Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Preparation and Characterization of Black Titanium by Chemical Reduction of TiO2 and its Photocatalytic Activity

Author(s): Meriem Kouhail*, Zakia El ahmadi , Abbés Benayada and Said Gmouh

Volume 18, Issue 3, 2022

Published on: 26 August, 2021

Page: [391 - 398] Pages: 8

DOI: 10.2174/1573413717666210826125835

conference banner
Abstract

Background: Monitoring of the chemical synthesis of black titanium.

Objective: In this study, we prepared a black titanium nanomaterial by chemical reduction (NaBH4 treatment). Control of the black TiO2 nanomaterial synthesis followed by a thermal analysis from 100°C to 400°C under azote atmosphere is presented. We used a commercial dye, Reactive Bezactiv Yellow (RBY) degradation, to examine the photocatalytic activity of the black titanium.

Methods: The thermal analysis of WT and a mixture of treated TiO2(WT+NaBH4) was examined by thermogravimetric analysis (TGA).

The obtained nanoparticle is analyzed by X-Ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), UV–visible spectrophotometry, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC).

Results: A deformation of the crystalline lattice is extended beyond the entire visible spectrum. The thermal property reveals that the black titanium is more stable than the white titanium, and BT indicated a more photocatalytic performance than WT.

Conclusion: We have successfully synthesized black titanium via chemical reduction employing a synthesis of white titanium. The thermal analysis reveals that BT has a high resistance than WT that offers a promising opportunity for several photocatalytic applications.

Keywords: Black titanium, chemical reduction, thermal analysis, photocatalytic activity, reduction of TiO2, TiO2 nanomaterial synthesis.

Graphical Abstract

[1]
Pereira, L.; Alves, M. Dyes-environmental impact and remediation.Environmental protection strategies for sustainable development; Springer, 2012, pp. 111-162.
[http://dx.doi.org/10.1007/978-94-007-1591-2_4]
[2]
Kaur, J.; Sharma, M.; Pandey, O. Synthesis, characterization, photocatalytic and reusability studies of capped ZnS nanoparticles. Bull. Mater. Sci., 2014, 37, 931-940.
[http://dx.doi.org/10.1007/s12034-014-0028-z]
[3]
Ghugal, S.G.; Umare, S.S.; Sasikala, R. A stable, efficient and reusable CdS-SnO2 heterostructured photocatalyst for the mineralization of Acid Violet 7 dye. Appl. Catal. A Gen., 2015, 496, 25-31.
[http://dx.doi.org/10.1016/j.apcata.2015.02.035]
[4]
Zheng, H.; Zhang, S.; Liu, X.; Zhou, Y.; Alwarappan, S. Synthesis of a PEDOT-TiO2 heterostructure as a dual biosensing platform operating via photoelectrochemical and electrochemical transduction mode. Biosens. Bioelectron., 2020, 162, 112234.
[http://dx.doi.org/10.1016/j.bios.2020.112234] [PMID: 32392153]
[5]
Fard, R. F.; Sar, M. E. K.; Fahiminia, M.; Mirzaei, N.; Yousefi, N.; Mansoorian, H. J. Efficiency of multi walled carbon nanotubes for removing Direct Blue 71 from aqueous solutions. Eurasian J. Anal. Chem., 2018, 13
[http://dx.doi.org/10.29333/EJAC/85010]
[6]
Muthirulan, P.; Meenakshisundararam, M.; Kannan, N. Beneficial role of ZnO photocatalyst supported with porous activated carbon for the mineralization of alizarin cyanin green dye in aqueous solution. J. Adv. Res., 2013, 4(6), 479-484.
[http://dx.doi.org/10.1016/j.jare.2012.08.005] [PMID: 25685455]
[7]
Tan, H.; Zhao, Z.; Niu, M.; Mao, C.; Cao, D.; Cheng, D.; Feng, P.; Sun, Z. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale, 2014, 6(17), 10216-10223.
[http://dx.doi.org/10.1039/C4NR02677B] [PMID: 25102925]
[8]
Chen, S.; Xiao, Y.; Wang, Y.; Hu, Z.; Zhao, H.; Xie, W. A facile approach to prepare black TiO2 with oxygen vacancy for enhancing photocatalytic activity. Nanomaterials (Basel), 2018, 8, 245.
[http://dx.doi.org/10.3390/nano8040245]
[9]
Fan, C.; Chen, C.; Wang, J.; Fu, X.; Ren, Z.; Qian, G.; Wang, Z. Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity. Sci. Rep., 2015, 5, 11712.
[http://dx.doi.org/10.1038/srep11712] [PMID: 26133789]
[10]
Raza, W.; Haque, M.; Muneer, M. Synthesis of visible light driven ZnO: Characterization and photocatalytic performance. Appl. Surf. Sci.2014, 322, 215-224.
[http://dx.doi.org/10.1016/j.apsusc.2014.10.067]
[11]
Padikkaparambil, S.; Narayanan, B.; Yaakob, Z.; Viswanathan, S.; Tasirin, S. M. Au/TiO2 reusable photocatalysts for dye degradation. Int. J. Photoener., 2013, 2013, e752605.
[http://dx.doi.org/10.1155/2013/752605]
[12]
Talam, S.; Karumuri, S.R.; Gunnam, N. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles; ISRN Nanotechnology, 2012, 2012, .
[http://dx.doi.org/10.5402/2012/372505]
[13]
Ullattil, S.G.; Narendranath, S.B.; Pillai, S.C.; Periyat, P. Black TiO2 nanomaterials: a review of recent advances. Chem. Eng. J., 2018, 343, 708-736.
[http://dx.doi.org/10.1016/j.cej.2018.01.069]
[14]
Kanagaraj, T.; Thiripuranthagan, S. Photocatalytic activities of novel SrTiO3-BiOBr heterojunction catalysts towards the degradation of reactive dyes. Appl. Catal. B, 2017, 207, 218-232.
[http://dx.doi.org/10.1016/j.apcatb.2017.01.084]
[15]
Štengl, V.; Bakardjieva, S.; Murafa, N. Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater. Chem. Phys., 2009, 114, 217-226.
[http://dx.doi.org/10.1016/j.matchemphys.2008.09.025]
[16]
Liu, Y.; Tian, L.; Tan, X.; Li, X.; Chen, X. Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. (Beijing), 2017, 62, 431-441.
[http://dx.doi.org/10.1016/j.scib.2017.01.034]
[17]
S. P. fshin, N. Abdolreza, H. Amirhessam, M. S. Seyed, and N. Jafar, “The synthesis of nano TiO2 and its use for removal of lead ions from aqueous solution. J. Water Resource Prot., 2016, 8, 438-448.
[http://dx.doi.org/10.4236/jwarp.2016.84037]
[18]
Habibi, M.H.; Mikhak, M. Titania/zinc oxide nanocomposite coatings on glass or quartz substrate for photocatalytic degradation of direct blue 71. Appl. Surf. Sci., 2012, 258, 6745-6752.
[http://dx.doi.org/10.1016/j.apsusc.2012.03.042]
[19]
Xie, H.; Zhang, Q.; Xi, T.; Wang, J.; Liu, Y. Thermal analysis on nanosized TiO2 prepared by hydrolysis. Thermochim. Acta, 2002, 381, 45-48.
[http://dx.doi.org/10.1016/S0040-6031(01)00642-6]
[20]
Ariyanti, D.; Mills, L.; Dong, J.; Yao, Y.; Gao, W. NaBH4 modified TiO2: Defect site enhancement related to its photocatalytic activity. Mater. Chem. Phys., 2017, 199, 571-576.
[http://dx.doi.org/10.1016/j.matchemphys.2017.07.054]
[21]
Martelli, P.; Caputo, R.; Remhof, A.; Mauron, P.; Borgschulte, A.; Zuttel, A. Stability and decomposition of NaBH4. J. Phys. Chem. C, 2010, 114, 7173-7177.
[http://dx.doi.org/10.1021/jp909341z]
[22]
Djouadi, D.; Slimi, O.; Hammiche, L.; Chelouche, A.; Touam, T. Structural and optical characterizations of (Cu, Ce) iso-co-doped ZnO aerogel structures grown in supercritical ethanol. J. Porous Mater., 2019, 26, 755-763.
[http://dx.doi.org/10.1007/s10934-018-0673-5]
[23]
Lu, H.; Zhao, B.; Pan, R.; Yao, J.; Qiu, J.; Luo, L. Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. RSC Advances, 2014, 4, 1128-1132.
[http://dx.doi.org/10.1039/C3RA44493G]
[24]
Fang, W.; Xing, M.; Zhang, J. A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Appl. Catal. B, 2014, 160, 240-246.
[http://dx.doi.org/10.1016/j.apcatb.2014.05.031]
[25]
Chen, X.; Liu, L.; Liu, Z.; Marcus, M.A.; Wang, W-C.; Oyler, N.A.; Grass, M.E.; Mao, B.; Glans, P.A.; Yu, P.Y.; Guo, J.; Mao, S.S. Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci. Rep., 2013, 3, 1510.
[http://dx.doi.org/10.1038/srep01510] [PMID: 23528851]
[26]
Kang, Q.; Cao, J.; Zhang, Y.; Liu, L.; Xu, H.; Ye, J. Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A., 2013, 1, 5766-5774.
[27]
Chen, X.; Liu, L.; Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev., 2015, 44(7), 1861-1885.
[http://dx.doi.org/10.1039/C4CS00330F] [PMID: 25590565]
[28]
Dong, J.; Han, J.; Liu, Y.; Nakajima, A.; Matsushita, S.; Wei, S.; Gao, W. Defective black TiOTiO2 synthesized via anodization for visible-light photocatalysis. ACS Appl. Mater. Interfaces, 2014, 6(3), 1385-1388.
[http://dx.doi.org/10.1021/am405549p] [PMID: 24490636]
[29]
Chen, S.; Wang, Y.; Li, J.; Hu, Z.; Zhao, H.; Xie, W. Synthesis of black TiO2 with efficient visible-light photocatalytic activity by ultraviolet light irradiation and low temperature annealing. Mater. Res. Bull., 2018, 98, 280-287.
[http://dx.doi.org/10.1016/j.materresbull.2017.10.036]
[30]
Zhu, G.; Yin, H.; Yang, C.; Cui, H.; Wang, Z.; Xu, J. Black titania for superior photocatalytic hydrogen production and photoelectrochemical water splitting. ChemCatChem, 2015, 7, 2614-2619.
[http://dx.doi.org/10.1002/cctc.201500488]
[31]
Yan, Y.; Han, M.; Konkin, A.; Koppe, T.; Wang, D.; Andreu, T. Slightly hydrogenated TiO2 with enhanced photocatalytic performance. 2014, 2(32), 12708-12716.
[http://dx.doi.org/10.1039/C4TA02192D]
[32]
Allegre, C.; Moulin, P.; Maisseu, M.; Charbit, F. Treatment and reuse of reactive dyeing effluents. J. Membr. Sci., 2006, 269, 15-34.
[http://dx.doi.org/10.1016/j.memsci.2005.06.014]
[33]
Wang, M.; Nie, B.; Yee, K-K.; Bian, H.; Lee, C.; Lee, H.K.; Zheng, B.; Lu, J.; Luo, L.; Li, Y.Y. Low-temperature fabrication of brown TiO2 with enhanced photocatalytic activities under visible light. Chem. Commun. (Camb.), 2016, 52(14), 2988-2991.
[http://dx.doi.org/10.1039/C5CC09176D] [PMID: 26783565]

© 2024 Bentham Science Publishers | Privacy Policy