Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Evaluation of Stabilized Chlorine Dioxide in Terms of Antimicrobial Activity and Dentin Bond Strength

Author(s): Tugba Serin Kalay*, Yakup Kara, Sengul Alpay Karaoglu and Sevgi Kolayli

Volume 25, Issue 9, 2022

Published on: 16 August, 2021

Page: [1427 - 1436] Pages: 10

DOI: 10.2174/1386207324666210816121255

Price: $65

Abstract

Background: Antimicrobial agents are recommended for disinfection of the cavity following mechanical dental caries removal prior to application of restorative material. There is limited information about stabilized Chlorine Dioxide (ClO2) as a cavity disinfectant.

Objectives: The objective of this study is to determine the antimicrobial activity and effect on dentin bond strength of ClO2 compared to chlorhexidine digluconate (CHX), sodium hypochlorite (NaOCl) and Ethanolic Propolis Extract (EPE).

Methods: Antimicrobial activities of agents against oral pathogens (Staphylococcus aureus, Enterococcus faecalis, Streptococcus mutans, Lactobacillus acidophilus, Lactobacillus casei, Candida albicans, and Saccharomyces cerevisiae) and analyses of EPE were examined. Seventyfive mandibular third molars were sectioned, prepared and divided into five subgroups (n=15/group). Cavity disinfectants (2% CHX, 2.5% NaOCl, 30% EPE, 0.3% ClO2) were applied to etched dentin prior to adhesive and composite build-up. Shear bond strength (SBS) was evaluated with a universal testing machine at a crosshead speed of 0.5 mm/min. The SBS data were analyzed with One-way Analysis of Variance (ANOVA) and Tukey’s post-hoc test (p <0.05). The failure modes were evaluated with a stereomicroscope.

Results: It was determined that the compared disinfectants were showed different inhibition zone values against oral pathogens. ClO2 exhibited the highest antimicrobial activity, followed by CHX, NaOCI and EPE, respectively. No statistically significant difference was observed in the SBS values between the disinfectant treated groups and control group. The failure modes were predominantly mixed.

Conclusion: The use of 0.3% stabilized ClO2 as a cavity disinfectant agent exhibited high antimicrobial activity against oral pathogens and no adverse effects on SBS to etched dentin.

Keywords: Chlorine dioxide, propolis, antimicrobial activity, cavity disinfectant, dentin bond strength, antibacterial agent.

Graphical Abstract

[1]
Palotie, U.; Vehkalahti, M.M. Reasons for replacement of restorations: Dentists’ perceptions. Acta Odontol. Scand., 2012, 70(6), 485-490.
[http://dx.doi.org/10.3109/00016357.2011.640274] [PMID: 22214435]
[2]
Nedeljkovic, I.; De Munck, J.; Vanloy, A.; Declerck, D.; Lambrechts, P.; Peumans, M.; Teughels, W.; Van Meerbeek, B.; Van Landuyt, K.L. Secondary caries: Prevalence, characteristics, and approach. Clin. Oral Investig., 2020, 24(2), 683-691.
[http://dx.doi.org/10.1007/s00784-019-02894-0] [PMID: 31123872]
[3]
Nedeljkovic, I.; Teughels, W.; De Munck, J.; Van Meerbeek, B.; Van Landuyt, K.L. Is secondary caries with composites a material-based problem? Dent. Mater., 2015, 31(11), e247-e277.
[http://dx.doi.org/10.1016/j.dental.2015.09.001] [PMID: 26410151]
[4]
Delaviz, Y.; Finer, Y.; Santerre, J.P. Biodegradation of resin composites and adhesives by oral bacteria and saliva: A rationale for new material designs that consider the clinical environment and treatment challenges. Dent. Mater., 2014, 30(1), 16-32.
[http://dx.doi.org/10.1016/j.dental.2013.08.201] [PMID: 24113132]
[5]
Chen, L.; Suh, B.I.; Yang, J. Antibacterial dental restorative materials: A review. Am. J. Dent., 2018, 31(Sp Is B), 6B-12B.
[PMID: 31099206]
[6]
Bin-Shuwaish, M.S. Effects and effectiveness of cavity disinfectants in operative dentistry: A literature review. J. Contemp. Dent. Pract., 2016, 17(10), 867-879.
[http://dx.doi.org/10.5005/jp-journals-10024-1946] [PMID: 27794161]
[7]
Coelho, A.; Amaro, I.; Rascão, B.; Marcelino, I.; Paula, A.; Saraiva, J.; Spagnuolo, G.; Marques Ferreira, M.; Miguel Marto, C.; Carrilho, E. Effect of cavity disinfectants on dentin bond strength and clinical success of composite restorations-a systematic review of in vitro, in situ and clinical studies. Int. J. Mol. Sci., 2020, 22(1), 353.
[http://dx.doi.org/10.3390/ijms22010353] [PMID: 33396354]
[8]
Brookes, Z.L.S.; Bescos, R.; Belfield, L.A.; Ali, K.; Roberts, A. Current uses of chlorhexidine for management of oral disease: A narrative review. J. Dent., 2020, 103103497
[http://dx.doi.org/10.1016/j.jdent.2020.103497] [PMID: 33075450]
[9]
Ribeiro, L.G.M.; Hashizume, L.N.; Maltz, M. The effect of different formulations of chlorhexidine in reducing levels of mutans streptococci in the oral cavity: A systematic review of the literature. J. Dent., 2007, 35(5), 359-370.
[http://dx.doi.org/10.1016/j.jdent.2007.01.007] [PMID: 17391828]
[10]
Zehnder, M. Root canal irrigants. J. Endod., 2006, 32(5), 389-398.
[http://dx.doi.org/10.1016/j.joen.2005.09.014] [PMID: 16631834]
[11]
Pascon, F.M.; Kantovitz, K.R.; Sacramento, P.A.; Nobre-dos-Santos, M.; Puppin-Rontani, R.M. Effect of sodium hypochlorite on dentine mechanical properties. A review. J. Dent., 2009, 37(12), 903-908.
[http://dx.doi.org/10.1016/j.jdent.2009.07.004] [PMID: 19665276]
[12]
Rath, P.P.; Yiu, C.K.Y.; Matinlinna, J.P.; Kishen, A.; Neelakantan, P. The effect of root canal irrigants on dentin: A focused review. Restor. Dent. Endod, 2020, 45(3)e39
[13]
Gu, L.S.; Huang, X.Q.; Griffin, B.; Bergeron, B.R.; Pashley, D.H.; Niu, L.N.; Tay, F.R. Primum non nocere - The effects of sodium hypochlorite on dentin as used in endodontics. Acta Biomater., 2017, 61, 144-156.
[http://dx.doi.org/10.1016/j.actbio.2017.08.008] [PMID: 28801267]
[14]
Przybyłek, I.; Karpiński, TM. Antibacterial properties of propolis. Molecules, 2019, 24(11), 2047.
[http://dx.doi.org/10.3390/molecules24112047]
[15]
Tran, T.D.; Ogbourne, S.M.; Brooks, P.R.; Sánchez-Cruz, N.; Medina-Franco, J.L.; Quinn, R.J. Lessons from exploring chemical space and chemical diversity of propolis components. Int. J. Mol. Sci., 2020, 21(14), 4988.
[http://dx.doi.org/10.3390/ijms21144988] [PMID: 32679731]
[16]
Bankova, V. Recent trends and important developments in propolis research. Evid. Based Complement. Alternat. Med., 2005, 2(1), 29-32.
[http://dx.doi.org/10.1093/ecam/neh059] [PMID: 15841275]
[17]
Fang, Z.; Bhandari, B. Encapsulation of polyphenols-a review. Trends Food Sci. Technol., 2010, 21(10), 510-523.
[http://dx.doi.org/10.1016/j.tifs.2010.08.003]
[18]
Libério, S.A.; Pereira, A.L.; Araújo, M.J.; Dutra, R.P.; Nascimento, F.R.; Monteiro-Neto, V.; Ribeiro, M.N.; Gonçalves, A.G.; Guerra, R.N. The potential use of propolis as a cariostatic agent and its actions on mutans group streptococci. J. Ethnopharmacol., 2009, 125(1), 1-9.
[http://dx.doi.org/10.1016/j.jep.2009.04.047] [PMID: 19422903]
[19]
Kujumgiev, A.; Tsvetkova, I.; Serkedjieva, Y.; Bankova, V.; Christov, R.; Popov, S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol., 1999, 64(3), 235-240.
[http://dx.doi.org/10.1016/S0378-8741(98)00131-7] [PMID: 10363838]
[20]
Carvalho, C.; Fernandes, W.H.C.; Mouttinho, T.B.F.; Souza, D.M.; Marcucci, M.C.; D’Alpino, P.H.P. Evidence-based studies and perspectives of the use of Brazilian green and red propolis in dentistry. Eur. J. Dent., 2019, 13(3), 459-465.
[http://dx.doi.org/10.1055/s-0039-1700598] [PMID: 31795009]
[21]
Halboub, E.; Al-Maweri, S.A.; Al-Wesabi, M.; Al-Kamel, A.; Shamala, A.; Al-Sharani, A.; Koppolu, P. Efficacy of propolis-based mouthwashes on dental plaque and gingival inflammation: A systematic review. BMC Oral Health, 2020, 20(1), 198.
[PMID: 32650754]
[22]
Curuţiu, C.; Diţu, L.M.; Grumezescu, A.M.; Holban, A.M. Polyphenols of honeybee origin with applications in dental medicine. Antibiotics (Basel), 2020, 9(12), 856.
[http://dx.doi.org/10.3390/antibiotics9120856] [PMID: 33266173]
[23]
Zulhendri, F.; Felitti, R.; Fearnley, J.; Ravalia, M. The use of propolis in dentistry, oral health, and medicine: A review. J Oral Biosci, 2021, 63(1), 23-34.
[http://dx.doi.org/10.1016/j.job.2021.01.001] [PMID: 33465498]
[24]
Abbasi, A.J.; Mohammadi, F.; Bayat, M.; Gema, S.M.; Ghadirian, H.; Seifi, H.; Bayat, H.; Bahrami, N. Applications of propolis in dentistry: A review. Ethiop. J. Health Sci., 2018, 28(4), 505-512.
[PMID: 30607063]
[25]
Ma, J.W.; Huang, B.S.; Hsu, C.W.; Peng, C.W.; Cheng, M.L.; Kao, J.Y.; Way, T.D.; Yin, H.C.; Wang, S.S. Efficacy and safety evaluation of a chlorine dioxide solution. Int. J. Environ. Res. Public Health, 2017, 14(3), 329.
[http://dx.doi.org/10.3390/ijerph14030329] [PMID: 28327506]
[26]
Palcsó, B.; Moldován, Z.; Süvegh, K.; Herczegh, A.; Zelkó, R. Chlorine dioxide-loaded poly(acrylic acid) gels for prolonged antimicrobial effect. Mater. Sci. Eng. C, 2019, 98, 782-788.
[http://dx.doi.org/10.1016/j.msec.2019.01.043] [PMID: 30813084]
[27]
Barnhart, B.D.; Chuang, A.; Lucca, J.J.D.; Roberts, S.; Liewehr, F.; Joyce, A.P. An in vitro evaluation of the cytotoxicity of various endodontic irrigants on human gingival fibroblasts. J. Endod., 2005, 31(8), 613-615.
[http://dx.doi.org/10.1097/01.don.0000153840.94227.87] [PMID: 16044047]
[28]
Nishikiori, R.; Nomura, Y.; Sawajiri, M.; Masuki, K.; Hirata, I.; Okazaki, M. Influence of chlorine dioxide on cell death and cell cycle of human gingival fibroblasts. J. Dent., 2008, 36(12), 993-998.
[http://dx.doi.org/10.1016/j.jdent.2008.08.006] [PMID: 18819741]
[29]
Young, O.; Chlorine Dioxide, R. (CLO2) As a non-toxic antimicrobial agent for virus, bacteria and yeast (Candida albicans). Int. J. Vaccines Vaccin., 2016, 2(6), 1-12.
[http://dx.doi.org/10.15406/ijvv.2016.02.00052]
[30]
Friedline, A.; Zachariah, M.; Middaugh, A.; Heiser, M.; Khanna, N.; Vaishampayan, P.; Rice, C.V. Sterilization of hydrogen peroxide resistant bacterial spores with stabilized chlorine dioxide. AMB Express, 2015, 5, 24.
[http://dx.doi.org/10.1186/s13568-015-0109-4] [PMID: 25897406]
[31]
Myneni Venkatasatya, S.R.; Wang, H.H.; Alluri, S.; Ciancio, S.G. Phosphate buffer-stabilized 0.1% chlorine dioxide oral rinse for managing medication-related osteonecrosis of the jaw. Am. J. Dent., 2017, 30(6), 350-352.
[PMID: 29251459]
[32]
Lundstrom, J.R.; Williamson, A.E.; Villhauer, A.L.; Dawson, D.V.; Drake, D.R. Bactericidal activity of stabilized chlorine dioxide as an endodontic irrigant in a polymicrobial biofilm tooth model system. J. Endod., 2010, 36(11), 1874-1878.
[http://dx.doi.org/10.1016/j.joen.2010.08.032] [PMID: 20951304]
[33]
Ballal, N.V.; Khandewal, D.; Karthikeyan, S.; Somayaji, K.; Foschi, F. Evaluation of chlorine dioxide ırrigation solution on the microhardness and surface roughness of root canal dentin. Eur. J. Prosthodont. Restor. Dent., 2015, 23(3), 135-140.
[PMID: 26591249]
[34]
Herczegh, A.; Gyurkovics, M.; Agababyan, H.; Ghidán, A.; Lohinai, Z. Comparing the efficacy of hyper-pure chlorine-dioxide with other oral antiseptics on oral pathogen microorganisms and biofilm in vitro. Acta Microbiol. Immunol. Hung., 2013, 60(3), 359-373.
[http://dx.doi.org/10.1556/AMicr.60.2013.3.10] [PMID: 24060558]
[35]
Watamoto, T.; Egusa, H.; Sawase, T.; Yatani, H. Clinical evaluation of chlorine dioxide for disinfection of dental instruments. Int. J. Prosthodont., 2013, 26(6), 541-544.
[http://dx.doi.org/10.11607/ijp.3465] [PMID: 24179967]
[36]
Anna, H.; Barnabás, P.; Zsolt, L.; Romána, Z. Tracking of the degradation process of chlorhexidine digluconate and ethylenediaminetetraacetic acid in the presence of hyper-pure chlorine dioxide in endodontic disinfection. J. Pharm. Biomed. Anal., 2019, 164, 360-364.
[http://dx.doi.org/10.1016/j.jpba.2018.11.005] [PMID: 30439663]
[37]
Lee, S.S.; Suprono, M.S.; Stephens, J.; Withers, S.A.; Li, Y. Efficacy of stabilized chlorine dioxide-based unflavored mouthwash in reducing oral malodor: An 8-week randomized controlled study. Am. J. Dent., 2018, 31(6), 309-312.
[PMID: 30658377]
[38]
Kamalasanan, R.R.; Devarasanahalli, S.V.; Aswathanarayana, R.M.; Rashmi, K.; Gowda, Y.; Nadig, R.R. Effect of 5% chlorine dioxide irrigant on micro push out bond strength of resin sealer to radicular dentin: An in vitro study. J. Clin. Diagn. Res., 2017, 11(5), ZC49-ZC53.
[http://dx.doi.org/10.7860/JCDR/2017/25519.9857] [PMID: 28658907]
[39]
Ablal, M.A.; Adeyemi, A.A.; Jarad, F.D. The whitening effect of chlorine dioxide-an in vitro study. J. Dent., 2013, 41(Suppl. 5), e76-e81.
[http://dx.doi.org/10.1016/j.jdent.2013.05.006] [PMID: 23707537]
[40]
Cobankara, F.K.; Ozkan, H.B.; Terlemez, A. Comparison of organic tissue dissolution capacities of sodium hypochlorite and chlorine dioxide. J. Endod., 2010, 36(2), 272-274.
[http://dx.doi.org/10.1016/j.joen.2009.10.027] [PMID: 20113788]
[41]
Perdigão, J.; Lopes, M.; Geraldeli, S.; Lopes, G.C.; García-Godoy, F. Effect of a sodium hypochlorite gel on dentin bonding. Dent. Mater., 2000, 16(5), 311-323.
[http://dx.doi.org/10.1016/S0109-5641(00)00021-X] [PMID: 10915892]
[42]
García-Godoy, F.; Loushine, R.J.; Itthagarun, A.; Weller, R.N.; Murray, P.E.; Feilzer, A.J.; Pashley, D.H.; Tay, F.R. Application of biologically-oriented dentin bonding principles to the use of endodontic irrigants. Am. J. Dent., 2005, 18(4), 281-290.
[PMID: 16296438]
[43]
Ercan, E.; Erdemir, A.; Zorba, Y.O.; Eldeniz, A.U.; Dalli, M.; Ince, B.; Kalaycioglu, B. Effect of different cavity disinfectants on shear bond strength of composite resin to dentin. J. Adhes. Dent., 2009, 11(5), 343-346.
[PMID: 19841759]
[44]
Sharma, V.; Rampal, P.; Kumar, S. Shear bond strength of composite resin to dentin after application of cavity disinfectants - SEM study. Contemp. Clin. Dent., 2011, 2(3), 155-159.
[http://dx.doi.org/10.4103/0976-237X.86438] [PMID: 22090756]
[45]
Türkün, M.; Türkün, L.S.; Kalender, A. Effect of cavity disinfectants on the sealing ability of nonrinsing dentin-bonding resins. Quintessence Int., 2004, 35(6), 469-476.
[PMID: 15202592]
[46]
Slinkard, K.; Singleton, V. Total phenol analysis, automation and comparison with manual methods. Am. J. Enol. Vitic., 1977, 28, 49-55.
[47]
Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem., 2000, 48(8), 3597-3604.
[http://dx.doi.org/10.1021/jf000220w] [PMID: 10956156]
[48]
Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[49]
Çakır, H. E.; Şirin, Y.; Kolaylı, S.; Can, Z. Validation methods for phenolic components with RP-HPLC-UV in various bee products. JAN, 2018, 1(1), 13-19.
[50]
Malkoç, M. Çakır, H.; Kara, Y.; Can, Z.; Kolaylı, S. Phenolic composition and antioxidant properties of Anzer honey from Blacksea region of Turkey. U. Bee J., 2019, 19(2), 143-151.
[51]
National committee for clinical laboratory standard. Methods for determining bactericidal activity of antimicrobial agents; approved guideline, 1999.
[52]
Woods, GL.; Brown-Elliott, BA.; Desmond, EP.; Hall, GS.; Heifets, L.; Pfyffer, GE; Ridderhof, JC.; Wallace, RJ, Jr Susceptibility testing of mycobacteria, nocardia, and other aerobic actinomycetes; Approved Standard. NCCLS document M24-A, 2003, 23(18)
[53]
Taniguchi, G.; Nakajima, M.; Hosaka, K.; Iwamoto, N.; Ikeda, M.; Foxton, R.M.; Tagami, J. Improving the effect of NaOCl pretreatment on bonding to caries-affected dentin using self-etch adhesives. J. Dent., 2009, 37(10), 769-775.
[http://dx.doi.org/10.1016/j.jdent.2009.06.005] [PMID: 19589634]
[54]
Arslan, S.; Yazici, A.R.; Gorucu, J.; Ertan, A.; Pala, K.; Ustun, Y.; Antonson, S.A.; Antonson, D.E. Effects of different cavity disinfectants on shear bond strength of a silorane-based resin composite. J. Contemp. Dent. Pract., 2011, 12(4), 279-286.
[http://dx.doi.org/10.5005/jp-journals-10024-1047] [PMID: 22186863]
[55]
Lai, S.C.; Mak, Y.F.; Cheung, G.S.; Osorio, R.; Toledano, M.; Carvalho, R.M.; Tay, F.R.; Pashley, D.H. Reversal of compromised bonding to oxidized etched dentin. J. Dent. Res., 2001, 80(10), 1919-1924.
[http://dx.doi.org/10.1177/00220345010800101101] [PMID: 11706952]
[56]
Tartari, T.; Bachmann, L.; Maliza, A.G.; Andrade, F.B.; Duarte, M.A.; Bramante, C.M. Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations. J. Appl. Oral Sci., 2016, 24(3), 291-298.
[http://dx.doi.org/10.1590/1678-775720150524] [PMID: 27383711]
[57]
Sirtes, G.; Waltimo, T.; Schaetzle, M.; Zehnder, M. The effects of temperature on sodium hypochlorite short-term stability, pulp dissolution capacity, and antimicrobial efficacy. J. Endod., 2005, 31(9), 669-671.
[http://dx.doi.org/10.1097/01.don.0000153846.62144.d2] [PMID: 16123703]
[58]
Morgan, A.D.; Ng, Y.L.; Odlyha, M.; Gulabivala, K.; Bozec, L. Proof-of-concept study to establish an in situ method to determine the nature and depth of collagen changes in dentine using Fourier Transform Infra-Red spectroscopy after sodium hypochlorite irrigation. Int. Endod. J., 2019, 52(3), 359-370.
[http://dx.doi.org/10.1111/iej.13004] [PMID: 30144371]
[59]
Göstemeyer, G.; Schwendicke, F. Inhibition of hybrid layer degradation by cavity pretreatment: Meta and trial sequential analysis. J. Dent., 2016, 49, 14-21.
[http://dx.doi.org/10.1016/j.jdent.2016.04.007] [PMID: 27107550]
[60]
Montagner, A.F.; Sarkis-Onofre, R.; Pereira-Cenci, T.; Cenci, M.S. MMP inhibitors on dentin stability: A systematic review and meta-analysis. J. Dent. Res., 2014, 93(8), 733-743.
[http://dx.doi.org/10.1177/0022034514538046] [PMID: 24935066]
[61]
Say, E.C.; Koray, F.; Tarim, B.; Soyman, M.; Gülmez, T. In vitro effect of cavity disinfectants on the bond strength of dentin bonding systems. Quintessence Int., 2004, 35(1), 56-60.
[PMID: 14765642]
[62]
Campos, E.A.; Correr, G.M.; Leonardi, D.P.; Barato-Filho, F.; Gonzaga, C.C.; Zielak, J.C. Chlorhexidine diminishes the loss of bond strength over time under simulated pulpal pressure and thermo-mechanical stressing. J. Dent., 2009, 37(2), 108-114.
[http://dx.doi.org/10.1016/j.jdent.2008.10.003] [PMID: 19022552]
[63]
Carrilho, M.R.O.; Carvalho, R.M.; de Goes, M.F.; di Hipólito, V.; Geraldeli, S.; Tay, F.R.; Pashley, D.H.; Tjäderhane, L. Chlorhexidine preserves dentin bond in vitro. J. Dent. Res., 2007, 86(1), 90-94.
[http://dx.doi.org/10.1177/154405910708600115] [PMID: 17189470]
[64]
Perote, L.C.C.C.; Kamozaki, M.B.B.; Gutierrez, N.C.; Tay, F.R.; Pucci, C.R. Effect of matrix metalloproteinase-inhibiting solutions and aging methods on dentin bond strength. J. Adhes. Dent., 2015, 17(4), 347-352.
[PMID: 26295068]
[65]
Arslan, S.; Yazici, A.R.; Görücü, J.; Pala, K.; Antonson, D.E.; Antonson, S.A.; Silici, S. Comparison of the effects of Er,Cr:YSGG laser and different cavity disinfection agents on microleakage of current adhesives. Lasers Med. Sci., 2012, 27(4), 805-811.
[http://dx.doi.org/10.1007/s10103-011-0980-4] [PMID: 21853319]
[66]
Ritter, A.V.; Ghaname, E.; Leonard, R.H. The influence of dental unit waterline cleaners on composite-to-dentin bond strengths. Dent. Assist., 2008, 77(1), 4-12.
[PMID: 18333599]
[67]
Eddy, R.S.; Joyce, A.P.; Roberts, S.; Buxton, T.B.; Liewehr, F. An in vitro evaluation of the antibacterial efficacy of chlorine dioxide on E. faecalis in bovine incisors. J. Endod., 2005, 31(9), 672-675.
[http://dx.doi.org/10.1097/01.don.0000155223.87616.02] [PMID: 16123704]
[68]
Drake, D.; Villhauer, A.L. An in vitro comparative study determining bactericidal activity of stabilized chlorine dioxide and other oral rinses. J. Clin. Dent., 2011, 22(1), 1-5.
[PMID: 21290979]
[69]
Kolaylı; S.; Kara, Y.; Can, Z. Comparative study of some commercial propolis extract with new prepared ethanolic propolis extract. Bee Studies., 2020, 12(2), 24-27.
[70]
Kuramoto, H.; Hirao, K.; Yumoto, H.; Hosokawa, Y.; Nakanishi, T.; Takegawa, D.; Washio, A.; Kitamura, C.; Matsuo, T. Caffeic acid phenethyl ester (CAPE) induces vegf expression and production in rat odontoblastic cells. BioMed Res. Int., 2019, 20195390720
[http://dx.doi.org/10.1155/2019/5390720] [PMID: 31930126]
[71]
Jin, U.H.; Chung, T.W.; Kang, S.K.; Suh, S.J.; Kim, J.K.; Chung, K.H.; Gu, Y.H.; Suzuki, I.; Kim, C.H. Caffeic acid phenyl ester in propolis is a strong inhibitor of matrix metalloproteinase-9 and invasion inhibitor: isolation and identification. Clin. Chim. Acta, 2005, 362(1-2), 57-64.
[http://dx.doi.org/10.1016/j.cccn.2005.05.009] [PMID: 16004979]
[72]
Niu, Y.; Wang, K.; Zheng, S.; Wang, Y.; Ren, Q.; Li, H.; Ding, L.; Li, W.; Zhang, L. Antibacterial effect of caffeic acid phenethyl ester on cariogenic bacteria and Streptococcus mutans biofilms. Antimicrob. Agents Chemother., 2020, 64(9), e00251-e20.
[http://dx.doi.org/10.1128/AAC.00251-20] [PMID: 32540977]
[73]
Kayaoglu, G.; Ömürlü, H.; Akca, G.; Gürel, M.; Gençay, Ö.; Sorkun, K.; Salih, B. Antibacterial activity of Propolis versus conventional endodontic disinfectants against Enterococcus faecalis in infected dentinal tubules. J. Endod., 2011, 37(3), 376-381.
[http://dx.doi.org/10.1016/j.joen.2010.11.024] [PMID: 21329825]
[74]
Uzel, A.; Sorkun, K. Onçağ, O.; Cogŭlu, D.; Gençay, O.; Salih, B. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol. Res., 2005, 160(2), 189-195.
[http://dx.doi.org/10.1016/j.micres.2005.01.002] [PMID: 15881836]
[75]
Siqueira, A.B.S.; Rodriguez, L.R.N. de A.; Santos, R.K.B.; Marinho, R.R.B.; Abreu, S.; Peixoto, R.F.; Gurgel, B. C. de V. Antifungal activity of propolis against candida species ısolated from cases of chronic periodontitis. Braz. Oral Res., 2015, 29(1), 1-6.
[http://dx.doi.org/10.1590/1807-3107BOR-2015.vol29.0083] [PMID: 26398110]
[76]
Airen, B.; Sarkar, P.A.; Tomar, U.; Bishen, K.A. Antibacterial effect of propolis derived from tribal region on Streptococcus mutans and Lactobacillus acidophilus: An in vitro study. J. Indian Soc. Pedod. Prev. Dent., 2018, 36(1), 48-52.
[PMID: 29607839]
[77]
Malhotra, N.; Rao, S.P.; Acharya, S.; Vasudev, B. Comparative in vitro evaluation of efficacy of mouthrinses against Streptococcus mutans, Lactobacilli and Candida albicans. Oral Health Prev. Dent., 2011, 9(3), 261-268.
[PMID: 22068182]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy