Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Depression and Pain: Use of Antidepressants

Author(s): Herlinda Bonilla-Jaime*, José Armando Sánchez-Salcedo, M. Maetzi Estevez-Cabrera, Tania Molina-Jiménez, José Luis Cortes-Altamirano and Alfonso Alfaro-Rodríguez

Volume 20, Issue 2, 2022

Published on: 07 February, 2022

Page: [384 - 402] Pages: 19

DOI: 10.2174/1570159X19666210609161447

Price: $65

Abstract

Background: Emotional disorders are common comorbid affectations that exacerbate the severity and persistence of chronic pain. Specifically, depressive symptoms can lead to an excessive duration and intensity of pain. Clinical and preclinical studies have been focused on the underlying mechanisms of chronic pain and depression comorbidity and the use of antidepressants to reduce pain.

Aim: This review provides an overview of the comorbid relationship of chronic pain and depression, the clinical and pre-clinical studies performed on the neurobiological aspects of pain and depression, and the use of antidepressants as analgesics.

Methods: A systematic search of literature databases was conducted according to pre-defined criteria. The authors independently conducted a focused analysis of the full-text articles.

Results: Studies suggest that pain and depression are highly intertwined and may co-exacerbate physical and psychological symptoms. One important biochemical basis for pain and depression focuses on the serotonergic and norepinephrine system, which have been shown to play an important role in this comorbidity. Brain structures that codify pain are also involved in mood. It is evident that using serotonergic and norepinephrine antidepressants are strategies commonly employed to mitigate pain

Conclusion: Literature indicates that pain and depression impact each other and play a prominent role in the development and maintenance of other chronic symptoms. Antidepressants continue to be a major therapeutic tool for managing chronic pain. Tricyclic antidepressants (TCAs) are more effective in reducing pain than Selective Serotonin Reuptake Inhibitors (SSRIs) and Serotonin- Noradrenaline Reuptake Inhibitors (SNRIs).

Keywords: Depression, pain, antidepressants, chronic pain, neuropathic pain, chronic disease.

Graphical Abstract

[1]
American psychiatric association. Diagnostic and statistical manual of mental disorders, 5th ed; American Psychiatric Association: Virginia, 2013.
[2]
Depression, and other common mental disorders: Global health estimate; WHO: Switzerland, , 2017.
[3]
Kessler, R.C.; Bromet, E.J. The epidemiology of depression across cultures. Annu. Rev. Public Health, 2013, 34(1), 119-138.
[http://dx.doi.org/10.1146/annurev-publhealth-031912-114409] [PMID: 23514317]
[4]
Moffitt, T.E.; Caspi, A.; Taylor, A.; Kokaua, J.; Milne, B.J.; Polanczyk, G.; Poulton, R. How common are common mental disorders? Evidence that lifetime prevalence rates are doubled by prospective versus retrospective ascertainment. Psychol. Med., 2010, 40(6), 899-909.
[http://dx.doi.org/10.1017/S0033291709991036] [PMID: 19719899]
[5]
Teicher, M.H.; Samson, J.A. Childhood maltreatment and psychopathology: A case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. Am. J. Psychiatry, 2013, 170(10), 1114-1133.
[http://dx.doi.org/10.1176/appi.ajp.2013.12070957] [PMID: 23982148]
[6]
Caspi, A.; Sugden, K.; Moffitt, T.E.; Taylor, A.; Craig, I.W.; Harrington, H.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; Poulton, R. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 2003, 301(5631), 386-389.
[http://dx.doi.org/10.1126/science.1083968] [PMID: 12869766]
[7]
Willner, P. Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacology (Berl.), 1997, 134(4), 319-329.
[http://dx.doi.org/10.1007/s002130050456] [PMID: 9452163]
[8]
McKinnon, M.C.; Yucel, K.; Nazarov, A.; MacQueen, G.M. A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J. Psychiatry Neurosci., 2009, 34(1), 41-54.
[PMID: 19125212]
[9]
Wang, L.; Zhao, Y.; Edmiston, E.K.; Womer, F.Y.; Zhang, R.; Zhao, P.; Jiang, X.; Wu, F.; Kong, L.; Zhou, Y.; Tang, Y.; Wei, S. Structural and functional abnormities of amygdala and prefrontal cortex in major depressive disorder with suicide attempts. Front. Psychiatry, 2020, 10, 923.
[http://dx.doi.org/10.3389/fpsyt.2019.00923] [PMID: 31969839]
[10]
Lemogne, C.; Delaveau, P.; Freton, M.; Guionnet, S.; Fossati, P. Medial prefrontal cortex and the self in major depression. J. Affect. Disord., 2012, 136(1-2), e1-e11.
[http://dx.doi.org/10.1016/j.jad.2010.11.034] [PMID: 21185083]
[11]
Kempton, M.J.; Salvador, Z.; Munafò, M.R.; Geddes, J.R.; Simmons, A.; Frangou, S.; Williams, S.C. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch. Gen. Psychiatry, 2011, 68(7), 675-690.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.60] [PMID: 21727252]
[12]
Fakhoury, M. New insights into the neurobiological mechanisms of major depressive disorders. Gen. Hosp. Psychiatry, 2015, 37(2), 172-177.
[http://dx.doi.org/10.1016/j.genhosppsych.2015.01.005] [PMID: 25772946]
[13]
Belzung, C.; Billette de Villemeur, E. The design of new antidepressants: Can formal models help? A first attempt using a model of the hippocampal control over the HPA-axis based on a review from the literature. Behav. Pharmacol., 2010, 21(8), 677-689.
[http://dx.doi.org/10.1097/FBP.0b013e328340d630] [PMID: 21051994]
[14]
Duman, R.S.; Monteggia, L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry, 2006, 59(12), 1116-1127.
[http://dx.doi.org/10.1016/j.biopsych.2006.02.013] [PMID: 16631126]
[15]
Kunugi, H.; Hori, H.; Adachi, N.; Numakawa, T. Interface between hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor in depression. Psychiatry Clin. Neurosci., 2010, 64(5), 447-459.
[http://dx.doi.org/10.1111/j.1440-1819.2010.02135.x] [PMID: 20923424]
[16]
Dharmshaktu, P.; Tayal, V.; Kalra, B.S. Efficacy of antidepressants as analgesics: A review. J. Clin. Pharmacol., 2012, 52(1), 6-17.
[http://dx.doi.org/10.1177/0091270010394852] [PMID: 21415285]
[17]
Malcangio, M. Role of the immune system in neuropathic pain. Scand. J. Pain, 2019, 20(1), 33-37.
[http://dx.doi.org/10.1515/sjpain-2019-0138] [PMID: 31730538]
[18]
Ciaramella, A. Psychopharmacology of chronic pain. Handbook of Clinical Neurology; Elsevier; , 2019, 165, pp. 317-337.
[19]
Bair, M.J.; Robinson, R.L.; Katon, W.; Kroenke, K. Depression and pain comorbidity: A literature review. Arch. Intern. Med., 2003, 163(20), 2433-2445.
[http://dx.doi.org/10.1001/archinte.163.20.2433] [PMID: 14609780]
[20]
McWilliams, L.A.; Goodwin, R.D.; Cox, B.J. Depression and anxiety associated with three pain conditions: Results from a nationally representative sample. Pain, 2004, 111(1-2), 77-83.
[http://dx.doi.org/10.1016/j.pain.2004.06.002] [PMID: 15327811]
[21]
Arnow, B.A.; Hunkeler, E.M.; Blasey, C.M.; Lee, J.; Constantino, M.J.; Fireman, B.; Kraemer, H.C.; Dea, R.; Robinson, R.; Hayward, C. Comorbid depression, chronic pain, and disability in primary care. Psychosom. Med., 2006, 68(2), 262-268.
[http://dx.doi.org/10.1097/01.psy.0000204851.15499.fc] [PMID: 16554392]
[22]
Goyal, M.; Singh, S.; Sibinga, E.M.S.; Gould, N.F.; Rowland-Seymour, A.; Sharma, R.; Berger, Z.; Sleicher, D.; Maron, D.D.; Shihab, H.M.; Ranasinghe, P.D.; Linn, S.; Saha, S.; Bass, E.B.; Haythornthwaite, J.A. Meditation programs for psychological stress and well-being: A systematic review and meta-analysis. JAMA Intern. Med., 2014, 174(3), 357-368.
[http://dx.doi.org/10.1001/jamainternmed.2013.13018] [PMID: 24395196]
[23]
Strigo, I.A.; Simmons, A.N.; Matthews, S.C.; Craig, A.D.; Paulus, M.P. Association of major depressive disorder with altered functional brain response during anticipation and processing of heat pain. Arch. Gen. Psychiatry, 2008, 65(11), 1275-1284.
[http://dx.doi.org/10.1001/archpsyc.65.11.1275] [PMID: 18981339]
[24]
Fasick, V.; Spengler, R.N.; Samankan, S.; Nader, N.D.; Ignatowski, T.A. The hippocampus and TNF: Common links between chronic pain and depression. Neurosci. Biobehav. Rev., 2015, 53, 139-159.
[http://dx.doi.org/10.1016/j.neubiorev.2015.03.014] [PMID: 25857253]
[25]
Maletic, V. Pathophysiology of pain and depression: The role of dual-acting antidepressants. CNS Spectr., 2005, 10(12), 7-9.
[PMID: 18841597]
[26]
Martelli, M.F.; Zasler, N.D.; Bender, M.C.; Nicholson, K. Psychological, neuropsychological, and medical considerations in assessment and management of pain. J. Head Trauma Rehabil., 2004, 19(1), 10-28.
[http://dx.doi.org/10.1097/00001199-200401000-00003] [PMID: 14732828]
[27]
Dydyk, A.M.; Conermann, T. Pain, chronic; StatPearls Publishing: Treasure Island, FL, 2020.
[28]
Hooten, W.M. Chronic pain and mental health disorders: Shared neural mechanisms, epidemiology, and treatment. Mayo Clin. Proc., 2016, 91(7), 955-970.
[http://dx.doi.org/10.1016/j.mayocp.2016.04.029] [PMID: 27344405]
[29]
Tang, N.K.Y.; Crane, C. Suicidality in chronic pain: A review of the prevalence, risk factors and psychological links. Psychol. Med., 2006, 36(5), 575-586.
[http://dx.doi.org/10.1017/S0033291705006859] [PMID: 16420727]
[30]
Cummins, T.R.; Sheets, P.L.; Waxman, S.G. The roles of sodium channels in nociception: Implications for mechanisms of pain. Pain, 2007, 131(3), 243-257.
[http://dx.doi.org/10.1016/j.pain.2007.07.026] [PMID: 17766042]
[31]
Pertin, M.; Ji, R.R.; Berta, T.; Powell, A.J.; Karchewski, L.; Tate, S.N.; Isom, L.L.; Woolf, C.J.; Gilliard, N.; Spahn, D.R.; Decosterd, I. Upregulation of the voltage-gated sodium channel beta2 subunit in neuropathic pain models: Characterization of expression in injured and non-injured primary sensory neurons. J. Neurosci., 2005, 25(47), 10970-10980.
[http://dx.doi.org/10.1523/JNEUROSCI.3066-05.2005] [PMID: 16306410]
[32]
Ren, K.; Dubner, R. Pain facilitation and activity-dependent plasticity in pain modulatory circuitry: Role of BDNF-TrkB signaling and NMDA receptors. Mol. Neurobiol., 2007, 35(3), 224-235.
[http://dx.doi.org/10.1007/s12035-007-0028-8] [PMID: 17917111]
[33]
Tiwari, V.; Guan, Y.; Raja, S.N. Modulating the delicate glial-neuronal interactions in neuropathic pain: promises and potential caveats. Neurosci. Biobehav. Rev., 2014, 45, 19-27.
[http://dx.doi.org/10.1016/j.neubiorev.2014.05.002] [PMID: 24820245]
[34]
Kuner, R. Central mechanisms of pathological pain. Nat. Med., 2010, 16(11), 1258-1266.
[http://dx.doi.org/10.1038/nm.2231] [PMID: 20948531]
[35]
Yaksh, T.L.; Woller, S.A.; Ramachandran, R.; Sorkin, L.S. The search for novel analgesics: Targets and mechanisms. F1000Prime Rep., 2015, 7, 56.
[http://dx.doi.org/10.12703/P7-56] [PMID: 26097729]
[36]
Hains, B.C.; Saab, C.Y.; Klein, J.P.; Craner, M.J.; Waxman, S.G. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J. Neurosci., 2004, 24(20), 4832-4839.
[http://dx.doi.org/10.1523/JNEUROSCI.0300-04.2004] [PMID: 15152043]
[37]
Latremoliere, A.; Woolf, C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain, 2009, 10(9), 895-926.
[http://dx.doi.org/10.1016/j.jpain.2009.06.012] [PMID: 19712899]
[38]
Yang, S.; Chang, M.C. Chronic pain: Structural and functional changes in brain structures and associated negative affective states. Int. J. Mol. Sci., 2019, 20(13), 3130.
[http://dx.doi.org/10.3390/ijms20133130] [PMID: 31248061]
[39]
Hamilton, J.P.; Siemer, M.; Gotlib, I.H. Amygdala volume in major depressive disorder: A meta-analysis of magnetic resonance imaging studies. Mol. Psychiatry, 2008, 13(11), 993-1000.
[http://dx.doi.org/10.1038/mp.2008.57] [PMID: 18504424]
[40]
Li, H.; Penzo, M.A.; Taniguchi, H.; Kopec, C.D.; Huang, Z.J.; Li, B. Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci., 2013, 16(3), 332-339.
[http://dx.doi.org/10.1038/nn.3322] [PMID: 23354330]
[41]
Zhou, Y.; Cong, Y.; Liu, H. Folic acid ameliorates depression-like behaviour in a rat model of chronic unpredictable mild stress. BMC Neurosci., 2020, 21(1), 1.
[http://dx.doi.org/10.1186/s12868-020-0551-3] [PMID: 31941442]
[42]
Neugebauer, V.; Galhardo, V.; Maione, S.; Mackey, S.C. Forebrain pain mechanisms. Brain Res. Brain Res. Rev., 2009, 60(1), 226-242.
[http://dx.doi.org/10.1016/j.brainresrev.2008.12.014] [PMID: 19162070]
[43]
Gauriau, C.; Bernard, J-F. A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: The forebrain. J. Comp. Neurol., 2004, 468(1), 24-56.
[http://dx.doi.org/10.1002/cne.10873] [PMID: 14648689]
[44]
Thompson, J.M.; Neugebauer, V. Cortico-limbic pain mechanisms. Neurosci. Lett., 2019, 702, 15-23.
[http://dx.doi.org/10.1016/j.neulet.2018.11.037] [PMID: 30503916]
[45]
Apkarian, A.V.; Baliki, M.N.; Geha, P.Y. Towards a theory of chronic pain. Prog. Neurobiol., 2009, 87(2), 81-97.
[http://dx.doi.org/10.1016/j.pneurobio.2008.09.018] [PMID: 18952143]
[46]
Bushnell, M.C.; Čeko, M.; Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci., 2013, 14(7), 502-511.
[http://dx.doi.org/10.1038/nrn3516] [PMID: 23719569]
[47]
Navratilova, E.; Atcherley, C.W.; Porreca, F. Brain circuits encoding reward from pain relief. Trends Neurosci., 2015, 38(11), 741-750.
[http://dx.doi.org/10.1016/j.tins.2015.09.003] [PMID: 26603560]
[48]
Baliki, M.N.; Apkarian, A.V. Nociception, pain, negative moods, and behavior selection. Neuron, 2015, 87(3), 474-491.
[http://dx.doi.org/10.1016/j.neuron.2015.06.005] [PMID: 26247858]
[49]
Masneuf, S.; Lowery-Gionta, E.; Colacicco, G.; Pleil, K.E.; Li, C.; Crowley, N.; Flynn, S.; Holmes, A.; Kash, T. Glutamatergic mechanisms associated with stress-induced amygdala excitability and anxiety-related behavior. Neuropharmacology, 2014, 85, 190-197.
[http://dx.doi.org/10.1016/j.neuropharm.2014.04.015] [PMID: 24796255]
[50]
Gerrits, E.G.; Alkhalaf, A.; Landman, G.W.D.; van Hateren, K.J.J.; Groenier, K.H.; Struck, J.; Schulte, J.; Gans, R.O.B.; Bakker, S.J.L.; Kleefstra, N.; Bilo, H.J.G. Serum peroxiredoxin 4: A marker of oxidative stress associated with mortality in type 2 diabetes (ZODIAC-28). PLoS One, 2014, 9(2)e89719
[http://dx.doi.org/10.1371/journal.pone.0089719] [PMID: 24586984]
[51]
McEwen, B.S.; Akil, H. Revisiting the stress concept: Implications for affective disorders. J. Neurosci., 2020, 40(1), 12-21.
[http://dx.doi.org/10.1523/JNEUROSCI.0733-19.2019] [PMID: 31896560]
[52]
Strobel, C.; Hunt, S.; Sullivan, R.; Sun, J.; Sah, P. Emotional regulation of pain: The role of noradrenaline in the amygdala. Sci. China Life Sci., 2014, 57(4), 384-390.
[http://dx.doi.org/10.1007/s11427-014-4638-x] [PMID: 24643418]
[53]
Rau, A.R.; Chappell, A.M.; Butler, T.R.; Ariwodola, O.J.; Weiner, J.L. Increased basolateral amygdala pyramidal cell excitability may contribute to the anxiogenic phenotype induced by chronic early-life stress. J. Neurosci., 2015, 35(26), 9730-9740.
[http://dx.doi.org/10.1523/JNEUROSCI.0384-15.2015] [PMID: 26134655]
[54]
Li, M-J.; Liu, L-Y.; Chen, L.; Cai, J.; Wan, Y.; Xing, G-G. Chronic stress exacerbates neuropathic pain via the integration of stress-affect-related information with nociceptive information in the central nucleus of the amygdala. Pain, 2017, 158(4), 717-739.
[http://dx.doi.org/10.1097/j.pain.0000000000000827] [PMID: 28225710]
[55]
Commons, K.G. Ascending serotonin neuron diversity under two umbrellas. Brain Struct. Funct., 2016, 221(7), 3347-3360.
[http://dx.doi.org/10.1007/s00429-015-1176-7] [PMID: 26740230]
[56]
Ren, J.; Friedmann, D.; Xiong, J.; Liu, C.D.; Ferguson, B.R.; Weerakkody, T.; DeLoach, K.E.; Ran, C.; Pun, A.; Sun, Y.; Weissbourd, B.; Neve, R.L.; Huguenard, J.; Horowitz, M.A.; Luo, L. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell, 2018, 175(2), 472-487.e20.
[http://dx.doi.org/10.1016/j.cell.2018.07.043] [PMID: 30146164]
[57]
Teissier, A.; Chemiakine, A.; Inbar, B.; Bagchi, S.; Ray, R.S.; Palmiter, R.D.; Dymecki, S.M.; Moore, H.; Ansorge, M.S. Activity of raphé serotonergic neurons controls emotional behaviors. Cell Rep., 2015, 13(9), 1965-1976.
[http://dx.doi.org/10.1016/j.celrep.2015.10.061] [PMID: 26655908]
[58]
Huo, F-Q.; Huang, F-S.; Lv, B-C.; Chen, T.; Feng, J.; Qu, C-L.; Tang, J-S.; Li, Y-Q. Activation of serotonin 1A receptors in ventrolateral orbital cortex depresses persistent nociception: A presynaptic inhibition mechanism. Neurochem. Int., 2010, 57(7), 749-755.
[http://dx.doi.org/10.1016/j.neuint.2010.08.011] [PMID: 20813144]
[59]
Jacobs, B.L.; Azmitia, E.C. Structure and function of the brain serotonin system. Physiol. Rev., 1992, 72(1), 165-229.
[http://dx.doi.org/10.1152/physrev.1992.72.1.165] [PMID: 1731370]
[60]
Hervás, I.; Bel, N.; Fernández, A.G.; Palacios, J.M.; Artigas, F. In vivo control of 5-hydroxytryptamine release by terminal autoreceptors in rat brain areas differentially innervated by the dorsal and median raphe nuclei. Naunyn Schmiedebergs Arch. Pharmacol., 1998, 358(3), 315-322.
[http://dx.doi.org/10.1007/PL00005259] [PMID: 9774218]
[61]
Zhang, Y-Q.; Gao, X.; Ji, G-C.; Huang, Y-L.; Wu, G-C.; Zhao, Z-Q. Expression of 5-HT1A receptor mRNA in rat lumbar spinal dorsal horn neurons after peripheral inflammation. Pain, 2002, 98(3), 287-295.
[http://dx.doi.org/10.1016/S0304-3959(02)00026-X] [PMID: 12127030]
[62]
Stamford, J.A.; Davidson, C.; McLaughlin, D.P.; Hopwood, S.E. Control of dorsal raphé 5-HT function by multiple 5-HT(1) autoreceptors: Parallel purposes or pointless plurality? Trends Neurosci., 2000, 23(10), 459-465.
[http://dx.doi.org/10.1016/S0166-2236(00)01631-3] [PMID: 11006462]
[63]
Polter, A.M.; Li, X. 5-HT1A receptor-regulated signal transduction pathways in brain. Cell. Signal., 2010, 22(10), 1406-1412.
[http://dx.doi.org/10.1016/j.cellsig.2010.03.019] [PMID: 20363322]
[64]
Metzger, M.; Bueno, D.; Lima, L.B. The lateral habenula and the serotonergic system. Pharmacol. Biochem. Behav., 2017, 162, 22-28.
[http://dx.doi.org/10.1016/j.pbb.2017.05.007] [PMID: 28528079]
[65]
Li, Y.; Wang, Y.; Xuan, C.; Li, Y.; Piao, L.; Li, J.; Zhao, H. Role of the lateral habenula in pain-associated depression. Front. Behav. Neurosci., 2017, 11, 31.
[http://dx.doi.org/10.3389/fnbeh.2017.00031] [PMID: 28270756]
[66]
Benson, C.; Mifflin, K.; Kerr, B.; Jesudasan, S.J.B.; Dursun, S.; Baker, G. Biogenic amines and the amino acids gaba and glutamate: Relationships with pain and depression.Modern Trends in Pharmacopsychiatry; Finn, D.P; Leonard, B.E., Ed.; S. Karger AG, 2015, Vol. 30, pp. 67-79.
[67]
Tappe-Theodor, A.; Kuner, R. A common ground for pain and depression. Nat. Neurosci., 2019, 22(10), 1612-1614.
[http://dx.doi.org/10.1038/s41593-019-0499-8] [PMID: 31455879]
[68]
Haleem, D.J. Serotonin-1A receptor dependent modulation of pain and reward for improving therapy of chronic pain. Pharmacol. Res., 2018, 134, 212-219.
[http://dx.doi.org/10.1016/j.phrs.2018.06.030] [PMID: 29969666]
[69]
Perrin, F.E.; Gerber, Y.N.; Teigell, M.; Lonjon, N.; Boniface, G.; Bauchet, L.; Rodriguez, J.J.; Hugnot, J.P.; Privat, A.M. Anatomical study of serotonergic innervation and 5-HT(1A) receptor in the human spinal cord. Cell Death Dis., 2011, 2(10), e218-e218.
[http://dx.doi.org/10.1038/cddis.2011.98] [PMID: 21993394]
[70]
Haleem, D.J.; Nawaz, S. Inhibition of reinforcing, hyperalgesic, and motor effects of morphine by buspirone in rats. J. Pain, 2017, 18(1), 19-28.
[http://dx.doi.org/10.1016/j.jpain.2016.10.001] [PMID: 27742411]
[71]
Mjellem, N.; Lund, A.; Eide, P.K.; Størkson, R.; Tjølsen, A. The role of 5-HT1A and 5-HT1B receptors in spinal nociceptive transmission and in the modulation of NMDA induced behaviour. Neuroreport, 1992, 3(12), 1061-1064.
[http://dx.doi.org/10.1097/00001756-199212000-00007] [PMID: 1337283]
[72]
Gjerstad, J.; Tjolsen, A.; Hole, K. The effect of 5-HT1A receptor stimulation on nociceptive dorsal horn neurones in rats. Eur. J. Pharmacol., 1996, 318(2-3), 315-321.
[http://dx.doi.org/10.1016/S0014-2999(96)00819-9] [PMID: 9016920]
[73]
Haleem, D.J. Targeting serotonin1a receptors for treating chronic pain and depression. Curr. Neuropharmacol., 2019, 17(12), 1098-1108.
[74]
Fasmer, O.B.; Berge, O.G.; Post, C.; Hole, K. Effects of the putative 5-HT1A receptor agonist 8-OH-2-(di-n-propylamino)tetralin on nociceptive sensitivity in mice. Pharmacol. Biochem. Behav., 1986, 25(4), 883-888.
[http://dx.doi.org/10.1016/0091-3057(86)90402-8] [PMID: 2947249]
[75]
Sanchez, C.; Asin, K.E.; Artigas, F. Vortioxetine, a novel antidepressant with multimodal activity: Review of preclinical and clinical data. Pharmacol. Ther., 2015, 145, 43-57.
[http://dx.doi.org/10.1016/j.pharmthera.2014.07.001] [PMID: 25016186]
[76]
Jann, M.W.; Slade, J.H. Antidepressant agents for the treatment of chronic pain and depression. Pharmacotherapy, 2007, 27(11), 1571-1587.
[http://dx.doi.org/10.1592/phco.27.11.1571] [PMID: 17963465]
[77]
Shultz, E.; Malone, D.A. Jr A practical approach to prescribing antidepressants. Cleve. Clin. J. Med., 2013, 80(10), 625-631.
[http://dx.doi.org/10.3949/ccjm.80a.12133] [PMID: 24085807]
[78]
Taylor, C.; Fricker, A.D.; Devi, L.A.; Gomes, I. Mechanisms of action of antidepressants: From neurotransmitter systems to signaling pathways. Cell. Signal., 2005, 17(5), 549-557.
[http://dx.doi.org/10.1016/j.cellsig.2004.12.007] [PMID: 15683730]
[79]
Max, M.B.; Culnane, M.; Schafer, S.C.; Gracely, R.H.; Walther, D.J.; Smoller, B.; Dubner, R. Amitriptyline relieves diabetic neuropathy pain in patients with normal or depressed mood. Neurology, 1987, 37(4), 589-596.
[http://dx.doi.org/10.1212/WNL.37.4.589] [PMID: 2436092]
[80]
McCleane, G. Antidepressants as analgesics. CNS Drugs, 2008, 22(2), 139-156.
[http://dx.doi.org/10.2165/00023210-200822020-00005] [PMID: 18193925]
[81]
Ardid, D.; Guilbaud, G. Antinociceptive effects of acute and ‘chronic’ injections of tricyclic antidepressant drugs in a new model of mononeuropathy in rats. Pain, 1992, 49(2), 279-287.
[http://dx.doi.org/10.1016/0304-3959(92)90152-2] [PMID: 1608650]
[82]
Smith, H.S.; Argoff, C.E.; McCleane, G. Antidepressants as analgesics. Practical Management of Pain; Elsevier, 2014, pp. 530-542.e4.
[http://dx.doi.org/10.1016/B978-0-323-08340-9.00038-4]
[83]
Sierralta, F.; Pinardi, G.; Miranda, H.F. Effect of p-chlorophenylalanine and alpha-methyltyrosine on the antinociceptive effect of antidepressant drugs. Pharmacol. Toxicol., 1995, 77(4), 276-280.
[http://dx.doi.org/10.1111/j.1600-0773.1995.tb01027.x] [PMID: 8577640]
[84]
Valverde, O.; Micó, J.A.; Maldonado, R.; Mellado, M.; Gibert-Rahola, J. Participation of opioid and monoaminergic mechanisms on the antinociceptive effect induced by tricyclic antidepressants in two behavioural pain tests in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1994, 18(6), 1073-1092.
[http://dx.doi.org/10.1016/0278-5846(94)90132-5] [PMID: 7824761]
[85]
Ansuategui, M.; Naharro, L.; Feria, M. Noradrenergic and opioidergic influences on the antinociceptive effect of clomipramine in the formalin test in rats. Psychopharmacology (Berl.), 1989, 98(1), 93-96.
[http://dx.doi.org/10.1007/BF00442012] [PMID: 2498965]
[86]
Hamon, M.; Gozlan, H.; Bourgoin, S.; Benoliel, J.J.; Mauborgne, A.; Taquet, H.; Cesselin, F.; Mico, J.A. Opioid receptors and neuropeptides in the CNS in rats treated chronically with amoxapine or amitriptyline. Neuropharmacology, 1987, 26(6), 531-539.
[http://dx.doi.org/10.1016/0028-3908(87)90144-4] [PMID: 3037421]
[87]
de Felipe, M.C.; Jiménez, I.; Castro, A.; Fuentes, J.A. Antidepressant action of imipramine and iprindole in mice is enhanced by inhibitors of enkephalin-degrading peptidases. Eur. J. Pharmacol., 1989, 159(2), 175-180.
[http://dx.doi.org/10.1016/0014-2999(89)90702-4] [PMID: 2707306]
[88]
Gray, A.M.; Spencer, P.S.J.; Sewell, R.D.E. The involvement of the opioidergic system in the antinociceptive mechanism of action of antidepressant compounds. Br. J. Pharmacol., 1998, 124(4), 669-674.
[http://dx.doi.org/10.1038/sj.bjp.0701882] [PMID: 9690858]
[89]
Phillis, J.W.; Wu, P.H. The effect of various centrally active drugs on adenosine uptake by the central nervous system. Comp. Biochem. Physiol. C Comp. Pharmacol., 1982, 72(2), 179-187.
[http://dx.doi.org/10.1016/0306-4492(82)90082-X] [PMID: 6128137]
[90]
Deffois, A.; Fage, D.; Carter, C. Inhibition of synaptosomal veratridine-induced sodium influx by antidepressants and neuroleptics used in chronic pain. Neurosci. Lett., 1996, 220(2), 117-120.
[http://dx.doi.org/10.1016/S0304-3940(96)13227-4] [PMID: 8981487]
[91]
Song, J-H.; Ham, S-S.; Shin, Y-K.; Lee, C-S. Amitriptyline modulation of Na(+) channels in rat dorsal root ganglion neurons. Eur. J. Pharmacol., 2000, 401(3), 297-305.
[http://dx.doi.org/10.1016/S0014-2999(00)00460-X] [PMID: 10936487]
[92]
Bomholt, S.F.; Mikkelsen, J.D.; Blackburn-Munro, G. Antinociceptive effects of the antidepressants amitriptyline, duloxetine, mirtazapine and citalopram in animal models of acute, persistent and neuropathic pain. Neuropharmacology, 2005, 48(2), 252-263.
[http://dx.doi.org/10.1016/j.neuropharm.2004.09.012] [PMID: 15695164]
[93]
Schreiber, S.; Pick, C.G. From selective to highly selective SSRIs: A comparison of the antinociceptive properties of fluoxetine, fluvoxamine, citalopram and escitalopram. Eur. Neuropsychopharmacol., 2006, 16(6), 464-468.
[http://dx.doi.org/10.1016/j.euroneuro.2005.11.013] [PMID: 16413173]
[94]
Duman, E.N.; Kesim, M.; Kadioglu, M.; Yaris, E.; Kalyoncu, N.I.; Erciyes, N. Possible involvement of opioidergic and serotonergic mechanisms in antinociceptive effect of paroxetine in acute pain. J. Pharmacol. Sci., 2004, 94(2), 161-165.
[http://dx.doi.org/10.1254/jphs.94.161] [PMID: 14978354]
[95]
Arnold, L.M.; Lu, Y.; Crofford, L.J.; Wohlreich, M.; Detke, M.J.; Iyengar, S.; Goldstein, D.J. A double-blind, multicenter trial comparing duloxetine with placebo in the treatment of fibromyalgia patients with or without major depressive disorder. Arthritis Rheum., 2004, 50(9), 2974-2984.
[http://dx.doi.org/10.1002/art.20485] [PMID: 15457467]
[96]
Ozyalcin, S.N.; Talu, G.K.; Kiziltan, E.; Yucel, B.; Ertas, M.; Disci, R. The efficacy and safety of venlafaxine in the prophylaxis of migraine. Headache, 2005, 45(2), 144-152.
[http://dx.doi.org/10.1111/j.1526-4610.2005.05029.x] [PMID: 15705120]
[97]
Gallagher, H.C.; Gallagher, R.M.; Butler, M.; Buggy, D.J.; Henman, M.C. Venlafaxine for neuropathic pain in adults. Cochrane Database Syst. Rev., 2015, (8)CD011091
[http://dx.doi.org/10.1002/14651858.CD011091.pub2] [PMID: 26298465]
[98]
Semenchuk, M.R.; Sherman, S.; Davis, B. Double-blind, randomized trial of bupropion SR for the treatment of neuropathic pain. Neurology, 2001, 57(9), 1583-1588.
[http://dx.doi.org/10.1212/WNL.57.9.1583] [PMID: 11706096]
[99]
Berry, P.H.; Chapman, C.; Covington, E.; Dahl, J.; Katz, J.; Miaskowski, C.; McLean, M. Pain: Current understanding of assessment, management, and treatments.National pharmaceutical council; Advisory Board: USA, 2001.
[100]
Barakat, A.; Hamdy, M.M.; Elbadr, M.M. Uses of fluoxetine in nociceptive pain management: A literature overview. Eur. J. Pharmacol., 2018, 829, 12-25.
[http://dx.doi.org/10.1016/j.ejphar.2018.03.042] [PMID: 29608897]
[101]
Martin, S.L.; Power, A.; Boyle, Y.; Anderson, I.M.; Silverdale, M.A.; Jones, A.K.P. 5-HT modulation of pain perception in humans. Psychopharmacology (Berl.), 2017, 234(19), 2929-2939.
[http://dx.doi.org/10.1007/s00213-017-4686-6] [PMID: 28798976]
[102]
Singh, A.K.; Zajdel, J.; Mirrasekhian, E.; Almoosawi, N.; Frisch, I.; Klawonn, A.M.; Jaarola, M.; Fritz, M.; Engblom, D. Prostaglandin-mediated inhibition of serotonin signaling controls the affective component of inflammatory pain. J. Clin. Invest., 2017, 127(4), 1370-1374.
[http://dx.doi.org/10.1172/JCI90678] [PMID: 28287401]
[103]
Katzung, B.G.; Trevor, A.J. Basic & Clinical Pharmacology, 13th ed; McGraw Hill Professional, 2014.
[104]
AMA Asociación médica de estados unidos; Manejo Del Dolor Pediátrico, 2013.
[105]
Caes, L.; Boerner, K.E.; Chambers, C.T.; Campbell-Yeo, M.; Stinson, J.; Birnie, K.A.; Parker, J.A.; Huguet, A.; Jordan, A.; MacLaren Chorney, J.; Schinkel, M.; Dol, J. A comprehensive categorical and bibliometric analysis of published research articles on pediatric pain from 1975 to 2010. Pain, 2016, 157(2), 302-313.
[http://dx.doi.org/10.1097/j.pain.0000000000000403] [PMID: 26529270]
[106]
Cooper, T.E.; Heathcote, L.C.; Clinch, J.; Gold, J.I.; Howard, R.; Lord, S.M.; Schechter, N.; Wood, C.; Wiffen, P.J. Antidepressants for chronic non-cancer pain in children and adolescents. Cochrane Database Syst. Rev., 2017, 8CD012535
[http://dx.doi.org/10.1002/14651858.CD012535] [PMID: 28779487]
[107]
Brown, S.; Johnston, B.; Amaria, K.; Watkins, J.; Campbell, F.; Pehora, C.; McGrath, P. A randomized controlled trial of amitriptyline versus gabapentin for complex regional pain syndrome type I and neuropathic pain in children. Scand. J. Pain, 2016, 13(1), 156-163.
[http://dx.doi.org/10.1016/j.sjpain.2016.05.039] [PMID: 28850523]
[108]
Saps, M.; Seshadri, R.; Sztainberg, M.; Schaffer, G.; Marshall, B.M.; Di Lorenzo, C. A prospective school-based study of abdominal pain and other common somatic complaints in children. J. Pediatr., 2009, 154(3), 322-326.
[http://dx.doi.org/10.1016/j.jpeds.2008.09.047] [PMID: 19038403]
[109]
Bahar, R.J.; Collins, B.S.; Steinmetz, B.; Ament, M.E. Double-blind placebo-controlled trial of amitriptyline for the treatment of irritable bowel syndrome in adolescents. J. Pediatr., 2008, 152(5), 685-689.
[http://dx.doi.org/10.1016/j.jpeds.2007.10.012] [PMID: 18410774]
[110]
Roohafza, H.; Pourmoghaddas, Z.; Saneian, H.; Gholamrezaei, A. Citalopram for pediatric functional abdominal pain: A randomized, placebo-controlled trial. Neurogastroenterol. Motil., 2014, 26(11), 1642-1650.
[http://dx.doi.org/10.1111/nmo.12444] [PMID: 25244442]
[111]
Liberman, O.; Freud, T.; Peleg, R.; Keren, A.; Press, Y. Chronic pain and geriatric syndromes in community-dwelling patients aged ≥65 years. J. Pain Res., 2018, 11, 1171-1180.
[http://dx.doi.org/10.2147/JPR.S160847] [PMID: 29950889]
[112]
Nakai, Y.; Makizako, H.; Kiyama, R.; Tomioka, K.; Taniguchi, Y.; Kubozono, T.; Takenaka, T.; Ohishi, M. Association between chronic pain and physical frailty in community-dwelling older adults. Int. J. Environ. Res. Public Health, 2019, 17(1), 175.
[113]
Kollhorst, B.; Jobski, K.; Krappweis, J.; Schink, T.; Garbe, E.; Schmedt, N. Antidepressants and the risk of death in older patients with depression: A population-based cohort study. PLoS One, 2019, 14(4)e0215289
[http://dx.doi.org/10.1371/journal.pone.0215289] [PMID: 30986235]
[114]
Blyth, F.M.; Noguchi, N. Chronic musculoskeletal pain and its impact on older people. Best Pract. Res. Clin. Rheumatol., 2017, 31(2), 160-168.
[http://dx.doi.org/10.1016/j.berh.2017.10.004] [PMID: 29224694]
[115]
Muley, M.M.; Krustev, E.; McDougall, J.J. Preclinical assessment of inflammatory pain. CNS Neurosci. Ther., 2016, 22(2), 88-101.
[http://dx.doi.org/10.1111/cns.12486] [PMID: 26663896]
[116]
Barton, G.M. A calculated response: Control of inflammation by the innate immune system. J. Clin. Invest., 2008, 118(2), 413-420.
[http://dx.doi.org/10.1172/JCI34431] [PMID: 18246191]
[117]
Couzin-Frankel, J. Inflammation bares a dark side. Science, 2010, 330(6011), 1621-1621.
[http://dx.doi.org/10.1126/science.330.6011.1621] [PMID: 21163993]
[118]
Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull., 2014, 140(3), 774-815.
[http://dx.doi.org/10.1037/a0035302] [PMID: 24417575]
[119]
Kim, K. Neuroimmunological mechanism of pruritus in atopic dermatitis focused on the role of serotonin. Biomol. Ther. (Seoul), 2012, 20(6), 506-512.
[http://dx.doi.org/10.4062/biomolther.2012.20.6.506] [PMID: 24009842]
[120]
Fourzali, K.M.; Yosipovitch, G. Management of itch in the elderly: A review. Dermatol. Ther. (Heidelb.), 2019, 9(4), 639-653.
[http://dx.doi.org/10.1007/s13555-019-00326-1] [PMID: 31549284]
[121]
Scott, I.C.; Machin, A.; Mallen, C.D.; Hider, S.L. The extra-articular impacts of rheumatoid arthritis: moving towards holistic care. BMC Rheumatol, 2018, 2(1), 32.
[http://dx.doi.org/10.1186/s41927-018-0039-2] [PMID: 30886982]
[122]
Mikocka-Walus, A.; Prady, S.L.; Pollok, J.; Esterman, A.J.; Gordon, A.L.; Knowles, S.; Andrews, J.M. Adjuvant therapy with antidepressants for the management of inflammatory bowel disease. Cochrane Database Syst. Rev., 2019, 4CD012680
[http://dx.doi.org/10.1002/14651858.CD012680.pub2] [PMID: 30977111]
[123]
Szok, D.; Tajti, J.; Nyári, A.; Vécsei, L.; Trojano, L. Therapeutic approaches for peripheral and central neuropathic pain. Behav. Neurol., 2019, 20198685954
[124]
Yoon, S.Y.; Oh, J. Neuropathic cancer pain: Prevalence, pathophysiology, and management. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2018, 33(6), 1058-1069.
[http://dx.doi.org/10.3904/kjim.2018.162] [PMID: 29929349]
[125]
McQuay, H.J.; Tramèr, M.; Nye, B.A.; Carroll, D.; Wiffen, P.J.; Moore, R.A. A systematic review of antidepressants in neuropathic pain. Pain, 1996, 68(2-3), 217-227.
[http://dx.doi.org/10.1016/S0304-3959(96)03140-5] [PMID: 9121808]
[126]
Bates, D.; Schultheis, B. C.; Hanes, M. C.; Jolly, S. M.; Chakravarthy, K. V.; Deer, T. R.; Levy, R. M.; Hunter, C. W. A comprehensive algorithm for management of neuropathic pain. Pain Med., 2019, 20(Supplement_1), S2-S12.
[http://dx.doi.org/10.1093/pm/pnz075]
[127]
Obata, H. Analgesic mechanisms of antidepressants for neuropathic pain. Int. J. Mol. Sci., 2017, 18(11), 2483.
[http://dx.doi.org/10.3390/ijms18112483] [PMID: 29160850]
[128]
Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; Kamerman, P.R.; Lund, K.; Moore, A.; Raja, S.N.; Rice, A.S.C.; Rowbotham, M.; Sena, E.; Siddall, P.; Smith, B.H.; Wallace, M. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol., 2015, 14(2), 162-173.
[http://dx.doi.org/10.1016/S1474-4422(14)70251-0] [PMID: 25575710]
[129]
Ardeleanu, V.; Toma, A.; Pafili, K.; Papanas, N.; Motofei, I.; Diaconu, C.C.; Rizzo, M.; Stoian, A.P. Current pharmacological treatment of painful diabetic neuropathy: A narrative review. Medicina (Kaunas), 2020, 56(1), 25.
[http://dx.doi.org/10.3390/medicina56010025] [PMID: 31936646]
[130]
Moore, R.A.; Derry, S.; Aldington, D.; Cole, P.; Wiffen, P.J. Amitriptyline for neuropathic pain in adults. Cochrane Database Syst. Rev., 2015, (7)CD008242
[http://dx.doi.org/10.1002/14651858.CD008242.pub3] [PMID: 26146793]
[131]
Urits, I.; Burshtein, A.; Sharma, M.; Testa, L.; Gold, P.A.; Orhurhu, V.; Viswanath, O.; Jones, M.R.; Sidransky, M.A.; Spektor, B.; Kaye, A.D. Low back pain, a comprehensive review: Pathophysiology, diagnosis, and treatment. Curr. Pain Headache Rep., 2019, 23(3), 23.
[http://dx.doi.org/10.1007/s11916-019-0757-1] [PMID: 30854609]
[132]
Aiyer, R.; Barkin, R.L.; Bhatia, A. Treatment of neuropathic pain with venlafaxine: A systematic review. Pain Med., 2017, 18(10), 1999-2012.
[http://dx.doi.org/10.1093/pm/pnw261] [PMID: 27837032]
[133]
Otto, J.; Forstenpointner, J.; Binder, A.; Baron, R. Pharmakologische therapie chronischer neuropathischer schmerzen. Internist (Berl.), 2019, 60(7), 711-723.
[http://dx.doi.org/10.1007/s00108-019-0627-2] [PMID: 31187164]
[134]
Urits, I.; Peck, J.; Orhurhu, M.S.; Wolf, J.; Patel, R.; Orhurhu, V.; Kaye, A.D.; Viswanath, O. Off-label antidepressant use for treatment and management of chronic pain: Evolving understanding and comprehensive review. Curr. Pain Headache Rep., 2019, 23(9), 66.
[http://dx.doi.org/10.1007/s11916-019-0803-z] [PMID: 31359175]
[135]
Lunn, M.P.; Hughes, R.A.; Wiffen, P.J. Duloxetine for treating painful neuropathy, chronic pain or fibromyalgia. Cochrane Database Syst. Rev., 2014, (1)CD007115
[http://dx.doi.org/10.1002/14651858.CD007115.pub3] [PMID: 24385423]
[136]
Sawynok, J.; Esser, M.J.; Reid, A.R. Antidepressants as analgesics: An overview of central and peripheral mechanisms of action. J. Psychiatry Neurosci., 2001, 26(1), 21-29.
[PMID: 11212590]
[137]
Kocot-Kępska, M.; Zajączkowska, R.; Mika, J.; Kopsky, D.J.; Wordliczek, J.; Dobrogowski, J.; Przeklasa-Muszyńska, A. Topical treatments and their molecular/cellular mechanisms in patients with peripheral neuropathic pain-narrative review. Pharmaceutics, 2021, 13(4), 450.
[http://dx.doi.org/10.3390/pharmaceutics13040450] [PMID: 33810493]
[138]
Jost, W.H.; Buhmann, C. The challenge of pain in the pharmacological management of Parkinson’s disease. Expert Opin. Pharmacother., 2019, 20(15), 1847-1854.
[http://dx.doi.org/10.1080/14656566.2019.1639672] [PMID: 31290336]
[139]
Pickering, G.; Macian, N.; Delage, N.; Picard, P.; Cardot, J-M.; Sickout-Arondo, S.; Giron, F.; Dualé, C.; Pereira, B.; Marcaillou, F. Milnacipran poorly modulates pain in patients suffering from fibromyalgia: A randomized double-blind controlled study. Drug Des. Devel. Ther., 2018, 12, 2485-2496.
[http://dx.doi.org/10.2147/DDDT.S162810] [PMID: 30127596]
[140]
Dell’Osso, B.; Palazzo, M.C.; Oldani, L.; Altamura, A.C. The noradrenergic action in antidepressant treatments: pharmacological and clinical aspects. CNS Neurosci. Ther., 2011, 17(6), 723-732.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00217.x] [PMID: 21155988]
[141]
Gummersheimer, A.; Todd, T.; Herndon, C.M. Bupropion use for adjuvant analgesia in a patient with fibromyalgia: A case report. Fibrom Open Access, 2016, 1(106), 3.
[142]
Palangio, M.; Flores, J.A.; Joyal, S.V. Treatment of fibromyalgia with sibutramine hydrochloride monohydrate: Comment on the article by Goldenberg et al. Arthritis Rheum., 2002, 46(9), 2545-2546.
[http://dx.doi.org/10.1002/art.10642] [PMID: 12355512]
[143]
Davis, J.L. Use of sibutramine hydrochloride monohydrate in the treatment of the painful peripheral neuropathy of diabetes. Diabetes Care, 2000, 23(10), 1594-1595.
[http://dx.doi.org/10.2337/diacare.23.10.1594] [PMID: 11023158]
[144]
Zhou, W.; Jin, Y.; Meng, Q.; Zhu, X.; Bai, T.; Tian, Y.; Mao, Y.; Wang, L.; Xie, W.; Zhong, H.; Zhang, N.; Luo, M-H.; Tao, W.; Wang, H.; Li, J.; Li, J.; Qiu, B-S.; Zhou, J-N.; Li, X.; Xu, H.; Wang, K.; Zhang, X.; Liu, Y.; Richter-Levin, G.; Xu, L.; Zhang, Z. A neural circuit for comorbid depressive symptoms in chronic pain. Nat. Neurosci., 2019, 22(10), 1649-1658.
[http://dx.doi.org/10.1038/s41593-019-0468-2] [PMID: 31451801]
[145]
Cai, L.; He, Q.; Lu, Y.; Hu, Y.; Chen, W.; Wei, L.; Hu, Y. Comorbidity of pain and depression in a lumbar disc herniation model: Biochemical alterations and the effects of fluoxetine. Front. Neurol., 2019, 10, 1022.
[http://dx.doi.org/10.3389/fneur.2019.01022] [PMID: 31616368]
[146]
Törnblom, H.; Drossman, D.A. Psychotropics, antidepressants, and visceral analgesics in functional gastrointestinal disorders. Curr. Gastroenterol. Rep., 2018, 20(12), 58.
[http://dx.doi.org/10.1007/s11894-018-0664-3] [PMID: 30397821]
[147]
Talley, N.J.; Holtmann, G.; Walker, M.M. Therapeutic strategies for functional dyspepsia and irritable bowel syndrome based on pathophysiology. J. Gastroenterol., 2015, 50(6), 601-613.
[http://dx.doi.org/10.1007/s00535-015-1076-x] [PMID: 25917563]
[148]
Micó, J.A.; Ardid, D.; Berrocoso, E.; Eschalier, A. Antidepressants and pain. Trends Pharmacol. Sci., 2006, 27(7), 348-354.
[http://dx.doi.org/10.1016/j.tips.2006.05.004] [PMID: 16762426]
[149]
Zlatanova, H.I.; Kandilarov, I.K.; Kostadinov, I.D.; Delev, D.P.; Georgieva, K.M.T. Experimental study of the analgesic effect of the antidepressant escitalopram. Folia Med. (Plovdiv), 2018, 60(3), 433-438.
[http://dx.doi.org/10.2478/folmed-2018-0003] [PMID: 30355833]
[150]
Humo, M.; Lu, H.; Yalcin, I. The molecular neurobiology of chronic pain-induced depression. Cell Tissue Res., 2019, 377(1), 21-43.
[http://dx.doi.org/10.1007/s00441-019-03003-z] [PMID: 30778732]
[151]
Abboud, C.; Duveau, A.; Bouali-Benazzouz, R.; Massé, K.; Mattar, J.; Brochoire, L.; Fossat, P.; Boué-Grabot, E.; Hleihel, W.; Landry, M. Animal models of pain: Diversity and benefits. J. Neurosci. Methods, 2021, 348108997
[http://dx.doi.org/10.1016/j.jneumeth.2020.108997] [PMID: 33188801]
[152]
Skånland, S.S.; Cieślar-Pobuda, A. Off-label uses of drugs for depression. Eur. J. Pharmacol., 2019, 865172732
[http://dx.doi.org/10.1016/j.ejphar.2019.172732] [PMID: 31622593]
[153]
Kremer, M.; Becker, L.J.; Barrot, M.; Yalcin, I. How to study anxiety and depression in rodent models of chronic pain? Eur. J. Neurosci., 2021, 53(1), 236-270.
[http://dx.doi.org/10.1111/ejn.14686]
[154]
Vuralli, D.; Ayata, C.; Bolay, H. Cognitive dysfunction and migraine. J. Headache Pain, 2018, 19(1), 109.
[http://dx.doi.org/10.1186/s10194-018-0933-4] [PMID: 30442090]
[155]
Sheng, J.; Liu, S.; Wang, Y.; Cui, R.; Zhang, X. The link between depression and chronic pain: Neural mechanisms in the brain. Neural Plast., 2017, 20179724371
[http://dx.doi.org/10.1155/2017/9724371] [PMID: 28706741]
[156]
Vuralli, D.; Wattiez, A-S.; Russo, A.F.; Bolay, H. Behavioral and cognitive animal models in headache research. J. Headache Pain, 2019, 20(1), 11.
[http://dx.doi.org/10.1186/s10194-019-0963-6] [PMID: 30704400]
[157]
Smith, M.D.; Woodhead, J.H.; Handy, L.J.; Pruess, T.H.; Vanegas, F.; Grussendorf, E.; Grussendorf, J.; White, K.; Bulaj, K.K.; Krumin, R.K.; Hunt, M.; Wilcox, K.S. Preclinical comparison of mechanistically different antiseizure, antinociceptive, and/or antidepressant drugs in a battery of rodent models of nociceptive and neuropathic pain. Neurochem. Res., 2017, 42(7), 1995-2010.
[http://dx.doi.org/10.1007/s11064-017-2286-9] [PMID: 28508174]
[158]
Chen, L.; Ilham, S.J.; Feng, B. Pharmacological approach for managing pain in irritable bowel syndrome: A review article. Anesth. Pain Med., 2017, 7(2)e42747
[http://dx.doi.org/10.5812/aapm.42747] [PMID: 28824858]
[159]
Johnson, A.C.; Farmer, A.D.; Ness, T.J.; Greenwood‐Van Meerveld, B. Critical evaluation of animal models of visceral pain for therapeutics development: A focus on irritable bowel syndrome. Neurogastroenterol. Motil., 2020, 32(4)e13776
[http://dx.doi.org/10.1111/nmo.13776] [PMID: 31833625]
[160]
Vargas, C.G.; Miranda, H.F.; Sierralta, F.; Noriega, V.; Prieto, J.C. Pharmacological interaction between NSAIDS with clomipramine and risperidone in mice visceral pain. Drug Dev. Res., 2019, 80(4), 471-474.
[http://dx.doi.org/10.1002/ddr.21519] [PMID: 30767248]
[161]
Lian, Y-N.; Chang, J-L.; Lu, Q.; Wang, Y.; Zhang, Y.; Zhang, F-M. Effects of fluoxetine on changes of pain sensitivity in chronic stress model rats. Neurosci. Lett., 2017, 651, 16-20.
[http://dx.doi.org/10.1016/j.neulet.2017.04.062] [PMID: 28461139]
[162]
Lee, H.; Im, J.; Won, H.; Nam, W.; Kim, Y.O.; Lee, S.W.; Lee, S.; Cho, I.H.; Kim, H.K.; Kwon, J.T.; Kim, H.J. Effects of tianeptine on symptoms of fibromyalgia via BDNF signaling in a fibromyalgia animal model. Korean J. Physiol. Pharmacol., 2017, 21(4), 361-370.
[http://dx.doi.org/10.4196/kjpp.2017.21.4.361] [PMID: 28706449]
[163]
Kiso, T.; Moriyama, A.; Furutani, M.; Matsuda, R.; Funatsu, Y. Effects of pregabalin and duloxetine on neurotransmitters in the dorsal horn of the spinal cord in a rat model of fibromyalgia. Eur. J. Pharmacol., 2018, 827, 117-124.
[http://dx.doi.org/10.1016/j.ejphar.2018.03.011] [PMID: 29530591]
[164]
Nishiyori, M.; Uchida, H.; Nagai, J.; Araki, K.; Mukae, T.; Kishioka, S.; Ueda, H. Permanent relief from intermittent cold stress-induced fibromyalgia-like abnormal pain by repeated intrathecal administration of antidepressants. Mol. Pain, 2011, 7, 1744-8069.
[http://dx.doi.org/10.1186/1744-8069-7-69]
[165]
Ogino, S.; Nagakura, Y.; Tsukamoto, M.; Watabiki, T.; Ozawa, T.; Oe, T.; Shimizu, Y.; Ito, H. Systemic administration of 5-HT(2C) receptor agonists attenuates muscular hyperalgesia in reserpine-induced myalgia model. Pharmacol. Biochem. Behav., 2013, 108, 8-15.
[http://dx.doi.org/10.1016/j.pbb.2013.04.007] [PMID: 23603031]
[166]
Klein, C.P.; Sperotto, N.D.M.; Maciel, I.S.; Leite, C.E.; Souza, A.H.; Campos, M.M. Effects of D-series resolvins on behavioral and neurochemical changes in a fibromyalgia-like model in mice. Neuropharmacology, 2014, 86, 57-66.
[http://dx.doi.org/10.1016/j.neuropharm.2014.05.043] [PMID: 24929111]
[167]
Kim, S-H.; Song, J.; Mun, H.; Park, K.U. Effect of the combined use of tramadol and milnacipran on pain threshold in an animal model of fibromyalgia. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2009, 24(2), 139-142.
[http://dx.doi.org/10.3904/kjim.2009.24.2.139] [PMID: 19543493]
[168]
Kaneko, K.; Umehara, M.; Homan, T.; Okamoto, K.; Oka, M.; Oyama, T. The analgesic effect of tramadol in animal models of neuropathic pain and fibromyalgia. Neurosci. Lett., 2014, 562, 28-33.
[http://dx.doi.org/10.1016/j.neulet.2014.01.007] [PMID: 24412679]
[169]
Furuta, S.; Shimizu, T.; Narita, M.; Matsumoto, K.; Kuzumaki, N.; Horie, S.; Suzuki, T.; Narita, M. Subdiaphragmatic vagotomy promotes nociceptive sensitivity of deep tissue in rats. Neuroscience, 2009, 164(3), 1252-1262.
[http://dx.doi.org/10.1016/j.neuroscience.2009.09.021] [PMID: 19772896]
[170]
Berrocoso, E.; Mico, J-A.; Vitton, O.; Ladure, P.; Newman-Tancredi, A.; Depoortère, R.; Bardin, L. Evaluation of milnacipran, in comparison with amitriptyline, on cold and mechanical allodynia in a rat model of neuropathic pain. Eur. J. Pharmacol., 2011, 655(1-3), 46-51.
[http://dx.doi.org/10.1016/j.ejphar.2011.01.022] [PMID: 21277295]
[171]
Zhang, T-T.; Xue, R.; Fan, S-Y.; Fan, Q-Y.; An, L.; Li, J.; Zhu, L.; Ran, Y-H.; Zhang, L-M.; Zhong, B-H.; Li, Y-F.; Ye, C-Y.; Zhang, Y-Z. Ammoxetine attenuates diabetic neuropathic pain through inhibiting microglial activation and neuroinflammation in the spinal cord. J. Neuroinflammation, 2018, 15(1), 176.
[http://dx.doi.org/10.1186/s12974-018-1216-3] [PMID: 29879988]
[172]
Murad, H.; Ayuob, N. Co-Administration of pioglitazone improves fluoxetine’s antinociceptive, neuroprotective, and antidepressant effects in chronic constriction injury in rats. Pain Physician, 2015, 18(6), 609-620.
[http://dx.doi.org/10.36076/ppj.2015/18/609] [PMID: 26606013]
[173]
Hu, B.; Doods, H.; Treede, R-D.; Ceci, A. Duloxetine and 8-OH-DPAT, but not fluoxetine, reduce depression-like behaviour in an animal model of chronic neuropathic pain. Neurosci. Lett., 2016, 619, 162-167.
[http://dx.doi.org/10.1016/j.neulet.2016.03.019] [PMID: 26987721]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy