Review Article

载紫杉烷的脂基纳米载体在乳腺癌治疗中的应用:前景与挑战

卷 23, 期 6, 2022

发表于: 24 August, 2021

页: [544 - 558] 页: 15

弟呕挨: 10.2174/1389450122666210824144304

价格: $65

摘要

乳腺癌是全世界妇女死亡的主要原因。紫杉烷(最有利的一类二萜药物)在治疗早期和转移性乳腺癌中显示出了动态的潜力。然而,生物利用度差、组织渗透性低、水溶性差、剂量依赖性副作用等挑战限制了这些药物的临床应用。因此,为了克服这些挑战,人们正在探索各种基于纳米技术的药物输送系统,用于在乳腺癌治疗中输送紫杉烷。其中一个很有潜力的纳米载体类别是脂基纳米载体,它利用了各种天然和合成来源的脂类的优点。众所周知,脂质摄取在乳腺癌细胞增殖和肿瘤发生中起着重要作用。基于脂质的纳米载体可能是一个绝佳选择,可以将溶解性和渗透性较差的紫杉烷纳米封装起来,用于乳腺癌的治疗。这些系统在提高生物利用度、空间和时间紫杉烷递送、提高疗效、降低给药频率,甚至轻度抑制 P-gp 流出机制方面具有巨大的前景。除了这些前景之外,这些载体还不能为最终的使用者带来好处。本综述不仅将讨论这些系统的优点、进展和前景,而且还将思考这些载体在进入临床为乳腺癌患者造福方面所面临的各种挑战。

关键词: 生物利用度,缓释,新型药物传递系统,药物释放细胞毒性,脂基纳米载体,乳腺癌细胞。

图形摘要

[1]
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63(1): 11-30.
[http://dx.doi.org/10.3322/caac.21166] [PMID: 23335087]
[2]
Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017; 50(1): 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[3]
Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin 2007; 57(1): 43-66.
[http://dx.doi.org/10.3322/canjclin.57.1.43] [PMID: 17237035]
[4]
Druesne-Pecollo N, Touvier M, Barrandon E, et al. Excess body weight and second primary cancer risk after breast cancer: A systematic review and meta-analysis of prospective studies. Breast Cancer Res Treat 2012; 135(3): 647-54.
[http://dx.doi.org/10.1007/s10549-012-2187-1] [PMID: 22864804]
[5]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[6]
Press release N° 2018; 263 Available from: https://wwwiarcwhoint/wp-content/uploads/2018/09/pr263_Epdf
[7]
Tao Z, Shi A, Lu C, Song T, Zhang Z, Zhao J. Breast cancer: Epidemiology and etiology. Cell Biochem Biophys 2015; 72(2): 333-8.
[http://dx.doi.org/10.1007/s12013-014-0459-6] [PMID: 25543329]
[8]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[9]
Hortobagyi GN, de la Garza Salazar J, Pritchard K, et al. The global breast cancer burden: Variations in epidemiology and survival.Clinical breast cancer. Elsevier Inc. 2005; pp. 391-401.
[http://dx.doi.org/10.3816/CBC.2005.n.043]
[10]
Fan L, Strasser-Weippl K, Li JJ, et al. Breast cancer in China.The lancet oncology. Lancet Publishing Group 2014.
[http://dx.doi.org/10.1016/S1470-2045(13)70567-9]
[11]
Cooperman AM, Hermann R. Breast cancer: An overview. Surg Clin North Am 1984; 64(6): 1031-8.
[http://dx.doi.org/10.1016/S0039-6109(16)43476-6] [PMID: 6393393]
[12]
McDonald ES, Clark AS, Tchou J, Zhang P, Freedman GM. Clinical diagnosis and management of breast cancer. J Nucl Med 2016; 57(Suppl. 1): 9S-16S.
[http://dx.doi.org/10.2967/jnumed.115.157834] [PMID: 26834110]
[13]
Fisher B, Anderson S, Bryant J, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 2002; 347(16): 1233-41.
[http://dx.doi.org/10.1056/NEJMoa022152] [PMID: 12393820]
[14]
McLaughlin SA. Surgical management of the breast: Breast conservation therapy and mastectomy. Surg Clin North Am 2013; 93(2): 411-28.
[http://dx.doi.org/10.1016/j.suc.2012.12.006] [PMID: 23464693]
[15]
Darby S, McGale P, Correa C, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 2011; 378(9804): 1707-16.
[http://dx.doi.org/10.1016/S0140-6736(11)61629-2] [PMID: 22019144]
[16]
Fisusi FA, Akala EO. Drug combinations in breast cancer therapy. Pharm Nanotechnol 2019; 7(1): 3-23.
[http://dx.doi.org/10.2174/2211738507666190122111224] [PMID: 30666921]
[17]
Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353(16): 1659-72.
[http://dx.doi.org/10.1056/NEJMoa052306] [PMID: 16236737]
[18]
de Matteis A, Nuzzo F, D’Aiuto G, et al. Docetaxel plus epidoxorubicin as neoadjuvant treatment in patients with large operable or locally advanced carcinoma of the breast: A single-center, phase II study. Cancer 2002; 94(4): 895-901.
[http://dx.doi.org/10.1002/cncr.20335] [PMID: 11920456]
[19]
Baselga J, Coleman R E, Cortés J, Janni W. Advances in the management of HER2-positive early breast cancer.Critical reviews in oncology/hematology. Elsevier Ireland Ltd 2017; pp. 113-22.
[http://dx.doi.org/10.1016/j.critrevonc.2017.10.001]
[20]
Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005; 353(16): 1673-84.
[http://dx.doi.org/10.1056/NEJMoa052122] [PMID: 16236738]
[21]
Berrada N, Delaloge S, André F. Treatment of triple-negative metastatic breast cancer: Toward individualized targeted treatments or chemosensitization? Ann Oncol 2010; 21(Suppl 7): vii30-5.
[http://dx.doi.org/10.1093/annonc/mdq279]
[22]
Barzaman K, Karami J, Zarei Z, et al. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol 2020; 84(April): 106535.
[http://dx.doi.org/10.1016/j.intimp.2020.106535] [PMID: 32361569]
[23]
Quinn MJ, Allen E. UK association of cancer registries changes in incidence of and mortality from breast cancer in England and Wales since introduction of screening. BMJ 1995; 311(7017): 1391-5.
[24]
Joerger M, Thürlimann B. Chemotherapy regimens in early breast cancer: Major controversies and future outlook. Expert Rev Anticancer Ther 2013; 13(2): 165-78.
[http://dx.doi.org/10.1586/era.12.172] [PMID: 23406558]
[25]
Paclitaxel and anthracycline combination chemotherapy for metastatic breast cancer - PubMed. Available from: https://pubmed.ncbi.nlm.nih.gov/10403473/ [Accessed Jan 29, 2021]
[26]
Roché H, Fumoleau P, Spielmann M, et al. Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: The FNCLCC PACS 01 Trial. J Clin Oncol 2006; 24(36): 5664-71.
[http://dx.doi.org/10.1200/JCO.2006.07.3916] [PMID: 17116941]
[27]
Tang SC. Strategies to decrease taxanes toxicities in the adjuvant treatment of early breast cancer. Cancer Invest 2009; 27(2): 206-14.
[http://dx.doi.org/10.1080/07357900802178520] [PMID: 19235594]
[28]
Ahmed S E, Martins A M, Husseini G A. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes.Journal of drug targeting. Informa healthcare 2015; pp. 16-42.
[http://dx.doi.org/10.3109/1061186X.2014.954119]
[29]
Azarmi S, Tao X, Chen H, et al. Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int J Pharm 2006; 319(1-2): 155-61.
[http://dx.doi.org/10.1016/j.ijpharm.2006.03.052] [PMID: 16713150]
[30]
Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol Rev 2016; 68(3): 701-87.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[31]
Libson S, Lippman M. A review of clinical aspects of breast cancer. Int Rev Psychiatry 2014; 26(1): 4-15.
[http://dx.doi.org/10.3109/09540261.2013.852971] [PMID: 24716497]
[32]
Fahy E, Cotter D, Sud M, Subramaniam S. Lipid classification, structures and tools. Biochim Biophys Acta 2011; 1811(11): 637-47.
[http://dx.doi.org/10.1016/j.bbalip.2011.06.009] [PMID: 21704189]
[33]
Bezaire V, Mairal A, Ribet C, et al. Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes. J Biol Chem 2009; 284(27): 18282-91.
[http://dx.doi.org/10.1074/jbc.M109.008631] [PMID: 19433586]
[34]
Ahmadian M, Abbott MJ, Tang T, et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab 2011; 13(6): 739-48.
[http://dx.doi.org/10.1016/j.cmet.2011.05.002] [PMID: 21641555]
[35]
Zechner R, Zimmermann R, Eichmann TO, et al. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab 2012; 15(3): 279-91.
[http://dx.doi.org/10.1016/j.cmet.2011.12.018] [PMID: 22405066]
[36]
Rahman MA, Harwansh R, Mirza MA, Hussain S, Hussain A. Oral lipid based drug delivery system (LBDDS): Formulation, characterization and application: A review. Curr Drug Deliv 2011; 8(4): 330-45.
[http://dx.doi.org/10.2174/156720111795767906] [PMID: 21453264]
[37]
Schulman JH, Stoeckenius W, Prince LM. Mechanism of formation and structure of micro emulsions by electron microscopy. J Phys Chem 1959; 63(10): 1677-80.
[http://dx.doi.org/10.1021/j150580a027]
[38]
Tartaro G, Mateos H, Schirone D, Angelico R, Palazzo G. Microemulsion microstructure(s): A tutorial review. Nanomaterials (Basel) 2020; 10(9): 1-40.
[http://dx.doi.org/10.3390/nano10091657] [PMID: 32846957]
[39]
Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. Nanoemulsions: Formation, structure, and physical properties. J Phys Condens Matter 2006; 18(41): R635.
[http://dx.doi.org/10.1088/0953-8984/18/41/R01]
[40]
Aboofazeli R. Nanometric-scaled emulsions (nanoemulsions).Iranian journal of pharmaceutical research. IJPR 2010; 9(4): 325-6.
[http://dx.doi.org/10.22037/ijpr.2010.897]
[41]
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252: 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[42]
Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS)-challenges and road ahead. Drug Deliv 2015; 22(6): 675-90.
[http://dx.doi.org/10.3109/10717544.2014.896058] [PMID: 24670091]
[43]
Akula S, Gurram AK, Devireddy SR. Self-microemulsifying drug delivery systems: An attractive strategy for enhanced therapeutic profile. Int Sch Res Notices 2014; 2014: 964051.
[http://dx.doi.org/10.1155/2014/964051] [PMID: 27382619]
[44]
Singh B, Bandopadhyay S, Kapil R, Singh R, Katare OP. Self-emulsifying drug delivery systems (SEDDS): Formulation development, characterization, and applications.Critical reviews in therapeutic drug carrier systems. Begell House Inc. 2009; pp. 427-521.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i5.10]
[45]
Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm 2007; 66(2): 227-43.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.014] [PMID: 17127045]
[46]
Rahman M, Beg S, Verma A, Anwar F, Samad A, Kumar V. Liposomal-based therapeutic carriers for vaccine and gene delivery. In: Nanotechnology-based approaches for targeting and delivery of drugs and genes. Elsevier Inc. 2017; pp. 151-66.
[http://dx.doi.org/10.1016/B978-0-12-809717-5.00005-1]
[47]
Alavi M, Karimi N, Safaei M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull 2017; 7(1): 3-9.
[http://dx.doi.org/10.15171/apb.2017.002] [PMID: 28507932]
[48]
T. Florence A. Pharmaceutical nanotechnology: A new journal for an evolving science. Pharm Nanotechnol 2012; 1(1): 2-3.
[http://dx.doi.org/10.2174/2211738511301010002]
[49]
Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm 2019; 144(August): 18-39.
[http://dx.doi.org/10.1016/j.ejpb.2019.08.015] [PMID: 31446046]
[50]
Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J Control Release 2000; 65(3): 403-18.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[51]
Zahid SR, Upmanyu N, Dangi S, Ray SK, Jain P, Parkhe G. A novel vesicular carrier for transdermal drug delivery. J Drug Deliv Ther 2018; 8(6): 318-26.
[52]
Mishra V, Bansal KK, Verma A, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018; 10(4): 1-21.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[53]
Tekade RK, Maheshwari R, Tekade M, Chougule MB. Solid lipid nanoparticles for targeting and delivery of drugs and genes. In: Nanotechnology-based approaches for targeting and delivery of drugs and genes. Elsevier Inc. 2017; pp. 256-86.
[http://dx.doi.org/10.1016/B978-0-12-809717-5.00010-5]
[54]
Mukherjee S, Ray S, Thakur R S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian journal of pharmaceutical sciences. Wolters Kluwer - Medknow Publications 2009; pp. 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282]
[55]
Beloqui A, Solinís M Á, Rodríguez-Gascón A, Almeida A J, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics.Nanomedicine: Nanotechnology, biology, and medicine. Elsevier Inc. 2016; pp. 143-61.
[http://dx.doi.org/10.1016/j.nano.2015.09.004]
[56]
Olbrich C, Gessner A, Kayser O, Müller RH. Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J Drug Target 2002; 10(5): 387-96.
[http://dx.doi.org/10.1080/1061186021000001832] [PMID: 12442809]
[57]
Nasr M, Mansour S, Mortada ND, El Shamy AA. Lipospheres as carriers for topical delivery of aceclofenac: Preparation, characterization and in vivo evaluation. AAPS PharmSciTech 2008; 9(1): 154-62.
[http://dx.doi.org/10.1208/s12249-007-9028-2] [PMID: 18446476]
[58]
Lipid nanoparticles (SLN and NLC) for drug delivery | Request PDF. Available from: https://www.researchgate.net/publication/284595258_Lipid_nanoparticles_SLN_and_NLC_for_drug_delivery [Accessed Jan 29, 2021]
[59]
Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002; 54(Suppl 1): S131-55.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7]
[60]
Bissery MC, Nohynek G, Sanderink GJ, Lavelle F. Docetaxel (Taxotere®): A review of preclinical and clinical experience. Part I: Preclinical experience.Anti-cancer drugs. Lippincott Williams and Wilkins 1995; pp. 339-55.
[http://dx.doi.org/10.1097/00001813-199506000-00001]
[61]
Jain V, Kumar H, Anod HV, et al. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J Control Release 2020; 326(April): 628-47.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.003] [PMID: 32653502]
[62]
Drugs approved for head and neck cancer - national cancer institute. Available from: https://www.cancer.gov/about-cancer/treatment/drugs/head-neck [Accessed Jan 29, 2021]
[63]
Feng L, Mumper R J. A critical review of lipid-based nanoparticles for taxane delivery.Cancer letters. Elsevier Ireland Ltd 2013; pp. 157-75.
[http://dx.doi.org/10.1016/j.canlet.2012.07.006]
[64]
Darshan MS, Loftus MS, Thadani-Mulero M, et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res 2011; 71(18): 6019-29.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1417] [PMID: 21799031]
[65]
Ojima I, Lichtenthal B, Lee S, Wang C, Wang X. Taxane anticancer agents: A patent perspective. Expert Opin Ther Pat 2016; 26(1): 1-20.
[http://dx.doi.org/10.1517/13543776.2016.1111872] [PMID: 26651178]
[66]
Zhang JQ, Zhang ZR, Yang H, Tan QY, Qin SR, Qiu XL. Lyophilized paclitaxel magnetoliposomes as a potential drug delivery system for breast carcinoma via parenteral administration: In vitro and in vivo studies. Pharm Res 2005; 22(4): 573-83.
[http://dx.doi.org/10.1007/s11095-005-2496-8] [PMID: 15846465]
[67]
Yang T, Choi MK, Cui FD, et al. Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells. Pharm Res 2007; 24(12): 2402-11.
[http://dx.doi.org/10.1007/s11095-007-9425-y] [PMID: 17828616]
[68]
Saraf S, Jain A, Tiwari A, Verma A, Panda P K, Jain S K. Advances in liposomal drug delivery to cancer: An overview.Journal of drug delivery science and technology. Editions de Sante 2020; p. 101549.
[http://dx.doi.org/10.1016/j.jddst.2020.101549]
[69]
Monteiro LOF, Fernandes RS, Castro L, et al. Paclitaxel-Loaded folate-coated pH-sensitive liposomes enhance cellular uptake and antitumor activity. Mol Pharm 2019; 16(8): 3477-88.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00329] [PMID: 31257891]
[70]
Koudelka S, Turánek J. Liposomal paclitaxel formulations. J Control Release 2012; 163(3): 322-34.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.006] [PMID: 22989535]
[71]
Jiang L, He B, Pan D, et al. Anti-cancer efficacy of paclitaxel loaded in pH triggered liposomes. J Biomed Nanotechnol 2016; 12(1): 79-90.
[http://dx.doi.org/10.1166/jbn.2016.2123] [PMID: 27301174]
[72]
Eloy JO, Petrilli R, Topan JF, et al. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf B Biointerfaces 2016; 141: 74-82.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.032] [PMID: 26836480]
[73]
Han B, Yang Y, Chen J, et al. Preparation, characterization, and pharmacokinetic study of a novel long-acting targeted paclitaxel liposome with antitumor activity. Int J Nanomedicine 2020; 15: 553-71.
[http://dx.doi.org/10.2147/IJN.S228715] [PMID: 32158208]
[74]
Kamal MM, Nazzal S. Novel sulforaphane-enabled self-microemulsifying delivery systems (SFN-SMEDDS) of taxanes: Formulation development and in vitro cytotoxicity against breast cancer cells. Int J Pharm 2018; 536(1): 187-98.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.063] [PMID: 29195916]
[75]
Kang BK, Chon SK, Kim SH, et al. Controlled release of paclitaxel from microemulsion containing PLGA and evaluation of anti-tumor activity in vitro and in vivo. Int J Pharm 2004; 286(1-2): 147-56.
[http://dx.doi.org/10.1016/j.ijpharm.2004.08.008] [PMID: 15501011]
[76]
Yu K, Zhou Y, Li Y, et al. Comparison of three different conjugation strategies in the construction of herceptin-bearing paclitaxel-loaded nanoparticles. Biomater Sci 2016; 4(8): 1219-32.
[http://dx.doi.org/10.1039/C6BM00308G] [PMID: 27367271]
[77]
Campos J, Varas-Godoy M, Haidar ZS. Physicochemical characterization of chitosan-hyaluronan-coated solid lipid nanoparticles for the targeted delivery of paclitaxel: A proof-of-concept study in breast cancer cells. Nanomedicine (Lond) 2017; 12(5): 473-90.
[http://dx.doi.org/10.2217/nnm-2016-0371] [PMID: 28181464]
[78]
Li S, Su Z, Sun M, et al. An arginine derivative contained nanostructure lipid carriers with pH-sensitive membranolytic capability for lysosomolytic anti-cancer drug delivery. Int J Pharm 2012; 436(1-2): 248-57.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.040] [PMID: 22732672]
[79]
Lee MK, Lim SJ, Kim CK. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 2007; 28(12): 2137-46.
[http://dx.doi.org/10.1016/j.biomaterials.2007.01.014] [PMID: 17257668]
[80]
Baek JS, Kim JH, Park JS, Cho CW. Modification of paclitaxel-loaded solid lipid nanoparticles with 2-hydroxypropyl-β-cyclodextrin enhances absorption and reduces nephrotoxicity associated with intravenous injection. Int J Nanomedicine 2015; 10: 5397-405.
[http://dx.doi.org/10.2147/IJN.S86474] [PMID: 26347363]
[81]
Gu Z, Chang M, Fan Y, Shi Y, Lin G. NGR-modified pH-sensitive liposomes for controlled release and tumor target delivery of docetaxel. Colloids Surf B Biointerfaces 2017; 160: 395-405.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.052] [PMID: 28965079]
[82]
Odeh F, Naffa R, Azzam H, et al. Co-encapsulation of thymoquinone with docetaxel enhances the encapsulation efficiency into PEGylated liposomes and the chemosensitivity of MCF7 breast cancer cells to docetaxel. Heliyon 2019; 5(11): e02919.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02919] [PMID: 31844767]
[83]
Rodallec A, Brunel JM, Giacometti S, et al. Docetaxel-trastuzumab stealth immunoliposome: Development and in vitro proof of concept studies in breast cancer. Int J Nanomedicine 2018; 13: 3451-65.
[http://dx.doi.org/10.2147/IJN.S162454] [PMID: 29950829]
[84]
Zhang H, Gong W, Wang ZY, et al. Preparation, characterization, and pharmacodynamics of thermosensitive liposomes containing docetaxel. J Pharm Sci 2014; 103(7): 2177-83.
[http://dx.doi.org/10.1002/jps.24019] [PMID: 24846075]
[85]
Liu H, Tu L, Zhou Y, et al. Improved bioavailability and antitumor effect of docetaxel by TPGS modified proniosomes: In vitro and in vivo Evaluations. Sci Rep 2017; 7: 43372.
[http://dx.doi.org/10.1038/srep43372] [PMID: 28266539]
[86]
Afzal SM, Shareef MZ, Dinesh T, Kishan V. Folate-PEG-decorated docetaxel lipid nanoemulsion for improved antitumor activity. Nanomedicine (Lond) 2016; 11(16): 2171-84.
[http://dx.doi.org/10.2217/nnm-2016-0120] [PMID: 27463694]
[87]
Yadav S, Gupta S. Development and in vitro characterization of docetaxel-loaded ligand appended solid fat nanoemulsions for potential use in breast cancer therapy. Artif Cells Nanomed Biotechnol 2015; 43(2): 93-102.
[http://dx.doi.org/10.3109/21691401.2013.845569] [PMID: 24195582]
[88]
Verma P, Meher JG, Asthana S, Pawar VK, Chaurasia M, Chourasia MK. Perspectives of nanoemulsion assisted oral delivery of docetaxel for improved chemotherapy of cancer. Drug Deliv 2016; 23(2): 479-88.
[http://dx.doi.org/10.3109/10717544.2014.920430] [PMID: 24901205]
[89]
Wang M, You SK, Lee HK, et al. Development and evaluation of docetaxel-phospholipid complex loaded self-microemulsifying drug delivery system: Optimization and in vitro/ex vivo studies. Pharmaceutics 2020; 12(6): 1-19.
[http://dx.doi.org/10.3390/pharmaceutics12060544] [PMID: 32545452]
[90]
Kommineni N, Mahira S, Domb AJ, Khan W. Cabazitaxel-loaded nanocarriers for cancer therapy with reduced side effects. Pharmaceutics 2019; 11(3): 1-22.
[http://dx.doi.org/10.3390/pharmaceutics11030141] [PMID: 30934535]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy