General Review Article

天然化合物通过抗炎发挥抗抑郁作用的研究进展

卷 29, 期 5, 2022

发表于: 05 January, 2022

页: [934 - 956] 页: 23

弟呕挨: 10.2174/0929867328666210820115259

价格: $65

conference banner
摘要

抑郁症是一种常见的精神疾病,属于情绪障碍的范畴,对患者的健康和生活造成严重损害,而炎症被认为是导致抑郁症的重要因素之一。在这种情况下,通过使用具有抗炎和抗抑郁作用的天然化合物来探索可能的治疗方法可能很重要,但最近尚未对其进行系统评价。因此,本综述旨在系统梳理有关通过抗炎作用发挥抗抑郁作用机制的文献,并从几个炎症相关途径(即蛋白激酶B( Akt) 通路、单胺类神经递质(5-羟色胺和去甲肾上腺素)(5-HT 和 NE)、结节样受体蛋白 3 (NLRP3) 炎性体、促炎细胞因子、神经营养因子或细胞因子信号通路),它们可能提供为抑郁症的潜在治疗提供有用的参考。

关键词: 抑郁症,抗炎药,NLRP3炎性体,促炎细胞因子,天然化合物,抗抑郁药

« Previous
[1]
Malhi, G.S.; Mann, J.J. Depression. Lancet, 2018, 392(10161), 2299-2312.
[http://dx.doi.org/10.1016/S0140-6736(18)31948-2] [PMID: 30396512]
[2]
Peng, G.J.; Tian, J.S.; Gao, X.X.; Zhou, Y.Z.; Qin, X.M. Research on the pathological mechanism and drug treatment mechanism of depression. Curr. Neuropharmacol., 2015, 13(4), 514-523.
[http://dx.doi.org/10.2174/1570159X1304150831120428] [PMID: 26412071]
[3]
Beurel, E.; Toups, M.; Nemeroff, C.B. The bidirectional relationship of depression and inflammation: double trouble. Neuron, 2020, 107(2), 234-256.
[http://dx.doi.org/10.1016/j.neuron.2020.06.002] [PMID: 32553197]
[4]
Maeng, S.H.; Hong, H. Inflammation as the potential basis in depression. Int. Neurourol. J., 2019, 23(Suppl. 2), S63-S71.
[http://dx.doi.org/10.5213/inj.1938226.113] [PMID: 31795605]
[5]
Mello, B.S.; Monte, A.S.; McIntyre, R.S.; Soczynska, J.K.; Custódio, C.S.; Cordeiro, R.C.; Chaves, J.H.; Vasconcelos, S.M.; Nobre, H.V., Jr; Florenço de Sousa, F.C.; Hyphantis, T.N.; Carvalho, A.F.; Macêdo, D.S. Effects of doxycycline on depressive-like behavior in mice after lipopolysaccharide (LPS) administration. J. Psychiatr. Res., 2013, 47(10), 1521-1529.
[http://dx.doi.org/10.1016/j.jpsychires.2013.06.008] [PMID: 23835040]
[6]
Husain, M.I.; Chaudhry, I.B.; Husain, N.; Khoso, A.B.; Rahman, R.R.; Hamirani, M.M.; Hodsoll, J.; Qurashi, I.; Deakin, J.F.W.; Young, A.H. Minocycline as an adjunct for treatment-resistant depressive symptoms: A pilot randomised placebo-controlled trial. J. Psychopharmacol., 2017, 31(9), 1166-1175.
[http://dx.doi.org/10.1177/0269881117724352] [PMID: 28857658]
[7]
Köhler, O.; Benros, M.E.; Nordentoft, M.; Farkouh, M.E.; Iyengar, R.L.; Mors, O.; Krogh, J. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry, 2014, 71(12), 1381-1391.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.1611] [PMID: 25322082]
[8]
Johnsen, S.P.; Larsson, H.; Tarone, R.E.; McLaughlin, J.K.; Nørgård, B.; Friis, S.; Sørensen, H.T. Risk of hospitalization for myocardial infarction among users of rofecoxib, celecoxib, and other NSAIDs: a population-based case-control study. Arch. Intern. Med., 2005, 165(9), 978-984.
[http://dx.doi.org/10.1001/archinte.165.9.978] [PMID: 15883235]
[9]
Echeverria, V.; Aliev, G.; Foitzick, M.; Avila-Rodriguez, M.; Barreto, G.E. Advances in medicinal plants with effects on anxiety behavior associated to mental and health conditions. Curr. Med. Chem., 2017, 24(4), 411-423.
[http://dx.doi.org/10.2174/0929867323666161101140908] [PMID: 27804869]
[10]
Beaulieu, J-M. A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J. Psychiatry Neurosci., 2012, 37(1), 7-16.
[http://dx.doi.org/10.1503/jpn.110011] [PMID: 21711983]
[11]
Nestler, E.J.; Hyman, S.E. Animal models of neuropsychiatric disorders. Nat. Neurosci., 2010, 13(10), 1161-1169.
[http://dx.doi.org/10.1038/nn.2647] [PMID: 20877280]
[12]
Weichhart, T.; Säemann, M.D. The PI3K/Akt/mTOR pathway in innate immune cells: emerging therapeutic applications. Ann. Rheum. Dis., 2008, 67(Suppl. 3), iii70-iii74.
[http://dx.doi.org/10.1136/ard.2008.098459] [PMID: 19022819]
[13]
Kim, J.Y.; Duan, X.; Liu, C.Y.; Jang, M-H.; Guo, J.U.; Pow-anpongkul, N.; Kang, E.; Song, H.; Ming, G.L. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron, 2009, 63(6), 761-773.
[http://dx.doi.org/10.1016/j.neuron.2009.08.008] [PMID: 19778506]
[14]
Die, L.; Yan, P.; Jun Jiang, Z.; Min Hua, T.; Cai, W.; Xing, L. Glycogen synthase kinase-3 beta inhibitor suppresses Porphyromonas gingivalis lipopolysaccharide-induced CD40 expression by inhibiting nuclear factor-kappa B activation in mouse osteoblasts. Mol. Immunol., 2012, 52(1), 38-49.
[http://dx.doi.org/10.1016/j.molimm.2012.04.005] [PMID: 22580404]
[15]
Leonard, B.; Maes, M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci. Biobehav. Rev., 2012, 36(2), 764-785.
[http://dx.doi.org/10.1016/j.neubiorev.2011.12.005] [PMID: 22197082]
[16]
Kitagishi, Y.; Kobayashi, M.; Kikuta, K.; Matsuda, S. Roles of PI3K/AKT/GSK3/mTOR Pathway in Cell Signaling of Mental Illnesses. Depress. Res. Treat., 2012, 2012752563
[http://dx.doi.org/10.1155/2012/752563] [PMID: 23320155]
[17]
Xian, Y-F.; Ip, S-P.; Li, H-Q.; Qu, C.; Su, Z-R.; Chen, J-N.; Lin, Z-X. Isorhynchophylline exerts antidepressant-like effects in mice via modulating neuroinflammation and neurotrophins: involvement of the PI3K/Akt/GSK-3β signaling pathway. FASEB J., 2019, 33(9), 10393-10408.
[http://dx.doi.org/10.1096/fj.201802743RR] [PMID: 31233346]
[18]
Zhang, Y.; Luan, D.; Liu, Y.; Li, H.; Dong, J.; Zhang, X.; Yuan, L.; Zhong, Z.; Jiang, L.; Li, X.; Ye, M.; Tong, J. Helicid reverses lipopolysaccharide-induced inflammation and promotes GDNF levels in C6 glioma cells through modulation of prepronociceptin. Chem. Biodivers., 2020, 17(7)e2000063
[http://dx.doi.org/10.1002/cbdv.202000063] [PMID: 32329965]
[19]
Zhao, Y.; Li, H.; Fang, F.; Qin, T.; Xiao, W.; Wang, Z.; Ma, S. Geniposide improves repeated restraint stress-induced depression-like behavior in mice by ameliorating neuronal apoptosis via regulating GLP-1R/AKT signaling pathway. Neurosci. Lett., 2018, 676, 19-26.
[http://dx.doi.org/10.1016/j.neulet.2018.04.010] [PMID: 29626654]
[20]
Xie, Y.; He, Q.; Chen, H.; Lin, Z.; Xu, Y.; Yang, C. Crocin ameliorates chronic obstructive pulmonary disease-induced depression via PI3K/Akt mediated suppression of inflammation. Eur. J. Pharmacol., 2019, 862172640
[http://dx.doi.org/10.1016/j.ejphar.2019.172640] [PMID: 31491407]
[21]
Guo, L-T.; Wang, S-Q.; Su, J.; Xu, L-X.; Ji, Z-Y.; Zhang, R-Y.; Zhao, Q-W.; Ma, Z-Q.; Deng, X-Y.; Ma, S-P. Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J. Neuroinflammation, 2019, 16(1), 95.
[http://dx.doi.org/10.1186/s12974-019-1474-8] [PMID: 31068207]
[22]
Gao, W.; Wang, W.; Peng, Y.; Deng, Z. Antidepressive effects of kaempferol mediated by reduction of oxidative stress, proinflammatory cytokines and up-regulation of AKT/β-catenin cascade. Metab. Brain Dis., 2019, 34(2), 485-494.
[http://dx.doi.org/10.1007/s11011-019-0389-5] [PMID: 30762138]
[23]
Nemeroff, C.B. Recent advances in the neurobiology of depression. Psychopharmacol. Bull., 2002, 36(Suppl. 2), 6-23.
[PMID: 12490820]
[24]
De-Miguel, F.F.; Trueta, C. Synaptic and extrasynaptic secretion of serotonin. Cell. Mol. Neurobiol., 2005, 25(2), 297-312.
[http://dx.doi.org/10.1007/s10571-005-3061-z] [PMID: 16047543]
[25]
Werner, F-M.; Coveñas, R. Classical neurotransmitters and neuropeptides involved in major depression in a multi-neurotransmitter system: a focus on antidepressant drugs. Curr. Med. Chem., 2013, 20(38), 4853-4858.
[http://dx.doi.org/10.2174/09298673113206660280] [PMID: 24083608]
[26]
Felger, J.C.; Lotrich, F.E. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience, 2013, 246, 199-229.
[http://dx.doi.org/10.1016/j.neuroscience.2013.04.060] [PMID: 23644052]
[27]
Jiang, X.; Yan, Q.; Liu, F.; Jing, C.; Ding, L.; Zhang, L.; Pang, C. Chronic trans-astaxanthin treatment exerts antihyperalgesic effect and corrects co-morbid depressive like behaviors in mice with chronic pain. Neurosci. Lett., 2018, 662, 36-43.
[http://dx.doi.org/10.1016/j.neulet.2017.09.064] [PMID: 28982597]
[28]
Khan, K.; Najmi, A.K.; Akhtar, M. A natural phenolic compound quercetin showed the usefulness by targeting inflammatory, oxidative stress markers and augment 5-HT levels in one of the animal models of depression in mice. Drug Res. (Stuttg.), 2019, 69(7), 392-400.
[http://dx.doi.org/10.1055/a-0748-5518] [PMID: 30296804]
[29]
Ji, W-W.; Li, R-P.; Li, M.; Wang, S-Y.; Zhang, X.; Niu, X-X.; Li, W.; Yan, L.; Wang, Y.; Fu, Q.; Ma, S-P. Antidepressant-like effect of essential oil of Perilla frutescens in a chronic, unpredictable, mild stress-induced depression model mice. Chin. J. Nat. Med., 2014, 12(10), 753-759.
[http://dx.doi.org/10.1016/S1875-5364(14)60115-1] [PMID: 25443368]
[30]
Zhang, B.; Chang, H.S.; Hu, K.L.; Yu, X.; Li, L.N.; Xu, X.Q. Combination of geniposide and eleutheroside b exerts antidepressant-like effect on lipopolysaccharide-induced depression mice model. Chin. J. Integr. Med., 2019, 27(7), 534-541.
[http://dx.doi.org/10.1007/s11655-019-3051-5] [PMID: 31784933]
[31]
Ji, W-W.; Wang, S-Y.; Ma, Z-Q.; Li, R-P.; Li, S-S.; Xue, J-S.; Li, W.; Niu, X-X.; Yan, L.; Zhang, X.; Fu, Q.; Qu, R.; Ma, S-P. Effects of perillaldehyde on alternations in serum cytokines and depressive-like behavior in mice after lipopolysaccharide administration. Pharmacol. Biochem. Behav., 2014, 116, 1-8.
[http://dx.doi.org/10.1016/j.pbb.2013.10.026] [PMID: 24201050]
[32]
Xie, W.; Meng, X.; Zhai, Y.; Zhou, P.; Ye, T.; Wang, Z.; Sun, G.; Sun, X. panax notoginseng saponins: a review of its mechanisms of antidepressant or anxiolytic effects and network analysis on phytochemistry and pharmacology. Molecules, 2018, 23(4), 940.
[http://dx.doi.org/10.3390/molecules23040940] [PMID: 29673237]
[33]
Zhang, X.; Du, Q.; Liu, C.; Yang, Y.; Wang, J.; Duan, S.; Duan, J. Rhodioloside ameliorates depressive behavior via up-regulation of monoaminergic system activity and anti-inflammatory effect in olfactory bulbectomized rats. Int. Immunopharmacol., 2016, 36, 300-304.
[http://dx.doi.org/10.1016/j.intimp.2016.05.008] [PMID: 27214337]
[34]
Barua, C.C. Haloi, P.; Saikia, B.; Sulakhiya, K.; Pathak, D. C.; Tamuli, S.; Rizavi, H.; Ren, X., &ITZanthoxylum alatum&IT abrogates lipopolysaccharide-induced depression-like behaviours in mice by modulating neuroinflammation and monoamine neurotransmitters in the hippocampus. Pharm. Biol., 2018, 56(1), 245-252.
[http://dx.doi.org/10.1080/13880209.2017.1391298] [PMID: 29569964]
[35]
Xue, J.; Li, H.; Deng, X.; Ma, Z.; Fu, Q.; Ma, S. L-Menthone confers antidepressant-like effects in an unpredictable chronic mild stress mouse model via NLRP3 inflammasome-mediated inflammatory cytokines and central neurotransmitters. Pharmacol. Biochem. Behav., 2015, 134, 42-48.
[http://dx.doi.org/10.1016/j.pbb.2015.04.014] [PMID: 25937574]
[36]
Liu, S.; Xu, S.; Wang, Z.; Guo, Y.; Pan, W.; Shen, Z. Anti-depressant-like effect of sinomenine on chronic unpredictable mild stress-induced depression in a mouse model. Med. Sci. Monit., 2018, 24, 7646-7653.
[http://dx.doi.org/10.12659/MSM.908422] [PMID: 30362468]
[37]
Haneklaus, M.; O’Neill, L.A.J.; Coll, R.C. Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: recent developments. Curr. Opin. Immunol., 2013, 25(1), 40-45.
[http://dx.doi.org/10.1016/j.coi.2012.12.004] [PMID: 23305783]
[38]
Kaufmann, F.N.; Costa, A.P.; Ghisleni, G.; Diaz, A.P.; Rodrigues, A.L.S.; Peluffo, H.; Kaster, M.P. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav. Immun., 2017, 64, 367-383.
[http://dx.doi.org/10.1016/j.bbi.2017.03.002] [PMID: 28263786]
[39]
Naji, A.; Muzembo, B.A.; Yagyu, K.; Baba, N.; Deschaseaux, F.; Sensebé, L.; Suganuma, N. Endocytosis of indium-tin-oxide nanoparticles by macrophages provokes pyroptosis requiring NLRP3-ASC-Caspase1 axis that can be prevented by mesenchymal stem cells. Sci. Rep., 2016, 6, 26162.
[http://dx.doi.org/10.1038/srep26162] [PMID: 27194621]
[40]
Zhang, Y.; Liu, L.; Liu, Y-Z.; Shen, X-L.; Wu, T-Y.; Zhang, T.; Wang, W.; Wang, Y-X.; Jiang, C-L. NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int. J. Neuropsychopharmacol., 2015, 18(8), 1-8.
[http://dx.doi.org/10.1093/ijnp/pyv006] [PMID: 25603858]
[41]
Gao, H.; Zhu, X.; Xi, Y.; Li, Q.; Shen, Z.; Yang, Y. Anti-depressant-like effect of atractylenolide I in a mouse model of depression induced by chronic unpredictable mild stress. Exp. Ther. Med., 2018, 15(2), 1574-1579.
[PMID: 29434743]
[42]
Su, W-J.; Zhang, Y.; Chen, Y.; Gong, H.; Lian, Y-J.; Peng, W.; Liu, Y-Z.; Wang, Y-X.; You, Z-L.; Feng, S-J.; Zong, Y.; Lu, G-C.; Jiang, C-L. .NLRP3 gene knockout blocks NF-κB and MAPK signaling pathway in CUMS-induced depression mouse model. Behav. Brain Res., 2017, 322(Pt A), 1-8.,
[http://dx.doi.org/10.1016/j.bbr.2017.01.018] [PMID: 28093255]
[43]
Zhang, L.; Previn, R.; Lu, L.; Liao, R-F.; Jin, Y.; Wang, R-K. Crocin, a natural product attenuates lipopolysaccharide-induced anxiety and depressive-like behaviors through suppressing NF-kB and NLRP3 signaling pathway. Brain Res. Bull., 2018, 142, 352-359.
[http://dx.doi.org/10.1016/j.brainresbull.2018.08.021] [PMID: 30179677]
[44]
Tong, Y.; Fu, H.; Xia, C.; Song, W.; Li, Y.; Zhao, J.; Zhang, X.; Gao, X.; Yong, J.; Liu, Q.; Yang, C.; Wang, H. Astragalin exerted antidepressant-like action through SIRT1 signaling modulated NLRP3 inflammasome deactivation. ACS Chem. Neurosci., 2020, 11(10), 1495-1503.
[http://dx.doi.org/10.1021/acschemneuro.0c00156] [PMID: 32364698]
[45]
Wang, M.; Yan, S.; Zhou, Y.; Xie, P. Transcinnamaldehyde reverses depressive-like behaviors in chronic unpredictable mild stress rats by inhibiting Nf- Kappa B/Nlrp3 inflammasome pathway. Evidence-Based Complementary and Alternative Medicine, 2020, , 2020.
[46]
Huang, Q.; Ye, X.; Wang, L.; Pan, J. Salvianolic acid B abolished chronic mild stress-induced depression through suppressing oxidative stress and neuro-inflammation via regulating NLRP3 inflammasome activation. J. Food Biochem., 2019, 43(3)e12742
[PMID: 31353549]
[47]
Zhang, C-Y-Y.; Zeng, M-J.; Zhou, L-P.; Li, Y-Q.; Zhao, F.; Shang, Z-Y.; Deng, X-Y.; Ma, Z-Q.; Fu, Q.; Ma, S-P.; Qu, R. Baicalin exerts neuroprotective effects via inhibiting activation of GSK3β/NF-κB/NLRP3 signal pathway in a rat model of depression. Int. Immunopharmacol., 2018, 64, 175-182.
[http://dx.doi.org/10.1016/j.intimp.2018.09.001] [PMID: 30195108]
[48]
Song, Y.; Sun, R.; Ji, Z.; Li, X.; Fu, Q.; Ma, S. Perilla aldehyde attenuates CUMS-induced depressive-like behaviors via regulating TXNIP/TRX/NLRP3 pathway in rats. Life Sci., 2018, 206, 117-124.
[http://dx.doi.org/10.1016/j.lfs.2018.05.038] [PMID: 29800538]
[49]
Liu, Y-M.; Shen, J-D.; Xu, L-P.; Li, H-B.; Li, Y-C.; Yi, L-T. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress. Int. Immunopharmacol., 2017, 45, 128-134.
[http://dx.doi.org/10.1016/j.intimp.2017.02.007] [PMID: 28213267]
[50]
Deng, X-Y.; Xue, J-S.; Li, H-Y.; Ma, Z-Q.; Fu, Q.; Qu, R.; Ma, S-P. Geraniol produces antidepressant-like effects in a chronic unpredictable mild stress mice model. Physiol. Behav., 2015, 152(Pt A), 264-271.,
[http://dx.doi.org/10.1016/j.physbeh.2015.10.008] [PMID: 26454213]
[51]
Cai, L.; Mu, Y.R.; Liu, M.M.; Tang, W.J.; Li, R. Antidepressant-like effects of penta-acetyl geniposide in chronic unpredictable mild stress-induced depression rat model: Involvement of inhibiting neuroinflammation in prefrontal cortex and regulating hypothalamic-pituitaryadrenal axis. Int. Immunopharmacol., 2020, 80106182
[http://dx.doi.org/10.1016/j.intimp.2019.106182] [PMID: 31981962]
[52]
Deng, X-Y.; Li, H-Y.; Chen, J-J.; Li, R-P.; Qu, R.; Fu, Q.; Ma, S-P. Thymol produces an antidepressant-like effect in a chronic unpredictable mild stress model of depression in mice. Behav. Brain Res., 2015, 291, 12-19.
[http://dx.doi.org/10.1016/j.bbr.2015.04.052] [PMID: 25958231]
[53]
Li, H.; Lin, S.; Qin, T.; Li, H.; Ma, Z.; Ma, S. Senegenin exerts anti-depression effect in mice induced by chronic un-predictable mild stress via inhibition of NF-κB regulating NLRP3 signal pathway. Int. Immunopharmacol., 2017, 53, 24-32.
[http://dx.doi.org/10.1016/j.intimp.2017.10.001] [PMID: 29031144]
[54]
Yang, P.; Gao, Z.; Zhang, H.; Fang, Z.; Wu, C.; Xu, H.; Huang, Q-J. Changes in proinflammatory cytokines and white matter in chronically stressed rats. Neuropsychiatr. Dis. Treat., 2015, 11, 597-607.
[PMID: 25834438]
[55]
Brymer, K.J.; Romay-Tallon, R.; Allen, J.; Caruncho, H.J.; Kalynchuk, L.E. Exploring the potential antidepressant mechanisms of TNFα antagonists. Front. Neurosci., 2019, 13, 98.
[http://dx.doi.org/10.3389/fnins.2019.00098] [PMID: 30804748]
[56]
Maldonado-Bouchard, S.; Peters, K.; Woller, S.A.; Madahian, B.; Faghihi, U.; Patel, S.; Bake, S.; Hook, M.A. Inflammation is increased with anxiety- and depression-like signs in a rat model of spinal cord injury. Brain Behav. Immun., 2016, 51, 176-195.
[http://dx.doi.org/10.1016/j.bbi.2015.08.009] [PMID: 26296565]
[57]
Khairova, R.A.; Machado-Vieira, R.; Du, J.; Manji, H.K. A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder. Int. J. Neuropsychopharmacol., 2009, 12(4), 561-578.
[http://dx.doi.org/10.1017/S1461145709009924] [PMID: 19224657]
[58]
Himmerich, H.; Berthold-Losleben, M.; Pollmächer, T. The relevance of the TNF-alpha system in psychiatric disorders Fortschr. Neurol. Psychiatr., 2009, 77(6), 334-345.
[http://dx.doi.org/10.1055/s-0028-1109420] [PMID: 19415585]
[59]
Manosso, L.M.; Neis, V.B.; Moretti, M.; Daufenbach, J.F.; Freitas, A.E.; Colla, A.R.; Rodrigues, A.L.S. Antidepressant-like effect of α-tocopherol in a mouse model of depressive-like behavior induced by TNF-α. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 48-57.
[http://dx.doi.org/10.1016/j.pnpbp.2013.06.012] [PMID: 23816813]
[60]
Kaster, M.P.; Gadotti, V.M.; Calixto, J.B.; Santos, A.R.S.; Rodrigues, A.L.S. Depressive-like behavior induced by tumor necrosis factor-α in mice. Neuropharmacology, 2012, 62(1), 419-426.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.018] [PMID: 21867719]
[61]
Zhang, J-C.; Yao, W.; Dong, C.; Yang, C.; Ren, Q.; Ma, M.; Han, M.; Wu, J.; Ushida, Y.; Suganuma, H.; Hashimoto, K. Prophylactic effects of sulforaphane on depression-like behavior and dendritic changes in mice after inflammation. J. Nutr. Biochem., 2017, 39, 134-144.
[http://dx.doi.org/10.1016/j.jnutbio.2016.10.004] [PMID: 27833054]
[62]
Finnell, J.E.; Lombard, C.M.; Melson, M.N.; Singh, N.P.; Nagarkatti, M.; Nagarkatti, P.; Fadel, J.R.; Wood, C.S.; Wood, S.K. The protective effects of resveratrol on social stress-induced cytokine release and depressive-like behavior. Brain Behav. Immun., 2017, 59, 147-157.
[http://dx.doi.org/10.1016/j.bbi.2016.08.019] [PMID: 27592314]
[63]
Liu, Y-M.; Niu, L.; Wang, L-L.; Bai, L.; Fang, X-Y.; Li, Y-C.; Yi, L-T. Berberine attenuates depressive-like behaviors by suppressing neuro-inflammation in stressed mice. Brain Res. Bull., 2017, 134, 220-227.
[http://dx.doi.org/10.1016/j.brainresbull.2017.08.008] [PMID: 28842306]
[64]
Li, R.; Zhao, D.; Qu, R.; Fu, Q.; Ma, S. The effects of apigenin on lipopolysaccharide-induced depressive-like behavior in mice. Neurosci. Lett., 2015, 594, 17-22.
[http://dx.doi.org/10.1016/j.neulet.2015.03.040] [PMID: 25800110]
[65]
Li, J.; Huang, S.; Huang, W.; Wang, W.; Wen, G.; Gao, L.; Fu, X.; Wang, M.; Liang, W.; Kwan, H.Y.; Zhao, X.; Lv, Z. Paeoniflorin ameliorates interferon-alpha-induced neuroinflammation and depressive-like behaviors in mice. Oncotarget, 2017, 8(5), 8264-8282.
[http://dx.doi.org/10.18632/oncotarget.14160] [PMID: 28030814]
[66]
Sulakhiya, K.; Kumar, P.; Jangra, A.; Dwivedi, S.; Hazarika, N.K.; Baruah, C.C.; Lahkar, M. Honokiol abrogates lipopolysaccharide-induced depressive like behavior by impeding neuroinflammation and oxido-nitrosative stress in mice. Eur. J. Pharmacol., 2014, 744, 124-131.
[http://dx.doi.org/10.1016/j.ejphar.2014.09.049] [PMID: 25446914]
[67]
Guan, Z.; Fang, J. Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav. Immun., 2006, 20(1), 64-71.
[http://dx.doi.org/10.1016/j.bbi.2005.04.005] [PMID: 15922558]
[68]
Schnydrig, S.; Korner, L.; Landweer, S.; Ernst, B.; Walker, G.; Otten, U.; Kunz, D. Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain. Neurosci. Lett., 2007, 429(1), 69-73.
[http://dx.doi.org/10.1016/j.neulet.2007.09.067] [PMID: 17976910]
[69]
Zunszain, P.A.; Hepgul, N.; Pariante, C.M. Inflammation and depression. Curr. Top. Behav. Neurosci., 2013, 14, 135-151.
[http://dx.doi.org/10.1007/7854_2012_211] [PMID: 22553073]
[70]
Duman, R.S.; Monteggia, L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry, 2006, 59(12), 1116-1127.
[http://dx.doi.org/10.1016/j.biopsych.2006.02.013] [PMID: 16631126]
[71]
Liu, J.; Meng, F.; Dai, J.; Wu, M.; Wang, W.; Liu, C.; Zhao, D.; Wang, H.; Zhang, J.; Li, C. The BDNF-FoxO1 Axis in the medial prefrontal cortex modulates depressive-like behaviors induced by chronic unpredictable stress in postpartum female mice. Mol. Brain, 2020, 13(1), 91.
[http://dx.doi.org/10.1186/s13041-020-00631-3] [PMID: 32532322]
[72]
Calabrese, F.; Rossetti, A.C.; Racagni, G.; Gass, P.; Riva, M.A.; Molteni, R. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front. Cell. Neurosci., 2014, 8, 430.
[http://dx.doi.org/10.3389/fncel.2014.00430] [PMID: 25565964]
[73]
Li, M.; Sun, X.; Li, Q.; Li, Y.; Luo, C.; Huang, H.; Chen, J.; Gong, C.; Li, Y.; Zheng, Y.; Zhang, S.; Huang, X.; Chen, H. Fucoidan exerts antidepressant-like effects in mice via regulating the stability of surface AMPARs. Biochem. Biophys. Res. Commun., 2020, 521(2), 318-325.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.043] [PMID: 31668812]
[74]
Kosari-Nasab, M.; Shokouhi, G.; Ghorbanihaghjo, A.; Abbasi, M.M.; Salari, A-A. Hesperidin attenuates depression-related symptoms in mice with mild traumatic brain injury. Life Sci., 2018, 213, 198-205.
[http://dx.doi.org/10.1016/j.lfs.2018.10.040] [PMID: 30352242]
[75]
Abd El-Fattah, A.A.; Fahim, A.T.; Sadik, N.A.H.; Ali, B.M. Resveratrol and dimethyl fumarate ameliorate depression-like behaviour in a rat model of chronic unpredictable mild stress. Brain Res., 2018, 1701, 227-236.
[http://dx.doi.org/10.1016/j.brainres.2018.09.027] [PMID: 30244113]
[76]
Kumar, S.; Chang, Y-C.; Lai, K-H.; Hwang, T-L. Resveratrol, a molecule with anti-inflammatory and anti-cancer activities: natural product to chemical synthesis. Curr. Med. Chem., 2020, 28(19), 3773-3786.
[http://dx.doi.org/10.2174/0929867327999200918100746] [PMID: 32957870]
[77]
Wang, W.; Liu, X.; Liu, J.; Cai, E.; Zhao, Y.; Li, H.; Zhang, L.; Li, P.; Gao, Y. Sesquiterpenoids from the root of panax ginseng attenuates lipopolysaccharide-induced depressive-like behavior through the brain-derived neurotrophic factor/tropomyosin-related kinase B and sirtuin type 1/nuclear factor-κB signaling pathways. J. Agric. Food Chem., 2018, 66(1), 265-271.
[http://dx.doi.org/10.1021/acs.jafc.7b04835] [PMID: 29237268]
[78]
Filho, C.B.; Jesse, C.R.; Donato, F.; Del Fabbro, L.; Gomes de Gomes, M.; Rossito Goes, A.T.; Souza, L.C.; Boeira, S.P. Chrysin promotes attenuation of depressive-like behavior and hippocampal dysfunction resulting from olfactory bulbectomy in mice. Chem. Biol. Interact., 2016, 260, 154-162.
[http://dx.doi.org/10.1016/j.cbi.2016.11.005] [PMID: 27818124]
[79]
Zhang, T.; Yang, S.; Du, J. Antidepressant-like effects of cordycepin in a mice model of chronic unpredictable mild stress. Evidence-Based Complementary and Alternative Medicine,, 2014, 2014438506
[http://dx.doi.org/10.1155/2014/438506] [PMID: 25587342]
[80]
Shen, J.D.; Ma, L.G.; Hu, C.Y.; Pei, Y.Y.; Jin, S.L.; Fang, X.Y.; Li, Y.C. Berberine up-regulates the BDNF expression in hippocampus and attenuates corticosterone-induced depressive-like behavior in mice. Neurosci. Lett., 2016, 614, 77-82.
[http://dx.doi.org/10.1016/j.neulet.2016.01.002] [PMID: 26773864]
[81]
Kaminska, B.; Gozdz, A.; Zawadzka, M.; Ellert-Miklaszewska, A.; Lipko, M. MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat. Rec. (Hoboken), 2009, 292(12), 1902-1913.
[http://dx.doi.org/10.1002/ar.21047] [PMID: 19943344]
[82]
Anerillas, C.; Abdelmohsen, K.; Gorospe, M. Regulation of senescence traits by MAPKs. Geroscience, 2020, 42(2), 397-408.
[http://dx.doi.org/10.1007/s11357-020-00183-3] [PMID: 32300964]
[83]
Kim, E.K.; Choi, E-J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta, 2010, 1802(4), 396-405.
[http://dx.doi.org/10.1016/j.bbadis.2009.12.009] [PMID: 20079433]
[84]
Guo, Y-J.; Pan, W-W.; Liu, S-B.; Shen, Z-F.; Xu, Y.; Hu, L-L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med., 2020, 19(3), 1997-2007.
[PMID: 32104259]
[85]
Rahman, S.M.T.; Zhou, W.; Deiters, A.; Haugh, J.M. Optical control of MAP kinase kinase 6 (MKK6) reveals that it has divergent roles in pro-apoptotic and anti-proliferative signaling. J. Biol. Chem., 2020, 295(25), 8494-8504.
[http://dx.doi.org/10.1074/jbc.RA119.012079] [PMID: 32371393]
[86]
Wang, Q.; He, Q.; Chen, Y.; Shao, W.; Yuan, C.; Wang, Y. JNK-mediated microglial DICER degradation potentiates inflammatory responses to induce dopaminergic neuron loss. J. Neuroinflammation, 2018, 15(1), 184.
[http://dx.doi.org/10.1186/s12974-018-1218-1] [PMID: 29907159]
[87]
Chew, G.; Petretto, E. Transcriptional networks of microglia in alzheimer’s disease and insights into pathogenesis. Genes (Basel), 2019, 10(10)E798
[http://dx.doi.org/10.3390/genes10100798] [PMID: 31614849]
[88]
Koss, K.; Churchward, M.A.; Tsui, C.; Todd, K.G. In vitro priming and hyper-activation of brain microglia: an assessment of phenotypes. Mol. Neurobiol., 2019, 56(9), 6409-6425.
[http://dx.doi.org/10.1007/s12035-019-1529-y] [PMID: 30805836]
[89]
Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219.
[http://dx.doi.org/10.1111/imm.12922] [PMID: 29513402]
[90]
Jiang, N.; Lv, J.; Wang, H.; Huang, H.; Wang, Q.; Lu, C.; Zeng, G.; Liu, X.M. Ginsenoside Rg1 ameliorates chronic social defeat stress-induced depressive-like behaviors and hippocampal neuroinflammation. Life Sci., 2020, 252117669
[http://dx.doi.org/10.1016/j.lfs.2020.117669] [PMID: 32298740]
[91]
Yan, T.; Nian, T.; Liao, Z.; Xiao, F.; Wu, B.; Bi, K.; He, B.; Jia, Y. Antidepressant effects of a polysaccharide from okra (Abelmoschus esculentus (L) Moench) by anti-inflammation and rebalancing the gut microbiota. Int. J. Biol. Macromol., 2020, 144, 427-440.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.138] [PMID: 31862370]
[92]
Fan, C.; Song, Q.; Wang, P.; Li, Y.; Yang, M.; Yu, S.Y. Neuroprotective effects of curcumin on IL-1β-induced neuronal apoptosis and depression-like behaviors caused by chronic stress in rats. Front. Cell. Neurosci., 2019, 12, 516.
[http://dx.doi.org/10.3389/fncel.2018.00516] [PMID: 30666189]
[93]
Hu, X.; Dong, Y.; Jin, X.; Zhang, C.; Zhang, T.; Zhao, J.; Shi, J.; Li, J. The novel and potent anti-depressive action of triptolide and its influences on hippocampal neuroinflammation in a rat model of depression comorbidity of chronic pain. Brain Behav. Immun., 2017, 64, 180-194.
[http://dx.doi.org/10.1016/j.bbi.2017.03.005] [PMID: 28300618]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy