Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

NIR-based Sensing System for Non-invasive Detection of Hemoglobin for Point-of-care Applications

Author(s): Yogesh Kumar, Ayush Dogra, Vikash Shaw, Ajeet Kaushik and Sanjeev Kumar*

Volume 18, Issue 5, 2022

Published on: 13 January, 2022

Article ID: e230821195772 Pages: 14

DOI: 10.2174/1573405617666210823100316

Price: $65

conference banner
Abstract

Background: Hemoglobin is an essential biomolecule for the transportation of oxygen, therefore, its assessment is also important to be done frequently in numerous clinical practices. Traditional invasive techniques have concomitant shortcomings, such as time delay, the onset of infections, and discomfort, which necessitate a non-invasive hemoglobin estimation solution to get rid of these constraints in health informatics. Currently, various techniques are underway in the allied domain, and scanty products are also feasible in the market. However, due to the low satisfaction rate, invasive solutions are still assumed as the gold standard. Recently introduced technologies effectively evolved as optical spectroscopy and digital photographic concepts on different sensing spots, e.g., fingertip, palpebral conjunctiva, bulbar conjunctiva, and fingernail. Productive sensors develop more than eight wavelengths to compute hemoglobin concentration and four wavelengths to display only Hb-index (trending of hemoglobin) either in disposable adhesive or reusable cliptype sensor’s configuration.

Objective: This study aims at an optimistic optical spectroscopic technique to measure hemoglobin concentration and conditional usability of non-invasive blood parameters’ diagnostics at point-ofcare.

Methods: Two distinguishable light emitting sources (810 nm and 1300 nm) are utilized at isosbestic points with a single photodetector (800-1700 nm). With this purpose, reusable finger probe assembly is facilitated in transmittance mode based on the newly offered sliding mechanism to block ambient light.

Results: Investigation with proposed design presents correlation coefficients between reference hemoglobin and every individual feature, a multivariate linear regression model for highly correlated independent features. Moreover, principal component analytical model with multivariate linear regression offers mean bias of 0.036 and -0.316 g/dL, precision of 0.878 and 0.838 and limits of agreement from -1.685 to 1.758 g/dL and -1.790 to 1.474 g/dL for 18 and 21 principal components, respectively.

Conclusion: The encouraging readouts emphasize favorable precision; therefore, it is proposed that the sensing system is amenable to assess hemoglobin in settings with limited resources and strengthening future routes for the point of care applications.

Keywords: Hemoglobin, isosbestic point, non-invasive sensing, optical systems, sliding mechanism, anemia.

Graphical Abstract

[2]
Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med 2005; 352(10): 1011-23.
[http://dx.doi.org/10.1056/NEJMra041809] [PMID: 15758012]
[3]
García-Soler P, Alonso JMC, González-Gómez JM, Milano-Manso G. Noninvasive hemoglobin monitoring in critically ill pediatric patients at risk of bleeding. Med Intensiv English 2017; 41(4): 209-15.
[http://dx.doi.org/10.1016/j.medine.2016.06.005]
[4]
Lavery I, Ingram P. Venepuncture: Best practice. Nurs Stand 2005; 19(49): 55-65.
[http://dx.doi.org/10.7748/ns2005.08.19.49.55.c3936] [PMID: 16134421]
[5]
Wagner D, de With K, Huzly D, et al. Nosocomial acquisition of dengue. Emerg Infect Dis 2004; 10(10): 1872-3.
[http://dx.doi.org/10.3201/eid1010.031037] [PMID: 15504282]
[6]
Price CP, John AS, Hicks JM. Point-of-care testing. DC: AACC Press Washington 2004.
[7]
Bridges E, Hatzfeld JJ. Noninvasive continuous hemoglobin monitoring in combat casualties: A pilot study. Shock 2016; 46(3)(Suppl. 1): 55-60.
[http://dx.doi.org/10.1097/SHK.0000000000000654] [PMID: 27501120]
[8]
Vasudev A, Kaushik A, Jones K, Bhansali S. Prospects of low temperature co-fired ceramic (LTCC) based microfluidic systems for point-of-care biosensing and environmental sensing. Microfluid Nanofluidics 2013; 14(3-4): 683-702.
[http://dx.doi.org/10.1007/s10404-012-1087-3]
[9]
Noiri E, Kobayashi N, Takamura Y, et al. Pulse total-hemoglobinometer provides accurate noninvasive monitoring. Crit Care Med 2005; 33(12): 2831-5.
[http://dx.doi.org/10.1097/01.CCM.0000190430.96750.51] [PMID: 16352948]
[10]
McMurdy JW, Jay GD, Suner S, Trespalacios FM, Crawford GP. Diffuse reflectance spectra of the palpebral conjunctiva and its utility as a noninvasive indicator of total hemoglobin. J Biomed Opt 2006; 11(1): 014019.
[http://dx.doi.org/10.1117/1.2167967] [PMID: 16526896]
[11]
Suner S, Crawford G, McMurdy J, Jay G. Non-invasive determination of hemoglobin by digital photography of palpebral conjunctiva. J Emerg Med 2007; 33(2): 105-11.
[http://dx.doi.org/10.1016/j.jemermed.2007.02.011] [PMID: 17692757]
[12]
Sarkar PK, Pal S, Polley N, et al. Development and validation of a noncontact spectroscopic device for hemoglobin estimation at point-of-care. J Biomed Opt 2017; 22(5): 55006.
[http://dx.doi.org/10.1117/1.JBO.22.5.055006] [PMID: 28510622]
[13]
Mannino RG, Myers DR, Tyburski EA, et al. Smartphone app for non-invasive detection of anemia using only patient-sourced photos. Nat Commun 2018; 9(1): 4924.
[http://dx.doi.org/10.1038/s41467-018-07262-2] [PMID: 30514831]
[14]
Yu G. Diffuse correlation spectroscopy (DCS): A diagnostic tool for assessing tissue blood flow in vascular-related diseases and therapies. Curr Med Imaging 2012; 8(3): 194-210.
[http://dx.doi.org/10.2174/157340512803759875]
[15]
Operator’s manual, radical-7. Frank’s hospital workshop 2019. Available from: http://www.frankshospitalworkshop.com/ equipment/documents/pulse_oximeter/user_manuals/Masimo Radical 7 Pulse Oximeter - User manual (2019).pdf [Cited 2020 May 12]
[16]
Operator’s manual pulse CO-oximeterTM. Arizona department of health services 2011. Available from: https://azdhs.gov/documents/prevention/azwic/manuals/pronto-manual.pdf [Cited 2020 May 12]
[17]
Non-invasive measurement of hemoglobin. OrSense Ltd. Israel. 1-2. Available from: http://www. orsense.com/files/files/NBM 200 product brochure-website.pdf [Cited 2020 May 12]
[18]
Gayat E, Aulagnier J, Matthieu E, Boisson M, Fischler M. Non-invasive measurement of hemoglobin: Assessment of two different point-of-care technologies. PLoS One 2012; 7(1): e30065.
[http://dx.doi.org/10.1371/journal.pone.0030065] [PMID: 22238693]
[19]
Tsuei BJ, Hanseman DJ, Blakeman MJ, et al. Accuracy of noninvasive hemoglobin monitoring in patients at risk for hemorrhage. J Trauma Acute Care Surg 2014; 77(3)(Suppl. 2): S134-9.
[http://dx.doi.org/10.1097/TA.0000000000000326] [PMID: 25159346]
[20]
Xu T, Yang T, Kim JB, Romig MC, Sapirstein A, Winters BD. Evaluation of noninvasive hemoglobin monitoring in surgical critical care patients. Crit Care Med 2016; 44(6): e344-52.
[http://dx.doi.org/10.1097/CCM.0000000000001634] [PMID: 26937862]
[21]
Dermaco A, Chappelle J. Non-invasive hemoglobin monitoring: A method of measuring blood loss in cesarean delivery?[22R]. Obstet Gynecol 2017; 129(5): 189S.
[22]
Cruz AFD, Norena N, Kaushik A, Bhansali S. A low-cost miniaturized potentiostat for point-of-care diagnosis. Biosens Bioelectron 2014; 62: 249-54.
[http://dx.doi.org/10.1016/j.bios.2014.06.053] [PMID: 25016332]
[23]
Kaushik A, Vasudev A, Arya SK, Pasha SK, Bhansali S. Recent advances in cortisol sensing technologies for point-of-care application. Biosens Bioelectron 2014; 53: 499-512.
[http://dx.doi.org/10.1016/j.bios.2013.09.060] [PMID: 24212052]
[24]
Macknet MR, Norton S, Kimball-Jones P, Applegate R, Martin R, Allard M. Continuous noninvasive measurement of hemoglobin via pulse CO-oximetry. Anesth Analg 2007; 105(6): S108-9.
[25]
Macknet MR, Allard M, Applegate RL, Rook J. The accuracy of noninvasive and continuous total hemoglobin measurement by pulse CO-Oximetry in human subjects undergoing hemodilution. Anesth Analg 2010; 111(6): 1424-6.
[26]
Isosu T, Obara S, Hosono A, et al. Validation of continuous and noninvasive hemoglobin monitoring by pulse CO-oximetry in Japanese surgical patients. J Clin Monit Comput 2013; 27(1): 55-60.
[http://dx.doi.org/10.1007/s10877-012-9397-2] [PMID: 22986804]
[27]
Awada WN, Mohmoued MF, Radwan TM, Hussien GZ, Elkady HW. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: A prospective cohort study. J Clin Monit Comput 2015; 29(6): 733-40.
[http://dx.doi.org/10.1007/s10877-015-9660-4] [PMID: 25649717]
[28]
Gupta N, Kulkarni A, Bhargava AK, Prakash A, Gupta N. Utility of non-invasive haemoglobin monitoring in oncosurgery patients. Indian J Anaesth 2017; 61(7): 543-8.
[http://dx.doi.org/10.4103/ija.IJA_707_16] [PMID: 28794525]
[29]
Gamal M, Abdelhamid B, Zakaria D, et al. Evaluation of noninvasive hemoglobin monitoring in trauma patients with low hemoglobin levels. Shock 2018; 49(2): 150-3.
[http://dx.doi.org/10.1097/SHK.0000000000000949] [PMID: 28727608]
[30]
Raikhel M. Accuracy of noninvasive and invasive point-of-care total blood hemoglobin measurement in an outpatient setting. Postgrad Med 2012; 124(4): 250-5.
[http://dx.doi.org/10.3810/pgm.2012.07.2584] [PMID: 22913913]
[31]
Bruells CS, Menon AK, Rossaint R, et al. Accuracy of the Masimo Pronto-7® system in patients with left ventricular assist device. J Cardiothorac Surg 2013; 8(1): 159.
[http://dx.doi.org/10.1186/1749-8090-8-159] [PMID: 23800231]
[32]
Belardinelli A, Benni M, Tazzari PL, Pagliaro P. Noninvasive methods for haemoglobin screening in prospective blood donors. Vox Sang 2013; 105(2): 116-20.
[http://dx.doi.org/10.1111/vox.12033] [PMID: 23600766]
[33]
Hiscock R, Simmons S, Carstensen B, Gurrin L. Comparison of Massimo Pronto-7 and HemoCue Hb 201+ with laboratory haemoglobin estimation: A clinical study. Anaesth Intensive Care 2014; 42(5): 608-13.
[http://dx.doi.org/10.1177/0310057X1404200510] [PMID: 25233174]
[34]
Khalafallah AA, Chilvers CR, Thomas M, et al. Usefulness of non-invasive spectrophotometric haemoglobin estimation for detecting low haemoglobin levels when compared with a standard laboratory assay for preoperative assessment. Br J Anaesth 2015; 114(4): 669-76.
[http://dx.doi.org/10.1093/bja/aeu403] [PMID: 25501721]
[35]
Oishi R, Hasegawa M, Hakozaki T, Obara S, Isosu T, Murakawa M. The accuracy of noninvasive total hemoglobin measurement in critically ill patients. Braz J Anesthesiol 2019; 69(5): 527-8.
[http://dx.doi.org/10.1016/j.bjane.2019.05.002] [PMID: 31623834]
[36]
Davenport K, Weinstein A. NBM-200 pulse oximeter and hemoglobin monitor. MD, USA: Food and Drug Administration 2019; pp. 1-9. Available from: https://www.fda.gov/media/125071/download [Cited 2020 May 19]
[37]
Hadar E, Raban O, Bouganim T, Tenenbaum-Gavish K, Hod M. Precision and accuracy of noninvasive hemoglobin measurements during pregnancy. Neonatal Med 2012; 25(12): 2503-6.
[http://dx.doi.org/10.3109/14767058.2012.704453] [PMID: 22746256]
[38]
Stratasys Fortus 250mc | StratasysTM Support Center. Available from: https://support.stratasys.com/products/fdm-platforms/fortus-250mc [Cited 2020 Oct 10]
[39]
ABSplus-P430 - Strasys. Available from: https://www.stratasys.com/-/media/files/material-spec-sheets/mss_fdm_absplusp430_1117a.pdf [Cited 2020 Oct 10]
[40]
USB-6216 - NI. Available from: https://www.ni.com/en-in/support/model.usb-6216.html [Cited 2020 Nov 10]
[41]
LabVIEW 2018 SP1 Readme for Windows - National Instruments 2018. Available from: https://www.ni.com/pdf/manuals/374715k.html [Cited 2020 Nov 10]
[42]
Nitzan M, Noach S, Tobal E, et al. Calibration-free pulse oximetry based on two wavelengths in the infrared-a preliminary study. sensors 2014; 14(4): 7420-34.
[43]
Venugopal V, Intes X. Recent advances in optical mammography. Curr Med Imaging 2012; 8(3): 244-59.
[http://dx.doi.org/10.2174/157340512803759884]
[44]
Marengo-Rowe AJ. Structure-function relations of human hemoglobins. Proc (Bayl Univ Med Cent) 2006; 19(3): 239-45.
[http://dx.doi.org/10.1080/08998280.2006.11928171]
[45]
Timm U, Lewis E, McGrath D, Kraitl J, Ewald H. Optical sensor system for non-invasive blood diagnosis. 2009 IEEE Sensors Applications Symposium 2009; 17-9. New Orleans, LA, USA, IEEE 2009.
[http://dx.doi.org/10.1109/SAS.2009.4801808]
[46]
Timm U, Leen G, Lewis E, McGrath D, Kraitl J, Ewald H. Non-invasive optical real-time measurement of total hemoglobin content. Procedia Eng 2010; 5: 488-91.
[http://dx.doi.org/10.1016/j.proeng.2010.09.153]
[47]
Webster JG. Design of pulse oximeters. CRC Press 1997.
[http://dx.doi.org/10.1887/0750304677]
[48]
Al-Ali Ammar, Schultz C. Multiple wavelength sensor attachment. US patent 11/366,833, 29.
[49]
Mathew J, Varacallo M. Physiology, blood plasma. StatPearls. Publishing 2019.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy