Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Cytotoxic and Anti-proliferative Effects of Moringa oleifera Lam. on HeLa Cells

Author(s): Krishnambal Govender*, Indres Moodley and Raveen Parboosing

Volume 13, Issue 1, 2023

Published on: 14 January, 2022

Article ID: e260821195857 Pages: 11

DOI: 10.2174/2210315511666210826165242

Price: $65

conference banner
Abstract

Background: The aim of the study was to determine the mechanism of Moringa oleifera-induced apoptosis in HeLa cells. HeLa cells over-express cyclin E and cyclin B1, abrogate G0-G1 and G2-M cell cycle arrest, promoting tumorigenesis. Cyclin E, cyclin B1, E2F1 and telomerase expression, and caspase-3 and -7 activation were assessed after 24-treatment with M. oleifera leaf fractions.

Methods: Apoptosis through caspase-3 and caspase-7 activation was determined quantitatively by the FAM FLICA™ Caspase-3/7 assay. Cyclin E, cyclin B1 and E2F1 were quantified by flow cytometry. Telomerase was evaluated by Telomeric Repeat Amplification Protocol (TRAP reaction). The effects on colony formation were assessed by seeding treated cells in six-well plates for 7 days under culture conditions. The MTT assay was used to determine cell survival.

Results: HeLa cells treated for 24 hours with M. oleifera leaf fractions showed dose-dependent cytotoxicity, activation of caspases-3 and -7, down regulation of cyclin E, cyclin B1, E2F1, and inhibition of telomerase expression. Cell cycle analysis of the dead cell population showed G2-M cellcycle arrest.

Conclusion: M. oleifera leaf fractions triggered apoptosis through the mitochondrial pathway and cell cycle arrest at G2-M phase in HeLa cells after 24-hour treatment, through down regulation of cyclin E and cyclin B1 expression, and caspase-3 and -7 activation. In addition, M. oleifera leaf extract induces senescence in HeLa cells through the down-regulation of telomerase. Colony formation and cell proliferation were inhibited in a dose-dependent manner, corresponding with telomerase inhibition.

Keywords: Moringa oleifera, cervical cancer, human papillomavirus, apoptosis, cytotoxicity, E2F1, cyclin, telomerase.

Graphical Abstract

[1]
Khalafalla, M.; Abdellatef, E. Active principle from Moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma. Afr. J. Biotechnol., 2010, 9(49), 8467-8471.
[2]
Tiloke, C.; Phulukdaree, A.; Chuturgoon, A.A. The antiproliferative effect of moringa oleifera crude aqueous leaf extract on human esophageal cancer cells. J. Med. Food, 2016, 19(4), 398-403.
[http://dx.doi.org/10.1089/jmf.2015.0113] [PMID: 27074620]
[3]
Tiloke, C.; Phulukdaree, A.; Chuturgoon, A.A.; Rahman, I.; Bello, B.; Fadahun, O. The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells. BMC Complement. Altern. Med., 2013, 13(1), 226.
[http://dx.doi.org/10.1186/1472-6882-13-226] [PMID: 24041017]
[4]
Purwal, L.; Pathak, A.K.; Jain, U.K. In vivo anticancer activity of the leaves and fruits of Moringa oleifera on mouse melanoma. Pharmacologyonline, 2010, 1, 655-665.
[5]
Al-Asmari, A.K.; Albalawi, S.M.; Athar, M.T.; Khan, A.Q.; Al-Shahrani, H.; Islam, M. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines. PLoS One, 2015, 10(8), e0135814.
[http://dx.doi.org/10.1371/journal.pone.0135814] [PMID: 26288313]
[6]
Roy, S.; Deb, N.; Basu, S.; Besra, S.E.; Bengal, W.; State, E. Apoptotic activity of ethanolic extract of moringa oleifera root bark on human myeloid leukemia cells via activation of caspase cascade. World J. Pharm. Sci., 2014, 3(10), 1138-1156.
[7]
Nair, S.; Varalakshmi, K. Anticancer, cytotoxic potential of Moringa oleifera extracts on HeLa cell line. J. Natural Pharm., 2011, 2(3), 138.
[http://dx.doi.org/10.4103/2229-5119.86260]
[8]
Di Domenico, F.; Foppoli, C.; Coccia, R.; Perluigi, M. Antioxidants in cervical cancer: chemopreventive and chemotherapeutic effects of polyphenols. Biochim. Biophys. Acta, 2012, 1822(5), 737-747.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.005] [PMID: 22019724]
[9]
Aja, P.M.; Nwachukwu, N.; Ibiam, U.A.; Igwenyi, I.O.; Offor, C.E.; Orji, U.O. Chemical constituents of Moringa oleifera leaves and seeds from Abakaliki, Nigeria. Am J Phytomedicine Clin Ther., 2014, 2, 310-321.
[10]
Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M. Mohamed a., Sahena F. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng., 2013, 117(4), 426-436.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014]
[11]
American Type Culture Collection. MTT Cell Proliferation Assay Instruction Guide. Components., 2011, 6597, 1-6.
[12]
Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1(5), 2315-2319.
[http://dx.doi.org/10.1038/nprot.2006.339] [PMID: 17406473]
[13]
Rodig, S.J. Growing adherent cells for staining. Cold Spring Harb. Protoc., 2020, (8), 333-334.
[14]
Wilson, GD Probing the cell cycle with flow cytometry. J. Biomed. Eng., 2014, 7(9), 698-711.
[http://dx.doi.org/10.4236/jbise.2014.79069]
[15]
Pozarowski, P.; Darzynkiewicz, Z. Analysis of cell cycle by flow cytometry. Methods Mol. Biol., 2004, 281, 301-311.
[http://dx.doi.org/10.1385/1-59259-811-0:301] [PMID: 15220539]
[16]
Biosciences, B.D. Introduction to flow cytometry - a learning guide. BD Biosci., 2000, 21, 39-342.
[17]
Koivusalo, R.; Mialon, A.; Pitkänen, H.; Westermarck, J.; Hietanen, S. Activation of p53 in cervical cancer cells by human papillomavirus E6 RNA interference is transient, but can be sustained by inhibiting endogenous nuclear export-dependent p53 antagonists. Cancer Res., 2006, 66(24), 11817-11824.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2185] [PMID: 17178878]
[18]
Shats, I.; Milyavsky, M.; Tang, X.; Stambolsky, P.; Erez, N.; Brosh, R.; Kogan, I.; Braunstein, I.; Tzukerman, M.; Ginsberg, D.; Rotter, V. p53-dependent down-regulation of telomerase is mediated by p21waf1. J. Biol. Chem., 2004, 279(49), 50976-50985.
[http://dx.doi.org/10.1074/jbc.M402502200] [PMID: 15371422]
[19]
Sciortino, S.; Gurtner, A.; Manni, I.; Fontemaggi, G.; Dey, A.; Sacchi, A.; Ozato, K.; Piaggio, G. The cyclin B1 gene is actively transcribed during mitosis in HeLa cells. EMBO Rep., 2001, 2(11), 1018-1023.
[http://dx.doi.org/10.1093/embo-reports/kve223] [PMID: 11606417]
[20]
Yuan, J.; Yan, R.; Krämer, A.; Eckerdt, F.; Roller, M.; Kaufmann, M.; Strebhardt, K. Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells. Oncogene, 2004, 23(34), 5843-5852.
[http://dx.doi.org/10.1038/sj.onc.1207757] [PMID: 15208674]
[21]
Androic, I.; Krämer, A.; Yan, R.; Rödel, F.; Gätje, R.; Kaufmann, M.; Strebhardt, K.; Yuan, J. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol. BMC Cancer, 2008, 8(1), 391.
[http://dx.doi.org/10.1186/1471-2407-8-391] [PMID: 19113992]
[22]
Amin, A.; Gali-Muhtasib, H.; Ocker, M.; Schneider-Stock, R. Overview of major classes of plant-derived anticancer drugs. Int. J. Biomed. Sci., 2009, 5(1), 1-11.
[PMID: 23675107]
[23]
Graña, X.; Reddy, E.P. Cell cycle control in mammalian cells: Role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene, 1995, 11(2), 211-219.
[PMID: 7624138]
[24]
Johnson, D.G.; Schwarz, J.K.; Cress, W.D.; Nevins, J.R. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature, 1993, 365(6444), 349-352.
[http://dx.doi.org/10.1038/365349a0] [PMID: 8377827]
[25]
Oh, S.T.; Kyo, S.; Laimins, L.A. Telomerase activation by human papillomavirus type 16 E6 protein: Induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J. Virol., 2001, 75(12), 5559-5566.
[http://dx.doi.org/10.1128/JVI.75.12.5559-5566.2001] [PMID: 11356963]
[26]
Li, H.; Cao, Y.; Berndt, M.C.; Funder, J.W.; Liu, J.P. Molecular interactions between telomerase and the tumor suppressor protein p53 in vitro. Oncogene, 1999, 18(48), 6785-6794.
[http://dx.doi.org/10.1038/sj.onc.1203061] [PMID: 10597287]
[27]
Lin, D.; Shields, M.T.; Ullrich, S.J.; Appella, E.; Mercer, W.E. Growth arrest induced by wild-type p53 protein blocks cells prior to or near the restriction point in late G1 phase. Proc. Natl. Acad. Sci. USA, 1992, 89(19), 9210-9214.
[http://dx.doi.org/10.1073/pnas.89.19.9210] [PMID: 1409626]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy