Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Patterns of Cell Death Induced by Thiohydantoins in Human MCF-7 Breast Cancer Cells

Author(s): Tatiane Renata Fagundes*, Bruna Bortoleti, Priscila Camargo, Vírgínia Concato, Fernanda Tomiotto-Pellissier, Amanda Carloto, Carolina Panis, Marcelle Bispo, Fernando Macedo Junior, Ivete Conchon-Costa and Wander Rogério Pavanelli

Volume 22, Issue 8, 2022

Published on: 11 August, 2021

Page: [1592 - 1600] Pages: 9

DOI: 10.2174/1871520621666210811102441

Price: $65

Abstract

Background: Conventional therapies for breast cancer are still a challenge due to cytotoxic drugs not being highly effective with significant adverse effects. Thiohydantoins are biologically active heterocyclic compounds reported for several biological activities, including anticarcinogenic properties, etc. This work aims to assess the use of thiohydantoin as a potential antitumor agent against MCF-7 breast cancer cells.

Methods: MTT and neutral red assays were used to assess the possible cytotoxic activity of compounds against MCF-7 cells. Cell volume measurement and analysis were performed by flow cytometry. Fluorescence analysis was carried out to determine patterns of cell death induced by thiohydantoins.

Results: The treatment with micromolar doses of thiohydantoins promoted a decrease in the viability of MCF-7 breast tumor cells. An increase in the ROS and NO production, reduction in cell volume, loss of membrane integrity, mitochondrial depolarization, and increased fluorescence for annexin-V and caspase-3 were also observed. These findings indicate cell death by apoptosis and increased autophagic vacuoles, stopping the cell cycle in the G1/ G0 phase.

Conclusion: Our results indicate that thiohydantoins are cytotoxic to breast tumor cells, and this effect is linked to the increase in ROS production. This phenomenon changes tumorigenic pathways, which halt the cell cycle in G1/G0. This is an essential checkpoint for DNA errors, which may have altered how cells produce energy, causing a decrease in mitochondrial viability and thus leading to the apoptotic process. Furthermore, the results indicate increased autophagy, a vital process linked to a decrease in lysosomal viability and thus considered a cell death and tumor suppression mechanism.

Keywords: Heterocyclics, thiohydantoins, breast cancer, ROS, MCF-7, apoptosis.

Graphical Abstract

[1]
Wolf, B.; Brischwein, M.; Lob, V.; Ressler, J.; Wiest, J. Cellular signaling: aspects for tumor diagnosis and therapy. Biomed. Tech. (Berl.), 2007, 52(1), 164-168.
[http://dx.doi.org/10.1515/BMT.2007.030] [PMID: 17313354]
[2]
Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A-L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[3]
van ’t Veer, L.J.; Dai, H.; van de Vijver, M.J.; He, Y.D.; Hart, A.A.M.; Mao, M.; Peterse, H.L.; van der Kooy, K.; Marton, M.J.; Witteveen, A.T.; Schreiber, G.J.; Kerkhoven, R.M.; Roberts, C.; Linsley, P.S.; Bernards, R.; Friend, S.H. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002, 415(6871), 530-536.
[http://dx.doi.org/10.1038/415530a] [PMID: 11823860]
[4]
Wardley, A. Capecitabine: expanding options for the treatment of patients with early or locally advanced breast cancer. Oncologist, 2006, 11(Suppl. 1), 20-26.
[http://dx.doi.org/10.1634/theoncologist.11-90001-20] [PMID: 16971736]
[5]
Turner, N.C.; Reis-Filho, J.S. Basal-like breast cancer and the BRCA1 phenotype. Oncogene, 2006, 25(43), 5846-5853.
[http://dx.doi.org/10.1038/sj.onc.1209876] [PMID: 16998499]
[6]
Triulzi, T.; Regondi, V.; De Cecco, L.; Cappelletti, M.R.; Di Modica, M.; Paolini, B.; Lollini, P.L.; Di Cosimo, S.; Sfondrini, L.; Generali, D.; Tagliabue, E. Early immune modulation by single-agent trastuzumab as a marker of trastuzumab benefit. Br. J. Cancer, 2018, 119(12), 1487-1494.
[http://dx.doi.org/10.1038/s41416-018-0318-0] [PMID: 30478407]
[7]
Vengurlekar, S.; Sharma, R.; Trivedi, P. A Study on the Biological Activity of 2-Thioxo-Imidazolidin-4-Ones. Lett. Drug Des. Discov., 2012, 9(5), 549-555.
[http://dx.doi.org/10.2174/157018012800389322]
[8]
Ware, E. The chemistry of the hydantoins. Chem. Rev., 1950, 46(3), 403-470.
[http://dx.doi.org/10.1021/cr60145a001] [PMID: 24537833]
[9]
Pearce, E.J.; MacDonald, A.S. The immunobiology of schistosomiasis. Nat. Rev. Immunol., 2002, 2(7), 499-511.
[http://dx.doi.org/10.1038/nri843] [PMID: 12094224]
[10]
Poyraz, S.; Belveren, S.; Ülger, M.; Şahin, E.; Döndaş, H.A. Synthesis, Characterization, Crystal Structure, and Antituberculosis Activity of Some Novel Polysubstituted Aminocarbothiol/Thiohydantoin-Pyrrolidine Derivatives. Monatshefte für Chemie - Chem. Mon., 2017, 148(12), 2173-2182.
[http://dx.doi.org/10.1007/s00706-017-2039-0]
[11]
Raj, R.; Mehra, V.; Gut, J.; Rosenthal, P.J.; Wicht, K.J.; Egan, T.J.; Hopper, M.; Wrischnik, L.A.; Land, K.M.; Kumar, V. Discovery of highly selective 7-chloroquinoline-thiohydantoins with potent antimalarial activity. Eur. J. Med. Chem., 2014, 84, 425-432.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.048] [PMID: 25038484]
[12]
Abubshait, S.A. Synthesis, antimicrobial and anticancer activities of some 2-thiohydantoin derivatives 2017, 56.
[13]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[14]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[15]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(January), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[16]
Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473.
[http://dx.doi.org/10.1021/ci500588j] [PMID: 25558886]
[17]
de Carvalho, P.G.C.; Ribeiro, J.M.; Garbin, R.P.B.; Nakazato, G.; Yamada Ogatta, S.F.; de Fátima, Â.; de Lima Ferreira Bispo, M.; Macedo, F. Synthesis and Antimicrobial Activity of Thiohydantoins Obtained from L-Amino Acids. Lett. Drug Des. Discov., 2018, 17(1), 94-102.
[http://dx.doi.org/10.2174/1570180816666181212153011]
[18]
Fornari, F.A.; Randolph, J.K.; Yalowich, J.C.; Ritke, M.K.; Gewirtz, D.A. Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol. Pharmacol., 1994, 45(4), 649-656.
[PMID: 8183243]
[19]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[20]
Babich, H.; Borenfreund, E. Cytotoxicity of T-2 toxin and its metabolites determined with the neutral red cell viability assay. Appl. Environ. Microbiol., 1991, 57(7), 2101-2103.
[http://dx.doi.org/10.1128/aem.57.7.2101-2103.1991] [PMID: 1892400]
[21]
Bortoleti, B.T.D.S.; Gonçalves, M.D.; Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; Assolini, J.P.; Carloto, A.C.M.; de Carvalho, P.G.C.; Cardoso, I.L.A.; Simão, A.N.C.; Arakawa, N.S.; Costa, I.N.; Conchon-Costa, I.; Pavanelli, W.R. Grandiflorenic acid promotes death of promastigotes via apoptosis-like mechanism and affects amastigotes by increasing total iron bound capacity. Phytomedicine, 2018, 46, 11-20.
[http://dx.doi.org/10.1016/j.phymed.2018.06.010] [PMID: 30097110]
[22]
Shinoda, W. Permeability across lipid membranes. Biochim. Biophys. Acta, 2016, 1858(10), 2254-2265.
[http://dx.doi.org/10.1016/j.bbamem.2016.03.032] [PMID: 27085977]
[23]
Jäger, W.; Gehring, E.; Hagenauer, B.; Aust, S.; Senderowicz, A.; Thalhammer, T. Biliary excretion of flavopiridol and its glucuronides in the isolated perfused rat liver: role of multidrug resistance protein 2 (Mrp2). Life Sci., 2003, 73(22), 2841-2854.
[http://dx.doi.org/10.1016/S0024-3205(03)00699-4] [PMID: 14511769]
[24]
El Hady, H.A. Syntheses and antimicrobial activity of some new thiohydantoin and thiazole derivatives, 2012, 4,
[25]
Johnson, T.B.; Scott, W.M. Hydantoins: The Synthesis of 2-Thiohydantoins from Acyl Derivatives of α-Aminoacids. J. Am. Chem. Soc., 1913, 35(9), 1130-1136.
[http://dx.doi.org/10.1021/ja02198a004]
[26]
Zuo, M.; Xu, X.; Xie, Z.; Ge, R.; Zhang, Z.; Li, Z.; Bian, J. Design and synthesis of indoline thiohydantoin derivatives based on enzalutamide as antiproliferative agents against prostate cancer. Eur. J. Med. Chem., 2017, 125, 1002-1022.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.049] [PMID: 27810589]
[27]
Wu, F.; Jiang, H.; Zheng, B.; Kogiso, M.; Yao, Y.; Zhou, C.; Li, X-N.; Song, Y. Inhibition of Cancer-Associated Mutant Isocitrate Dehydrogenases by 2-Thiohydantoin Compounds. J. Med. Chem., 2015, 58(17), 6899-6908.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00684] [PMID: 26280302]
[28]
Hueso-Falcón, I.; Girón, N.; Velasco, P.; Amaro-Luis, J.M.; Ravelo, A.G.; de las Heras, B.; Hortelano, S.; Estevez-Braun, A. Synthesis and induction of apoptosis signaling pathway of ent-kaurane derivatives. Bioorg. Med. Chem., 2010, 18(4), 1724-1735.
[http://dx.doi.org/10.1016/j.bmc.2009.11.064] [PMID: 20116261]
[29]
Majumdar, P.; Bathula, C.; Basu, S.M.; Das, S.K.; Agarwal, R.; Hati, S.; Singh, A.; Sen, S.; Das, B.B. Design, synthesis and evaluation of thiohydantoin derivatives as potent topoisomerase I (Top1) inhibitors with anticancer activity. Eur. J. Med. Chem., 2015, 102, 540-551.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.032] [PMID: 26312433]
[30]
Porporato, P.E.; Filigheddu, N.; Pedro, J.M.B.; Kroemer, G.; Galluzzi, L. Mitochondrial metabolism and cancer. Nature Publishing Group, 2018, 28(3), 265-280.
[http://dx.doi.org/10.1038/cr.2017.155] [PMID: 29219147]
[31]
Zorova, L.D.; Popkov, V.A.; Plotnikov, E.Y.; Silachev, D.N.; Pevzner, I.B.; Jankauskas, S.S.; Babenko, V.A.; Zorov, S.D.; Balakireva, A.V.; Juhaszova, M.; Sollott, S.J.; Zorov, D.B. Mitochondrial membrane potential. Anal. Biochem., 2018, 552, 50-59.
[http://dx.doi.org/10.1016/j.ab.2017.07.009] [PMID: 28711444]
[32]
Facompre, M.; Goossens, J.F.; Bailly, C. Apoptotic response of HL-60 human leukemia cells to the antitumor drug NB-506, a glycosylated indolocarbazole inhibitor of topoisomerase 1. Biochem. Pharmacol., 2001, 61(3), 299-310.
[http://dx.doi.org/10.1016/S0006-2952(00)00553-0] [PMID: 11172734]
[33]
Sen, N.; Das, B.B.; Ganguly, A.; Mukherjee, T.; Bandyopadhyay, S.; Majumder, H.K. Camptothecin-induced imbalance in intracellular cation homeostasis regulates programmed cell death in unicellular hemoflagellate Leishmania donovani. J. Biol. Chem., 2004, 279(50), 52366-52375.
[http://dx.doi.org/10.1074/jbc.M406705200] [PMID: 15355995]
[34]
Garcia, F.P.; Henrique da Silva Rodrigues, J.; Din, Z.U.; Rodrigues-Filho, E.; Ueda-Nakamura, T.; Auzély-Velty, R.; Nakamura, C.V. A3K2A3-induced apoptotic cell death of Leishmania amazonensis occurs through caspase- and ATP-dependent mitochondrial dysfunction. Apoptosis, 2017, 22(1), 57-71.
[http://dx.doi.org/10.1007/s10495-016-1308-4] [PMID: 27761752]
[35]
Liu, J.; Wang, Z. Increased Oxidative Stress as a Selective Anticancer Therapy. Oxid. Med. Cell. Longev., 2015, 2015294303
[http://dx.doi.org/10.1155/2015/294303] [PMID: 26273420]
[36]
Sturlan, S.; Baumgartner, M.; Roth, E.; Bachleitner-Hofmann, T.; Scheinberg, D.A.; Gambacorti-Passerini, C.; Gabrilove, J.L.; Warrell, R.P.; Pandolfi, P.P. Docosahexaenoic acid enhances arsenic trioxide-mediated apoptosis in arsenic trioxide-resistant HL-60 cells. Blood, 2003, 101(12), 4990-4997.
[http://dx.doi.org/10.1182/blood-2002-08-2391] [PMID: 12609832]
[37]
Duszenko, M.; Figarella, K.; Macleod, E.T.; Welburn, S.C. Death of a trypanosome: a selfish altruism. Trends Parasitol., 2006, 22(11), 536-542.
[http://dx.doi.org/10.1016/j.pt.2006.08.010] [PMID: 16942915]
[38]
Vanden Berghe, T.; Vanlangenakker, N.; Parthoens, E.; Deckers, W.; Devos, M.; Festjens, N.; Guerin, C.J.; Brunk, U.T.; Declercq, W.; Vandenabeele, P. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ., 2010, 17(6), 922-930.
[http://dx.doi.org/10.1038/cdd.2009.184] [PMID: 20010783]
[39]
Rogers, C.; Fernandes-Alnemri, T.; Mayes, L.; Alnemri, D.; Cingolani, G.; Alnemri, E.S. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun., 2017, 8, 14128.
[http://dx.doi.org/10.1038/ncomms14128] [PMID: 28045099]
[40]
Cai, Z.; Jitkaew, S.; Zhao, J.; Chiang, H-C.; Choksi, S.; Liu, J.; Ward, Y.; Wu, L.G.; Liu, Z-G. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol., 2014, 16(1), 55-65.
[http://dx.doi.org/10.1038/ncb2883] [PMID: 24316671]
[41]
Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol., 2017, 17(2), 97-111.
[http://dx.doi.org/10.1038/nri.2016.107] [PMID: 27748397]
[42]
Berg, R.D.; Levitte, S.; O’Sullivan, M.P.; O’Leary, S.M.; Cambier, C.J.; Cameron, J.; Takaki, K.K.; Moens, C.B.; Tobin, D.M.; Keane, J.; Ramakrishnan, L. Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration. Cell, 2016, 165(1), 139-152.
[http://dx.doi.org/10.1016/j.cell.2016.02.034] [PMID: 27015311]
[43]
Chandra, J.; Samali, A.; Orrenius, S. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med., 2000, 29(3-4), 323-333.
[http://dx.doi.org/10.1016/S0891-5849(00)00302-6] [PMID: 11035261]
[44]
McConkey, D.J. Biochemical determinants of apoptosis and necrosis. Toxicol. Lett., 1998, 99(3), 157-168.
[http://dx.doi.org/10.1016/S0378-4274(98)00155-6] [PMID: 9862281]
[45]
Zhao, M.; Antunes, F.; Eaton, J.W.; Brunk, U.T. Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur. J. Biochem., 2003, 270(18), 3778-3786.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03765.x] [PMID: 12950261]
[46]
Biederbick, A.; Kern, H.F.; Elsässer, H.P. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur. J. Cell Biol., 1995, 66(1), 3-14.
[PMID: 7750517]
[47]
Yang, Z. J.; Chee, C. E.; Huang, S.; Sinicrope, F. A. The role of autophagy in cancer: Therapeutic implications. 2011.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0047]
[48]
Tang, D.; Kang, R.; Livesey, K.M.; Cheh, C-W.; Farkas, A.; Loughran, P.; Hoppe, G.; Bianchi, M.E.; Tracey, K.J.; Zeh, H.J., III; Lotze, M.T. Endogenous HMGB1 regulates autophagy. J. Cell Biol., 2010, 190(5), 881-892.
[http://dx.doi.org/10.1083/jcb.200911078] [PMID: 20819940]
[49]
Little, J.B. Delayed initiation of DNA synthesis in irradiated human diploid cells. Nature, 1968, 218(5146), 1064-1065.
[http://dx.doi.org/10.1038/2181064a0] [PMID: 5656624]
[50]
Campbell, C.; Quinn, A.G.; Angus, B.; Farr, P.M.; Rees, J.L. Wavelength specific patterns of p53 induction in human skin following exposure to UV radiation. Cancer Res., 1993, 53(12), 2697-2699.
[PMID: 8504406]
[51]
Nelson, W.G.; Kastan, M.B. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol. Cell. Biol., 1994, 14(3), 1815-1823.
[http://dx.doi.org/10.1128/MCB.14.3.1815] [PMID: 8114714]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy