Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Electrochemical Properties of NiCo2S4/rGO Nanocomposites Synthesized by Hydrothermal Method

Author(s): Meijie Ding, ZhiQiang Wei*, ShangPan Huang, Chao Li and Qiang Lu

Volume 18, Issue 3, 2022

Published on: 26 August, 2021

Page: [399 - 407] Pages: 9

DOI: 10.2174/1573413717666210826115543

Price: $65

conference banner
Abstract

Background: Transition metal sulfide, especially Nickel cobalt sulfide (NiCo2S4), has been widely studied as electrode material based on its excellent electrochemical properties. It is found that increasing the conductivity and stability of the electrode material can greatly improve the performance of the supercapacitor.

Methods: Three-dimensional (3D) NiCo2S4 and NiCo2S4/rGO composite material are synthesized via two-step hydrothermal method for high-performance supercapacitor electrode material. Besides, the electrochemical properties of NiCo2S4/rGO have been analyzed by many characterization methods.

Results: The experiment shows that pure NiCo2S4 samples exhibit a cubic spinel structure, and their morphologies are 3D flower-like structures. The ultra-pasteurized NiCo2S4 nanospheres have been successfully inserted into the surface of graphene through a hydrothermal method. A large specific surface of NiCo2S4/rGO has been observed from morphology and structure analysis. The specific electric capacity of the NiCo2S4/rGO electrode has reached 1002.9 F/g, when the current density is 1 A/g.

Conclusion: It has been found that the capacitance retention rate of NiCo2S4/rGO composite electrode material has increased from 59.6% to 88.5% compared to NiCo2S4 after 2000 cycles at 5 A/g. Moreover, experiments denote that NiCo2S4/rGO electrode material has a larger ion diffusion rate and lesser solution resistance from the Electrochemical Independence Spectrum (EIS).

Keywords: NiCo2S4, NiCo2S4/rGO, electrochemical, supercapacitor, electrode material, hydrothermal method.

« Previous
Graphical Abstract

[1]
Zhu, X.L.; Wei, Z.Q.; Ma, L.; Liang, J.H.; Zhang, X.D. Synthesis and electrochemical properties of Co-doped ZnMn2O4 hollow nanospheres. Bull. Mater. Sci., 2020, 43, 1-9.
[http://dx.doi.org/10.1007/s12034-019-1970-6]
[2]
He, H.; Wang, G.; Shen, B.; Wang, Y.; Xiao, Z. Three isostructural zn/ni nitro-containing metal-organic frameworks for supercapacitor. J. Solid State Chem., 2020, 288, 121375-121387.
[http://dx.doi.org/10.1016/j.jssc.2020.121375]
[3]
Li, Y.J.; Wei, Z.Q.; Ding, M.J.; Ma, L.; Zhu, X.L.; Liang, J.H. Synthesis and electrochemical properties of nickel oxide coated ZnMn2O4 nanocomposites. J. Ceram. Soc. Jpn., 2019, 127, 747-753.
[http://dx.doi.org/10.2109/jcersj2.19019]
[4]
Zhu, X.L.; Wei, Z.Q.; Zhao, W.H.; Liang, J.H. Microstructure and Electrochemical Properties of ZnMn2O4 Nanopowder Synthesized Using Different Surfactants. J. Electron. Mater., 2018, 47, 6428-6436.
[http://dx.doi.org/10.1007/s11664-018-6544-7]
[5]
Chen, C.; Zhou, J.J.; Li, Y.L.; Li, Q.; Tao, K.; Han, L. Mesoporous Ni2CoS4 electrode materials derived from coordination polymer bricks for high-performance supercapacitor. J. Solid State Chem., 2019, 271, 239-245.
[http://dx.doi.org/10.1016/j.jssc.2018.12.060]
[6]
Jiu, H.F.; Jiang, L.Y.; Gao, Y.Y.; Zhang, Q.; Zhang, L.X. Synthesis of three-dimensional graphene aerogel-supported Ni2CoS4 nanowires for supercapacitor application. Ionics, 2019, 25, 4325-4331.
[http://dx.doi.org/10.1007/s11581-019-02970-1]
[7]
Ahmed, S. Khan, Zishan, H.; Rafat, M. Studies on MnO2 nanorods and their application for supercapacitor. Curr. Nanosci., 2017, 2, 45-52.
[8]
Anil Kumar, Y.; Srinivasa Rao, S.; Punnoose, D.; Venkata Tulasivarma, C.; Gopi, C.V.V.M.; Prabakar, K.; Kim, H.J. Influence of solvents in the preparation of cobalt sulfide for supercapacitors. R. Soc. Open Sci., 2017, 4(9), 170427-170437.
[http://dx.doi.org/10.1098/rsos.170427] [PMID: 28989753]
[9]
Zhang, J.; Guan, H.; Liu, Y.; Zhao, Y.; Zhang, B. Hierarchical polypyrrole nanotubes@NiCo2S4 nanosheets core-shell composites with improved electrochemical performance as supercapacitors. Electrochim, 2017, 258, 182-191.
[http://dx.doi.org/10.1016/j.electacta.2017.10.102]
[10]
Li, Xin; Wei, B.Q. Supercapacitors based on nanostructured carbon. Nano Energy, 2013, 2(2), 159-173.
[http://dx.doi.org/10.1016/j.nanoen.2012.09.008]
[11]
Yu, G.H.; Xie, X.; Pan, L.J.; Bao, Z.A.; Cui, Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2, 213-234.
[http://dx.doi.org/10.1016/j.nanoen.2012.10.006]
[12]
Gou, J.; Xie, S.; Xu, B. Preparation of Ni-Co sulfides for high-performance supercapacitor application. Ionics, 2020, 26, 337-344.
[http://dx.doi.org/10.1007/s11581-019-03173-4]
[13]
Anandhi, P.; Kumar, V.J.S.; Harikrishnan, S. Preparation and improved capacitive behavior of NiO/TiO2 nanocomposites as electrode material for supercapacitor. Curr. Nanosci., 2020, 16(1), 79-85.
[http://dx.doi.org/10.2174/1573413715666190219114524]
[14]
Zhao, S.H.; Yang, Z.B.; Xu, W.W.; Zhang, Q.Y.; Zhao, X.M.; Wen, X. ACF/NiCo2S4 Honeycomb-like heterostructure material: room-temperature sulfurization and its performance in asymmetric supercapacitors. Electrochim. Acta, 2018, 29, 211-221.
[http://dx.doi.org/10.1016/j.electacta.2018.11.211]
[15]
Yan, M.; Yao, Y.; Wen, J.; Long, L.; Kong, M.; Zhang, G.; Liao, X.; Yin, G.; Huang, Z. Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl. Mater. Interfaces, 2016, 8(37), 24525-24535.
[http://dx.doi.org/10.1021/acsami.6b05618] [PMID: 27551941]
[16]
Liang, M.M.; Zhao, M.S.; Wang, H.Y.; Shen, J.F.; Song, X.P. Enhanced cycling stability of hierarchical NiCo2S4@Ni(OH)2@PPy core-cell nanotube arrays for aqueous asymmetric supercapacitors. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(6), 2482-2493.
[http://dx.doi.org/10.1039/C7TA10413H]
[17]
Liu, X.B.; Wu, Z.P.; Yin, Y.H. Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chem. Eng. J., 2017, 323, 330-339.
[http://dx.doi.org/10.1016/j.cej.2017.04.115]
[18]
Jiang, J.H. Free-standing mesoporous biocarbon papers based high-rate supercapacitor. Curr. Nanosci., 2018, 3, 178-189.
[http://dx.doi.org/10.2174/2405461504666181219102518]
[19]
Liu, Y.P.; Li, Z.L.; Yao, L.; Chen, S.M.; Zhang, P.X.; Deng, L.B. Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors. Chem. Eng. J., 2019, 366, 550-556.
[http://dx.doi.org/10.1016/j.cej.2019.02.125]
[20]
Sahoo, S.; Rout, C.S. Facile electrochemical synthesis of porous manganese-cobalt-sulfide based ternary transition metal sulfide nanosheets architectures for high performance energy storage applications. Electrochim. Acta, 2016, 220, 57-66.
[http://dx.doi.org/10.1016/j.electacta.2016.10.043]
[21]
Liu, X.B.; Wu, Z.P.; Yin, Y.H. Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chem. Eng. J., 2017, 323, 330-339.
[http://dx.doi.org/10.1016/j.cej.2017.04.115]
[22]
Hu, Q.Q.; Gu, Z.X.; Zheng, X.T.; Zhang, X.J. Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chem. Eng. J., 2016, 304, 223-231.
[http://dx.doi.org/10.1016/j.cej.2016.06.097]
[23]
Han, X.R.; Qun, C.; Zhang, H.; Ni, Y.H.; Zhang, L. Template synthesis of NiCo2S4/Co9S8 hollow spheres for high-performance asymmetric supercapacitors. Chem. Eng. J., 2019, 368, 513-524.
[http://dx.doi.org/10.1016/j.cej.2019.02.138]
[24]
Xie, J.; Liu, S.; Cao, G.; Zhu, T.; Zhao, X. Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li-storage properties. Nano Energy, 2013, 2, 49-56.
[http://dx.doi.org/10.1016/j.nanoen.2012.07.010]
[25]
Zheng, Y.W.; Wang, X.X.; Zhao, W.; Cao, X.W.; Liu, J.Q. Phytic acid-assisted synthesis of ultrafine NiCo2S4 nanoparticles immobilized on reduced graphene oxide as high-performance electrode for hybrid supercapacitors. Chem. Eng. J., 2018, 333, 603-612.
[http://dx.doi.org/10.1016/j.cej.2017.10.008]
[26]
Pu, J.; Wang, T.; Wang, H.; Tong, Y.; Lu, C.; Kong, W.; Wang, Z. Direct growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. ChemPlusChem, 2014, 79(4), 577-583.
[http://dx.doi.org/10.1002/cplu.201300431] [PMID: 31986707]
[27]
Hu, W.; Chen, R.; Xie, W.; Zou, L.; Qin, N.; Bao, D. CoNi(2)S(4) nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl. Mater. Interfaces, 2014, 6(21), 19318-19326.
[http://dx.doi.org/10.1021/am5053784] [PMID: 25322454]
[28]
Pu, J.; Cui, F.L.; Chu, S.B.; Wang, T.T.; Sheng, E.H.; Wang, Z.H. Preparation and Electrochemical Characterization of Hollow Hexagonal NiCo2S4 Nanoplates as Pseudocapacitor Materials. ACS Sustain. Chem.& Eng., 2014, 2, 809-815.
[http://dx.doi.org/10.1021/sc400472z]
[29]
Wan, H.; Jiang, J.; Yu, J.; Xu, K.; Miao, L.; Zhang, L.; Chen, H.; Ruan, Y. NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm, 2013, 15, 7649-7651.
[http://dx.doi.org/10.1039/c3ce41243a]
[30]
He, Y.; Xiao, X.; Gao, L.; Li, S.; Shen, Y. Bouquet like NiCo @CoNi arrays for high performance pseudo capacitors. ChemElectroChem, 2017, 4, 607-612.
[http://dx.doi.org/10.1002/celc.201600843]
[31]
Kowsari, E.; Ehsani, A. Assadi, S.; Safari, R. Influence of different N-benzoyl derivatives of isoleucine on electrochemical properties and pseudocapacitance performance of conductive polymer electroactive film: Electrochemical and theoretical study. J. Electroanal. Chem. (Lausanne Switz.), 2018, 826, 65-75.
[http://dx.doi.org/10.1016/j.jelechem.2018.08.025]
[32]
Ajdari, F.B.; Kowsari, E.A.; Chepyga, L.; Schirowski, M.; Jäger, S.; Kasian, O.; Hauke, F.; Ameri, T. Melamine-functionalized graphene oxide: synthesis, characterization and considering as pseudocapacitor electrode material with intermixed POAP polymer. Appl. Surf. Sci., 2018, 459, 874-883.
[http://dx.doi.org/10.1016/j.apsusc.2018.07.215]
[33]
Meisam, V.K.; Suhairi, A.S.; Surani, B.; Sharif, H.S.Z. Remarkable stability of supercapacitor material synthesized by manganese oxide filled in multiwalled carbon nanotubes. Curr. Nanosci., 2010, 6, 553-559.
[http://dx.doi.org/10.2174/157341310797575041]
[34]
Raman, V.; Mohan, N.V.; Balakrishnan, B.; Rajmohan, R.; Kim, H.J. Porous shiitake mushroom carbon composite with Ni2CoS4 nanorod electrochemical characteristics for efficient supercapacitor applications. Ionics, 2019, 26, 345-354.
[http://dx.doi.org/10.1007/s11581-019-03178-z]
[35]
Xu, R.; Lin, J.M.; Wu, J.H.; Huang, M.L.; Fan, L.Q.; He, X.; Wang, Y.T.; Xu, Z.D. A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors. Appl. Surf. Sci., 2017, 422, 597-602.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.003]
[36]
Shang, Y.Z.; Ma, S.; Wei, Y.M.; Yang, H.; Xu, Z.L. Flower-like ternary metal of Ni-Co-Mn hydroxide combined with carbon nanotube for supercapacitor. Ionics, 2020, 26, 3609-3619.
[http://dx.doi.org/10.1007/s11581-020-03496-7]
[37]
Ma, X.; Zhang, L.; Xu, G.C.; Zhang, C.Y.; Song, H.J.; He, Y.T.; Zhang, C.; Jia, D.Z. Facile synthesis of NiS hierarchical hollow cubes via Ni formate frameworks for high performance supercapacitors. Chem. Eng. J., 2017, 320, 22-27.
[http://dx.doi.org/10.1016/j.cej.2017.03.033]
[38]
Shen, L.; Yu, L.; Wu, H.B.; Yu, X.Y.; Zhang, X.; Lou, X.W. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun., 2015, 6, 6694-6706.
[http://dx.doi.org/10.1038/ncomms7694] [PMID: 25798849]
[39]
Yao, L.; An, F.F.; Wu, H.R.; Zhu, S.M.; Xia, M.D.; Xue, K.; Zhang, D.; Lian, K.A. NiCo2S4/hierarchical porous carbon for high performance asymmetrical supercapacitor. J. Power Sources, 2019, 427, 138-144.
[http://dx.doi.org/10.1016/j.jpowsour.2019.04.060]
[40]
Cui, Y.X.; Zhang, J.; Jin, C.; Liu, Y.X.; Luo, W.H.; Zheng, W.J. Ionic liquid-controlled growth of NiCo2S4 3D hierarchical hollow nanoarrow arrays on Ni foam for superior performance binder free hybrid supercapacitors. Small, 2019, 15(3), e1804318.
[http://dx.doi.org/10.1002/smll.201804318]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy