Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Interleukin-17A in Alzheimer’s Disease: Recent Advances and Controversies

Author(s): Xin-Zhu Yan, Laijun Lai , Qiang Ao , Xiao-Hong Tian* and Yan-Hui Zhang*

Volume 20, Issue 2, 2022

Published on: 05 January, 2022

Page: [372 - 383] Pages: 12

DOI: 10.2174/1570159X19666210823110004

Price: $65

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that mainly affects older adults. Although the global burden of AD is increasing year by year, the causes of AD remain largely unknown. Numerous basic and clinical studies have shown that interleukin-17A (IL-17A) may play a significant role in the pathogenesis of AD. A comprehensive assessment of the role of IL-17A in AD would benefit the diagnosis, understanding of etiology and treatment. However, over the past decade, controversies remain regarding the expression level and role of IL-17A in AD. We have incorporated newly published researches and point out that IL-17A expression levels may vary along with the development of AD, exercising different roles at different stages of AD, although much more work remains to be done to support the potential role of IL-17A in AD-related pathology. Here, it is our intention to review the underlying mechanisms of IL-17A in AD and address the current controversies in an effort to clarify the results of existing research and suggest future studies.

Keywords: Interleukin-17A, Alzheimer’s disease, Aβ accumulation, Tau hyperphosphorylation, neuronal, synaptic plasticity, biomarker.

Graphical Abstract

[1]
Hodson, R. Alzheimer’s disease. Nature, 2018, 559(7715), S1.
[http://dx.doi.org/10.1038/d41586-018-05717-6] [PMID: 30046078]
[2]
Chen, J.M.; Jiang, G.X.; Li, Q.W.; Zhou, Z.M.; Cheng, Q. Increased serum levels of interleukin-18, -23 and -17 in Chinese patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord., 2014, 38(5-6), 321-329.
[http://dx.doi.org/10.1159/000360606] [PMID: 25138786]
[3]
St-Amour, I.; Bosoi, C.R.; Paré, I.; Ignatius Arokia Doss, P.M.; Rangachari, M.; Hébert, S.S.; Bazin, R.; Calon, F. Peripheral adaptive immunity of the triple transgenic mouse model of Alzheimer’s disease. J. Neuroinflammation, 2019, 16(1), 3.
[http://dx.doi.org/10.1186/s12974-018-1380-5] [PMID: 30611289]
[4]
Hu, W.T.; Chen-Plotkin, A.; Grossman, M.; Arnold, S.E.; Clark, C.M.; Shaw, L.M.; McCluskey, L.; Elman, L.; Hurtig, H.I.; Siderowf, A.; Lee, V.M.; Soares, H.; Trojanowski, J.Q. Novel CSF biomarkers for frontotemporal lobar degenerations. Neurology, 2010, 75(23), 2079-2086.
[http://dx.doi.org/10.1212/WNL.0b013e318200d78d] [PMID: 21048198]
[5]
Doecke, J.D.; Laws, S.M.; Faux, N.G.; Wilson, W.; Burnham, S.C.; Lam, C.P.; Mondal, A.; Bedo, J.; Bush, A.I.; Brown, B.; De Ruyck, K.; Ellis, K.A.; Fowler, C.; Gupta, V.B.; Head, R.; Macaulay, S.L.; Pertile, K.; Rowe, C.C.; Rembach, A.; Rodrigues, M.; Rumble, R.; Szoeke, C.; Taddei, K.; Taddei, T.; Trounson, B.; Ames, D.; Masters, C.L.; Martins, R.N. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch. Neurol., 2012, 69(10), 1318-1325.
[http://dx.doi.org/10.1001/archneurol.2012.1282] [PMID: 22801742]
[6]
Amatya, N.; Garg, A.V.; Gaffen, S.L. IL-17 Signaling: the yin and the yang. Trends Immunol., 2017, 38(5), 310-322.
[http://dx.doi.org/10.1016/j.it.2017.01.006] [PMID: 28254169]
[7]
Chen, J.; Liu, X.; Zhong, Y. Interleukin-17A: The key cytokine in neurodegenerative diseases. Front. Aging Neurosci., 2020, 12566922
[http://dx.doi.org/10.3389/fnagi.2020.566922] [PMID: 33132897]
[8]
Fossiez, F.; Djossou, O.; Chomarat, P.; Flores-Romo, L.; Ait-Yahia, S.; Maat, C.; Pin, J.J.; Garrone, P.; Garcia, E.; Saeland, S.; Blanchard, D.; Gaillard, C.; Das Mahapatra, B.; Rouvier, E.; Golstein, P.; Banchereau, J.; Lebecque, S. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med., 1996, 183(6), 2593-2603.
[http://dx.doi.org/10.1084/jem.183.6.2593] [PMID: 8676080]
[9]
Moseley, T.A.; Haudenschild, D.R.; Rose, L.; Reddi, A.H. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev., 2003, 14(2), 155-174.
[http://dx.doi.org/10.1016/S1359-6101(03)00002-9] [PMID: 12651226]
[10]
Harrington, L.E.; Hatton, R.D.; Mangan, P.R.; Turner, H.; Murphy, T.L.; Murphy, K.M.; Weaver, C.T. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol., 2005, 6(11), 1123-1132.
[http://dx.doi.org/10.1038/ni1254] [PMID: 16200070]
[11]
Park, H.; Li, Z.; Yang, X.O.; Chang, S.H.; Nurieva, R.; Wang, Y.H.; Wang, Y.; Hood, L.; Zhu, Z.; Tian, Q.; Dong, C. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol., 2005, 6(11), 1133-1141.
[http://dx.doi.org/10.1038/ni1261] [PMID: 16200068]
[12]
Milovanovic, J.; Arsenijevic, A.; Stojanovic, B.; Kanjevac, T.; Arsenijevic, D.; Radosavljevic, G.; Milovanovic, M.; Arsenijevic, N. Interleukin-17 in chronic inflammatory neurological diseases. Front. Immunol., 2020, 11, 947.
[http://dx.doi.org/10.3389/fimmu.2020.00947] [PMID: 32582147]
[13]
Miossec, P. Local and systemic effects of IL-17 in joint inflammation: A historical perspective from discovery to targeting. Cell. Mol. Immunol., 2021, 18(4), 860-865.
[http://dx.doi.org/10.1038/s41423-021-00644-5] [PMID: 33692481]
[14]
Cua, D.J.; Tato, C.M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol., 2010, 10(7), 479-489.
[http://dx.doi.org/10.1038/nri2800] [PMID: 20559326]
[15]
Brevi, A.; Cogrossi, L.L.; Grazia, G.; Masciovecchio, D.; Impellizzieri, D.; Lacanfora, L.; Grioni, M.; Bellone, M. Much More Than IL-17A: Cytokines of the IL-17 family between microbiota and cancer. Front. Immunol., 2020, 11565470
[http://dx.doi.org/10.3389/fimmu.2020.565470] [PMID: 33244315]
[16]
McGeachy, M.J.; Cua, D.J.; Gaffen, S.L. The IL-17 Family of Cytokines in Health and Disease. Immunity, 2019, 50(4), 892-906.
[http://dx.doi.org/10.1016/j.immuni.2019.03.021] [PMID: 30995505]
[17]
Cipollini, V.; Anrather, J.; Orzi, F.; Iadecola, C. Th17 and cognitive impairment: possible mechanisms of action. Front. Neuroanat., 2019, 13, 95.
[http://dx.doi.org/10.3389/fnana.2019.00095] [PMID: 31803028]
[18]
Yao, Z.; Fanslow, W.C.; Seldin, M.F.; Rousseau, A.M.; Painter, S.L.; Comeau, M.R.; Cohen, J.I.; Spriggs, M.K. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity, 1995, 3(6), 811-821.
[http://dx.doi.org/10.1016/1074-7613(95)90070-5] [PMID: 8777726]
[19]
Li, X.; Bechara, R.; Zhao, J.; McGeachy, M.J.; Gaffen, S.L. IL-17 receptor-based signaling and implications for disease. Nat. Immunol., 2019, 20(12), 1594-1602.
[http://dx.doi.org/10.1038/s41590-019-0514-y] [PMID: 31745337]
[20]
Seo, E.J.; Fischer, N.; Efferth, T. Phytochemicals as inhibitors of NF-κB for treatment of Alzheimer’s disease. Pharmacol. Res., 2018, 129, 262-273.
[http://dx.doi.org/10.1016/j.phrs.2017.11.030] [PMID: 29179999]
[21]
Kim, E.K.; Choi, E.J. Compromised MAPK signaling in human diseases: An update. Arch. Toxicol., 2015, 89(6), 867-882.
[http://dx.doi.org/10.1007/s00204-015-1472-2] [PMID: 25690731]
[22]
Onishi, R.M.; Park, S.J.; Hanel, W.; Ho, A.W.; Maitra, A.; Gaffen, S.L. SEF/IL-17R (SEFIR) is not enough: An extended SEFIR domain is required for il-17RA-mediated signal transduction. J. Biol. Chem., 2010, 285(43), 32751-32759.
[http://dx.doi.org/10.1074/jbc.M110.121418] [PMID: 20729198]
[23]
Ruddy, M.J.; Wong, G.C.; Liu, X.K.; Yamamoto, H.; Kasayama, S.; Kirkwood, K.L.; Gaffen, S.L. Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members. J. Biol. Chem., 2004, 279(4), 2559-2567.
[http://dx.doi.org/10.1074/jbc.M308809200] [PMID: 14600152]
[24]
Beringer, A.; Noack, M.; Miossec, P. il-17 in chronic inflammation: from discovery to targeting. Trends Mol. Med., 2016, 22(3), 230-241.
[http://dx.doi.org/10.1016/j.molmed.2016.01.001] [PMID: 26837266]
[25]
Ribeiro, M.; Brigas, H.C.; Temido-Ferreira, M.; Pousinha, P.A.; Regen, T.; Santa, C.; Coelho, J.E.; Marques-Morgado, I.; Valente, C.A.; Omenetti, S.; Stockinger, B.; Waisman, A.; Manadas, B.; Lopes, L.V.; Silva-Santos, B.; Ribot, J.C. Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol., 2019, 4(40)eaay5199
[http://dx.doi.org/10.1126/sciimmunol.aay5199] [PMID: 31604844]
[26]
De Angulo, A.; Faris, R.; Daniel, B.; Jolly, C.; deGraffenried, L. Age-related increase in IL-17 activates pro-inflammatory signaling in prostate cells. Prostate, 2015, 75(5), 449-462.
[http://dx.doi.org/10.1002/pros.22931] [PMID: 25560177]
[27]
Lim, M.A.; Lee, J.; Park, J.S.; Jhun, J.Y.; Moon, Y.M.; Cho, M.L.; Kim, H.Y. Increased Th17 differentiation in aged mice is significantly associated with high IL-1β level and low IL-2 expression. Exp. Gerontol., 2014, 49, 55-62.
[http://dx.doi.org/10.1016/j.exger.2013.10.006] [PMID: 24140620]
[28]
Oberstein, T.J.; Taha, L.; Spitzer, P.; Hellstern, J.; Herrmann, M.; Kornhuber, J.; Maler, J.M. Imbalance of circulating Th17 and Regulatory T Cells in Alzheimer’s Disease: A Case Control Study. Front. Immunol., 2018, 9, 1213.
[http://dx.doi.org/10.3389/fimmu.2018.01213] [PMID: 29915582]
[29]
Sun, L.; Ju, T.; Wang, T.; Zhang, L.; Ding, F.; Zhang, Y.; An, R.; Sun, Y.; Li, Y.; Lu, Y.; Zhang, X.; Chi, L. Decreased Netrin-1 and Correlated Th17/Tregs balance disorder in Aβ1-42 induced Alzheimer’s Disease Model Rats. Front. Aging Neurosci., 2019, 11, 124.
[http://dx.doi.org/10.3389/fnagi.2019.00124] [PMID: 31191297]
[30]
Fragoulis, A.; Siegl, S.; Fendt, M.; Jansen, S.; Soppa, U.; Brandenburg, L.O.; Pufe, T.; Weis, J.; Wruck, C.J. Oral administration of methysticin improves cognitive deficits in a mouse model of Alzheimer’s disease. Redox Biol., 2017, 12, 843-853.
[http://dx.doi.org/10.1016/j.redox.2017.04.024] [PMID: 28448946]
[31]
Prinz, I.; Sandrock, I. Dangerous γδ T cells in aged mice. EMBO Rep., 2019, 20(8)e48678
[http://dx.doi.org/10.15252/embr.201948678] [PMID: 31286651]
[32]
Zhang, J.; Ke, K.F.; Liu, Z.; Qiu, Y.H.; Peng, Y.P. Th17 cell-mediated neuroinflammation is involved in neurodegeneration of aβ1-42-induced Alzheimer’s disease model rats. PLoS One, 2013, 8(10)e75786
[http://dx.doi.org/10.1371/journal.pone.0075786] [PMID: 24124514]
[33]
Hu, W.T.; Watts, K.; Grossman, M.; Glass, J.; Lah, J.J.; Hales, C.; Shelnutt, M.; Van Deerlin, V.; Trojanowski, J.Q.; Levey, A.I. Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP. Neurology, 2013, 81(22), 1945-1952.
[http://dx.doi.org/10.1212/01.wnl.0000436625.63650.27] [PMID: 24174584]
[34]
Devanand, D.P.; Michaels-Marston, K.S.; Liu, X.; Pelton, G.H.; Padilla, M.; Marder, K.; Bell, K.; Stern, Y.; Mayeux, R. Olfactory deficits in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up. Am. J. Psychiatry, 2000, 157(9), 1399-1405.
[http://dx.doi.org/10.1176/appi.ajp.157.9.1399] [PMID: 10964854]
[35]
Platt, M.P.; Bolding, K.A.; Wayne, C.R.; Chaudhry, S.; Cutforth, T.; Franks, K.M.; Agalliu, D. Th17 lymphocytes drive vascular and neuronal deficits in a mouse model of postinfectious autoimmune encephalitis. Proc. Natl. Acad. Sci. USA, 2020, 117(12), 6708-6716.
[http://dx.doi.org/10.1073/pnas.1911097117] [PMID: 32161123]
[36]
Cristiano, C.; Volpicelli, F.; Lippiello, P.; Buono, B.; Raucci, F.; Piccolo, M.; Iqbal, A.J.; Irace, C.; Miniaci, M.C.; Perrone, C. C.; Calignano, A.; Mascolo, N.; Maione, F. Neutralization of IL-17 rescues amyloid-β-induced neuroinflammation and memory impairment. Br. J. Pharmacol., 2019, 176(18), 3544-3557.
[http://dx.doi.org/10.1111/bph.14586] [PMID: 30673121]
[37]
Serrano-Pozo, A.; Das, S.; Hyman, B.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol., 2021, 20(1), 68-80.
[http://dx.doi.org/10.1016/S1474-4422(20)30412-9] [PMID: 33340485]
[38]
Tian, A.; Ma, H.; Zhang, R.; Tan, W.; Wang, X.; Wu, B.; Wang, J.; Wan, C. Interleukin17A promotes postoperative cognitive dysfunction by Triggering β-Amyloid accumulation via the transforming growth factor-β (TGFβ)/Smad signaling pathway. PLoS One, 2015, 10(10)e0141596
[http://dx.doi.org/10.1371/journal.pone.0141596] [PMID: 26509545]
[39]
Faraco, G.; Brea, D.; Garcia-Bonilla, L.; Wang, G.; Racchumi, G.; Chang, H.; Buendia, I.; Santisteban, M.M.; Segarra, S.G.; Koizumi, K.; Sugiyama, Y.; Murphy, M.; Voss, H.; Anrather, J.; Iadecola, C. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat. Neurosci., 2018, 21(2), 240-249.
[http://dx.doi.org/10.1038/s41593-017-0059-z] [PMID: 29335605]
[40]
Faraco, G.; Hochrainer, K.; Segarra, S.G.; Schaeffer, S.; Santisteban, M.M.; Menon, A.; Jiang, H.; Holtzman, D.M.; Anrather, J.; Iadecola, C. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature, 2019, 574(7780), 686-690.
[http://dx.doi.org/10.1038/s41586-019-1688-z] [PMID: 31645758]
[41]
Kwart, D.; Gregg, A.; Scheckel, C.; Murphy, E.A.; Paquet, D.; Duffield, M.; Fak, J.; Olsen, O.; Darnell, R.B.; Tessier-Lavigne, M. A Large Panel of Isogenic APP and PSEN1 Mutant Human iPSC neurons reveals shared endosomal abnormalities mediated by APP β-CTFs, Not Aβ. Neuron, 2019, 104(2), 256-270.e5.
[http://dx.doi.org/10.1016/j.neuron.2019.07.010] [PMID: 31416668]
[42]
Eggert, S.; Thomas, C.; Kins, S.; Hermey, G. Trafficking in Alzheimer’s Disease: Modulation of APP transport and processing by the transmembrane proteins LRP1, SorLA, SorCS1c, sortilin, and calsyntenin. Mol. Neurobiol., 2018, 55(7), 5809-5829.
[http://dx.doi.org/10.1007/s12035-017-0806-x] [PMID: 29079999]
[43]
Hampel, H.; Vassar, R.; De Strooper, B.; Hardy, J.; Willem, M.; Singh, N.; Zhou, J.; Yan, R.; Vanmechelen, E.; De Vos, A.; Nisticò, R.; Corbo, M.; Imbimbo, B.P.; Streffer, J.; Voytyuk, I.; Timmers, M.; Tahami Monfared, A.A.; Irizarry, M.; Albala, B.; Koyama, A.; Watanabe, N.; Kimura, T.; Yarenis, L.; Lista, S.; Kramer, L.; Vergallo, A. The β-Secretase BACE1 in Alzheimer’s Disease. Biol. Psychiatry, 2021, 89(8), 745-756.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.001] [PMID: 32223911]
[44]
Capone, R.; Tiwari, A.; Hadziselimovic, A.; Peskova, Y.; Hutchison, J.M.; Sanders, C.R.; Kenworthy, A.K. The C99 domain of the amyloid precursor protein resides in the disordered membrane phase. J. Biol. Chem., 2021, 296100652
[http://dx.doi.org/10.1016/j.jbc.2021.100652] [PMID: 33839158]
[45]
Sun, J.; Zhang, S.; Zhang, X.; Zhang, X.; Dong, H.; Qian, Y. IL-17A is implicated in lipopolysaccharide-induced neuroinflammation and cognitive impairment in aged rats via microglial activation. J. Neuroinflammation, 2015, 12, 165.
[http://dx.doi.org/10.1186/s12974-015-0394-5] [PMID: 26373740]
[46]
Ravari, A.; Mirzaei, T.; Kennedy, D.; Kazemi, A.M. Chronoinflammaging in Alzheimer; A systematic review on the roles of toll like receptor 2. Life Sci., 2017, 171, 16-20.
[http://dx.doi.org/10.1016/j.lfs.2017.01.003] [PMID: 28087373]
[47]
Jin, J.J.; Kim, H.D.; Maxwell, J.A.; Li, L.; Fukuchi, K. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J. Neuroinflammation, 2008, 5, 23.
[http://dx.doi.org/10.1186/1742-2094-5-23] [PMID: 18510752]
[48]
Zhou, Y.; Chen, Y.; Xu, C.; Zhang, H.; Lin, C. TLR4 Targeting as a Promising Therapeutic Strategy for Alzheimer Disease Treatment. Front. Neurosci., 2020, 14602508
[http://dx.doi.org/10.3389/fnins.2020.602508] [PMID: 33390886]
[49]
Chen, J.M.; Li, Q.W.; Jiang, G.X.; Liu, J.S.; Cheng, Q. IL-18 induced IL-23/IL-17 expression impairs Aβ clearance in cultured THP-1 and BV2 cells. Cytokine, 2019, 119, 113-118.
[http://dx.doi.org/10.1016/j.cyto.2019.03.003] [PMID: 30903865]
[50]
Yang, J.; Kou, J.; Lalonde, R.; Fukuchi, K.I. Intracranial IL-17A overexpression decreases cerebral amyloid angiopathy by upregulation of ABCA1 in an animal model of Alzheimer’s disease. Brain Behav. Immun., 2017, 65, 262-273.
[http://dx.doi.org/10.1016/j.bbi.2017.05.012] [PMID: 28526436]
[51]
Malpetti, M.; Kievit, R.A.; Passamonti, L.; Jones, P.S.; Tsvetanov, K.A.; Rittman, T.; Mak, E.; Nicastro, N.; Bevan-Jones, W.R.; Su, L.; Hong, Y.T.; Fryer, T.D.; Aigbirhio, F.I.; O’Brien, J.T.; Rowe, J.B. Microglial activation and tau burden predict cognitive decline in Alzheimer’s disease. Brain, 2020, 143(5), 1588-1602.
[http://dx.doi.org/10.1093/brain/awaa088] [PMID: 32380523]
[52]
Wu, Z.; He, D.; Zhao, S.; Wang, H. IL-17A/IL-17RA promotes invasion and activates MMP-2 and MMP-9 expression via p38 MAPK signaling pathway in non-small cell lung cancer. Mol. Cell. Biochem., 2019, 455(1-2), 195-206.
[http://dx.doi.org/10.1007/s11010-018-3483-9] [PMID: 30564960]
[53]
Schneeberger, E.E.; Lynch, R.D. The tight junction: A multifunctional complex. Am. J. Physiol. Cell Physiol., 2004, 286(6), C1213-C1228.
[http://dx.doi.org/10.1152/ajpcell.00558.2003] [PMID: 15151915]
[54]
Sweeney, M.D.; Zhao, Z.; Montagne, A.; Nelson, A.R.; Zlokovic, B.V. Blood-brain barrier: from physiology to disease and back. Physiol. Rev., 2019, 99(1), 21-78.
[http://dx.doi.org/10.1152/physrev.00050.2017] [PMID: 30280653]
[55]
van de Haar, H.J.; Burgmans, S.; Jansen, J.F.; van Osch, M.J.; van Buchem, M.A.; Muller, M.; Hofman, P.A.; Verhey, F.R.; Backes, W.H. Blood-brain barrier leakage in patients with early Alzheimer Disease. Radiology, 2017, 282(2), 615.
[http://dx.doi.org/10.1148/radiol.2017164043] [PMID: 28099097]
[56]
van de Haar, H.J.; Jansen, J.F.A.; Jeukens, C.R.L.P.N.; Burgmans, S.; van Buchem, M.A.; Muller, M.; Hofman, P.A.M.; Verhey, F.R.J.; van Osch, M.J.P.; Backes, W.H. Subtle blood-brain barrier leakage rate and spatial extent: Considerations for dynamic contrast-enhanced MRI. Med. Phys., 2017, 44(8), 4112-4125.
[http://dx.doi.org/10.1002/mp.12328] [PMID: 28493613]
[57]
Sagare, A.P.; Bell, R.D.; Zhao, Z.; Ma, Q.; Winkler, E.A.; Ramanathan, A.; Zlokovic, B.V. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat. Commun., 2013, 4, 2932.
[http://dx.doi.org/10.1038/ncomms3932] [PMID: 24336108]
[58]
Rahman, M.T.; Ghosh, C.; Hossain, M.; Linfield, D.; Rezaee, F.; Janigro, D.; Marchi, N.; van Boxel-Dezaire, A.H.H. IFN-γ, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: Relevance for neuro-inflammatory diseases. Biochem. Biophys. Res. Commun., 2018, 507(1-4), 274-279.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.021] [PMID: 30449598]
[59]
Huppert, J.; Closhen, D.; Croxford, A.; White, R.; Kulig, P.; Pietrowski, E.; Bechmann, I.; Becher, B.; Luhmann, H.J.; Waisman, A.; Kuhlmann, C.R. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J., 2010, 24(4), 1023-1034.
[http://dx.doi.org/10.1096/fj.09-141978] [PMID: 19940258]
[60]
Kebir, H.; Kreymborg, K.; Ifergan, I.; Dodelet-Devillers, A.; Cayrol, R.; Bernard, M.; Giuliani, F.; Arbour, N.; Becher, B.; Prat, A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med., 2007, 13(10), 1173-1175.
[http://dx.doi.org/10.1038/nm1651] [PMID: 17828272]
[61]
Ni, P.; Dong, H.; Wang, Y.; Zhou, Q.; Xu, M.; Qian, Y.; Sun, J. IL-17A contributes to perioperative neurocognitive disorders through blood-brain barrier disruption in aged mice. J. Neuroinflam., 2018, 15(1), 332.
[http://dx.doi.org/10.1186/s12974-018-1374-3] [PMID: 30501622]
[62]
Liu, Z.; Qiu, A.W.; Huang, Y.; Yang, Y.; Chen, J.N.; Gu, T.T.; Cao, B.B.; Qiu, Y.H.; Peng, Y.P. IL-17A exacerbates neuroinflammation and neurodegeneration by activating microglia in rodent models of Parkinson’s disease. Brain Behav. Immun., 2019, 81, 630-645.
[http://dx.doi.org/10.1016/j.bbi.2019.07.026] [PMID: 31351185]
[63]
Schüler, R.; Efentakis, P.; Wild, J.; Lagrange, J.; Garlapati, V.; Molitor, M.; Kossmann, S.; Oelze, M.; Stamm, P.; Li, H.; Schäfer, K.; Münzel, T.; Daiber, A.; Waisman, A.; Wenzel, P.; Karbach, S.H.; Cell-Derived, T.T. Cell-Derived IL-17A induces vascular dysfunction via perivascular fibrosis formation and dysregulation of •NO/cGMP Signaling. Oxid. Med. Cell. Longev., 2019, 20196721531
[http://dx.doi.org/10.1155/2019/6721531] [PMID: 31396305]
[64]
Siffrin, V.; Radbruch, H.; Glumm, R.; Niesner, R.; Paterka, M.; Herz, J.; Leuenberger, T.; Lehmann, S.M.; Luenstedt, S.; Rinnenthal, J.L.; Laube, G.; Luche, H.; Lehnardt, S.; Fehling, H.J.; Griesbeck, O.; Zipp, F. In vivo imaging of partially reversible th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity, 2010, 33(3), 424-436.
[http://dx.doi.org/10.1016/j.immuni.2010.08.018] [PMID: 20870176]
[65]
Zenaro, E.; Pietronigro, E.; Della, B.V.; Piacentino, G.; Marongiu, L.; Budui, S.; Turano, E.; Rossi, B.; Angiari, S.; Dusi, S.; Montresor, A.; Carlucci, T.; Nanì, S.; Tosadori, G.; Calciano, L.; Catalucci, D.; Berton, G.; Bonetti, B.; Constantin, G. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med., 2015, 21(8), 880-886.
[http://dx.doi.org/10.1038/nm.3913] [PMID: 26214837]
[66]
Taipa, R. das Neves, S.P.; Sousa, A.L.; Fernandes, J.; Pinto, C.; Correia, A.P.; Santos, E.; Pinto, P.S.; Carneiro, P.; Costa, P.; Santos, D.; Alonso, I.; Palha, J.; Marques, F.; Cavaco, S.; Sousa, N. Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer’s disease and their correlation with cognitive decline. Neurobiol. Aging, 2019, 76, 125-132.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.12.019] [PMID: 30711675]
[67]
Yang, Z.Y.; Yuan, C.X. IL-17A promotes the neuroinflammation and cognitive function in sevoflurane anesthetized aged rats via activation of NF-κB signaling pathway. BMC Anesthesiol., 2018, 18(1), 147.
[http://dx.doi.org/10.1186/s12871-018-0607-4] [PMID: 30342469]
[68]
Shalom-Barak, T.; Quach, J.; Lotz, M. Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-kappaB. J. Biol. Chem., 1998, 273(42), 27467-27473.
[http://dx.doi.org/10.1074/jbc.273.42.27467] [PMID: 9765276]
[69]
Witowski, J.; Książek, K.; Jörres, A. Interleukin-17: A mediator of inflammatory responses. Cell. Mol. Life Sci., 2004, 61(5), 567-579.
[http://dx.doi.org/10.1007/s00018-003-3228-z] [PMID: 15004696]
[70]
Sun, D.; Novotny, M.; Bulek, K.; Liu, C.; Li, X.; Hamilton, T. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nat. Immunol., 2011, 12(9), 853-860.
[http://dx.doi.org/10.1038/ni.2081] [PMID: 21822258]
[71]
Hartupee, J.; Liu, C.; Novotny, M.; Li, X.; Hamilton, T. IL-17 enhances chemokine gene expression through mRNA stabilization. J. Immunol., 2007, 179(6), 4135-4141.
[http://dx.doi.org/10.4049/jimmunol.179.6.4135] [PMID: 17785852]
[72]
Zimmermann, J.; Krauthausen, M.; Hofer, M.J.; Heneka, M.T.; Campbell, I.L.; Müller, M. CNS-targeted production of IL-17A induces glial activation, microvascular pathology and enhances the neuroinflammatory response to systemic endotoxemia. PLoS One, 2013, 8(2)e57307
[http://dx.doi.org/10.1371/journal.pone.0057307] [PMID: 23468966]
[73]
Waisman, A.; Hauptmann, J.; Regen, T. The role of IL-17 in CNS diseases. Acta Neuropathol., 2015, 129(5), 625-637.
[http://dx.doi.org/10.1007/s00401-015-1402-7] [PMID: 25716179]
[74]
Varvel, N.H.; Neher, J.J.; Bosch, A.; Wang, W.; Ransohoff, R.M.; Miller, R.J.; Dingledine, R. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc. Natl. Acad. Sci. USA, 2016, 113(38), E5665-E5674.
[http://dx.doi.org/10.1073/pnas.1604263113] [PMID: 27601660]
[75]
Block, M.L.; Zecca, L.; Hong, J.S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci., 2007, 8(1), 57-69.
[http://dx.doi.org/10.1038/nrn2038] [PMID: 17180163]
[76]
Van Eldik, L.J.; Wainwright, M.S. The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor. Neurol. Neurosci., 2003, 21(3-4), 97-108.
[PMID: 14530573]
[77]
Vajkoczy, P.; Laschinger, M.; Engelhardt, B. Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J. Clin. Invest., 2001, 108(4), 557-565.
[http://dx.doi.org/10.1172/JCI12440] [PMID: 11518729]
[78]
Wang, D.D.; Zhao, Y.F.; Wang, G.Y.; Sun, B.; Kong, Q.F.; Zhao, K.; Zhang, Y.; Wang, J.H.; Liu, Y.M.; Mu, L.L.; Wang, D.S.; Li, H.L. IL-17 potentiates neuronal injury induced by oxygen-glucose deprivation and affects neuronal IL-17 receptor expression. J. Neuroimmunol., 2009, 212(1-2), 17-25.
[http://dx.doi.org/10.1016/j.jneuroim.2009.04.007] [PMID: 19457561]
[79]
Sommer, A.; Marxreiter, F.; Krach, F.; Fadler, T.; Grosch, J.; Maroni, M.; Graef, D.; Eberhardt, E.; Riemenschneider, M.J.; Yeo, G.W.; Kohl, Z.; Xiang, W.; Gage, F.H.; Winkler, J.; Prots, I.; Winner, B. Th17 lymphocytes induce neuronal cell death in a Human iPSC-based model of Parkinson’s Disease. Cell Stem Cell, 2019, 24(6), 1006.
[http://dx.doi.org/10.1016/j.stem.2019.04.019] [PMID: 31173705]
[80]
Wang, X.; Zhang, M.; Liu, H. LncRNA17A regulates autophagy and apoptosis of SH-SY5Y cell line as an in vitro model for Alzheimer’s disease. Biosci. Biotechnol. Biochem., 2019, 83(4), 609-621.
[http://dx.doi.org/10.1080/09168451.2018.1562874] [PMID: 30652945]
[81]
Leavy, O. The T(H)17 kiss of death for neurons. Nat. Rev. Immunol., 2010, 10(11), 750.
[http://dx.doi.org/10.1038/nri2876] [PMID: 21080612]
[82]
Tanabe, S.; Yamashita, T. Repulsive guidance molecule-a is involved in Th17-cell-induced neurodegeneration in autoimmune encephalomyelitis. Cell Rep., 2014, 9(4), 1459-1470.
[http://dx.doi.org/10.1016/j.celrep.2014.10.038] [PMID: 25456136]
[83]
Lazarov, O.; Hollands, C. Hippocampal neurogenesis: Learning to remember. Prog. Neurobiol., 2016, 138-140, 1-18.
[http://dx.doi.org/10.1016/j.pneurobio.2015.12.006] [PMID: 26855369]
[84]
Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.; Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med., 2019, 25(4), 554-560.
[http://dx.doi.org/10.1038/s41591-019-0375-9] [PMID: 30911133]
[85]
Liu, Q.; Xin, W.; He, P.; Turner, D.; Yin, J.; Gan, Y.; Shi, F.D.; Wu, J. Interleukin-17 inhibits adult hippocampal neurogenesis. Sci. Rep., 2014, 4, 7554.
[http://dx.doi.org/10.1038/srep07554] [PMID: 25523081]
[86]
Tfilin, M.; Turgeman, G. Interleukine-17 Administration modulates adult hippocampal neurogenesis and improves spatial learning in mice. J. Mol. Neurosci., 2019, 69(2), 254-263.
[http://dx.doi.org/10.1007/s12031-019-01354-4] [PMID: 31254254]
[87]
Gao, L.; Li, P.P.; Shao, T.Y.; Mao, X.; Qi, H.; Wu, B.S.; Shan, M.; Ye, L.; Cheng, H.W. Neurotoxic role of interleukin-17 in neural stem cell differentiation after intracerebral hemorrhage. Neural Regen. Res., 2020, 15(7), 1350-1359.
[http://dx.doi.org/10.4103/1673-5374.272614] [PMID: 31960824]
[88]
Satoh, J.; Tabunoki, H.; Ishida, T.; Saito, Y.; Arima, K. Accumulation of a repulsive axonal guidance molecule RGMa in amyloid plaques: A possible hallmark of regenerative failure in Alzheimer’s disease brains. Neuropathol. Appl. Neurobiol., 2013, 39(2), 109-120.
[http://dx.doi.org/10.1111/j.1365-2990.2012.01281.x] [PMID: 22582881]
[89]
Tang, J.; Zeng, X.; Li, H.; Ju, L.; Feng, J.; Yang, J. Repulsive guidance molecule-a and central nervous system diseases. BioMed Res. Int., 2021, 20215532116
[http://dx.doi.org/10.1155/2021/5532116] [PMID: 33997000]
[90]
Okamura, Y.; Kohmura, E.; Yamashita, T. TACE cleaves neogenin to desensitize cortical neurons to the repulsive guidance molecule. Neurosci. Res., 2011, 71(1), 63-70.
[http://dx.doi.org/10.1016/j.neures.2011.05.012] [PMID: 21645559]
[91]
Small, D.H.; Mok, S.S.; Bornstein, J.C. Alzheimer’s disease and Abeta toxicity: from top to bottom. Nat. Rev. Neurosci., 2001, 2(8), 595-598.
[http://dx.doi.org/10.1038/35086072] [PMID: 11484003]
[92]
Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol., 1991, 30(4), 572-580.
[http://dx.doi.org/10.1002/ana.410300410] [PMID: 1789684]
[93]
Selkoe, D.J. Alzheimer’s disease is a synaptic failure. Science, 2002, 298(5594), 789-791.
[http://dx.doi.org/10.1126/science.1074069] [PMID: 12399581]
[94]
D’Anna, L.; Abu-Rumeileh, S.; Fabris, M.; Pistis, C.; Baldi, A.; Sanvilli, N.; Curcio, F.; Gigli, G.L.; D’Anna, S.; Valente, M. Serum Interleukin-10 levels correlate with cerebrospinal fluid amyloid beta deposition in alzheimer disease patients. Neurodegener. Dis., 2017, 17(4-5), 227-234.
[http://dx.doi.org/10.1159/000474940] [PMID: 28719891]
[95]
Dubenko, O.E.; Chyniak, O.S.; Potapov, O.O. Levels of proinflammatory cytokines Il-17 and Il-23 in patients with Alzheimer’s Disease, mild cognitive impairment and vascular dementia. Wiad. Lek., 2021, 74(1), 68-71.
[http://dx.doi.org/10.36740/WLek202101113] [PMID: 33851590]
[96]
Rakic, S.; Hung, Y.M.A.; Smith, M.; So, D.; Tayler, H.M.; Varney, W.; Wild, J.; Harris, S.; Holmes, C.; Love, S.; Stewart, W.; Nicoll, J.A.R.; Boche, D. Systemic infection modifies the neuroinflammatory response in late stage Alzheimer’s disease. Acta Neuropathol. Commun., 2018, 6(1), 88.
[http://dx.doi.org/10.1186/s40478-018-0592-3] [PMID: 30193587]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy