrical signals applied during the absolute refractory period: an investigational treatment for advanced heart failure in patients with normal QRS duration. J Am Coll Cardiol 2005; 46(12): 2229-36.
[http://dx.doi.org/10.1016/j.jacc.2005.05.093] [PMID: 16360051]
[39]
Kadish A, Nademanee K, Volosin K, et al. A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am Heart J 2011; 161: 329-37.
[http://dx.doi.org/10.1016/j.ahj.2010.10.025]
[40]
Abraham WT, Nademanee K, Volosin K, et al. Subgroup analysis of a randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. J Card Fail 2011; 17(9): 710-7.
[http://dx.doi.org/10.1016/j.cardfail.2011.05.006] [PMID: 21872139]
[41]
Abraham WT, Kuck KH, Goldsmith RL, et al. A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation. JACC Heart Fail 2018; 6(10): 874-83.
[http://dx.doi.org/10.1016/j.jchf.2018.04.010] [PMID: 29754812]
[42]
Kuschyk J, Roeger S, Schneider R, et al. Efficacy and survival in patients with cardiac contractility modulation: long-term single center experience in 81 patients. Int J Cardiol 2015; 183: 76-81.
[http://dx.doi.org/10.1016/j.ijcard.2014.12.178] [PMID: 25662055]
[43]
Müller D, Remppis A, Schauerte P, et al. Clinical effects of long-term cardiac contractility modulation (CCM) in subjects with heart failure caused by left ventricular systolic dysfunction. Clin Res Cardiol 2017; 106(11): 893-904.
[http://dx.doi.org/10.1007/s00392-017-1135-9] [PMID: 28685207]
[44]
Maniadakis NFV, Mylonas C, Sharma R, Stewart Coats AJ. Economic Evaluation of Cardiac Contractility Modulation (CCM) therapy with the optimizer IVs in the management of heart failure patients. International Cardiovascular Forum Journal. 4: 43-52.
[45]
Fitzgerald AA, Powers JD, Ho PM, et al. Impact of medication nonadherence on hospitalizations and mortality in heart failure. J Card Fail 2011; 17(8): 664-9.
[http://dx.doi.org/10.1016/j.cardfail.2011.04.011] [PMID: 21807328]
[46]
Pew research centre Demographics of Mobile Device Ownership and Adoption in the United States 2019.
[47]
Gandhi S, Chen S, Hong L, et al. Effect of mobile health interventions on the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Can J Cardiol 2017; 33(2): 219-31.
[http://dx.doi.org/10.1016/j.cjca.2016.08.017] [PMID: 27956043]
[48]
Masterson Creber RM, Maurer MS, Reading M, Hiraldo G, Hickey KT, Iribarren S. Review and analysis of existing mobile phone apps to support heart failure symptom monitoring and self-care management using the mobile application rating scale (MARS). JMIR Mhealth Uhealth 2016; 4(2): e74.
[http://dx.doi.org/10.2196/mhealth.5882] [PMID: 27302310]
[49]
HFSA's Heart Failure Storylines App ranks Amopng the top 4 HF Apps. 2016. Available from: https://hfsaorg/hfsas-heart-failure-health-storylines-app-ranks-among-top-4-hf-apps (Accessed 16th May 2020).
[50]
Stein KM. The long and winding road after fda approval: a medical device industry perspective. Circulation 2017; 135(20): 1877-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.024633] [PMID: 28507247]
[51]
Zile MR, Abraham WT, Lindenfeld J, et al. First granted example of novel FDA trial design under Expedited Access Pathway for premarket approval: BeAT-HF. Am Heart J 2018; 204: 139-50.
[http://dx.doi.org/10.1016/j.ahj.2018.07.011] [PMID: 30118942]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy