Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anti-Cancer Effects of Epigenetics Drugs Scriptaid and Zebularine in Human Breast Adenocarcinoma Cells

Author(s): Zhi Hung Yap, Wei Yang Kong, Abdur Rahmaan Azeez, Chee-Mun Fang and Siew Ching Ngai*

Volume 22, Issue 8, 2022

Published on: 08 June, 2021

Page: [1582 - 1591] Pages: 10

DOI: 10.2174/1871520621666210608103251

Price: $65

conference banner
Abstract

Background: High relapse and metastasis progression in breast cancer patients have prompted the need to explore alternative treatments. Epigenetic therapy has emerged as an attractive therapeutic strategy due to the reversibility of epigenome structures.

Objective: This study investigated the anti-cancer effects of epigenetic drugs scriptaid and zebularine in human breast adenocarcinoma MDA-MB-231 and MCF-7 cells.

Methods: First, the half maximal Inhibitory Concentration (IC50) of scriptaid and zebularine, and the combination of both drugs on human breast adenocarcinoma MDA-MB-231 cells were determined. Next, MDA-MB-231 and MCF-7 cells were treated with IC50 of scriptaid, zebularine and the combination of both. After IC50 treatments, the anti-cancer effects were evaluated via cell migration assay, cell cycle analysis and apoptotic studies which included histochemical staining and reverse-transcriptase polymerase chain reaction (RT-PCR) of the apoptotic genes.

Results: Both epigenetic drugs inhibited cell viability in a dose-dependent manner with IC50 of 2 nM scriptaid, 8 μM zebularine and a combination of 2 nM scriptaid and 2 μM zebularine. Both MDA-MB-231 and MCF-7 cells exhibited a reduction in cell migration after the treatments. In particular, MDA-MB-231 cells exhibited a significant reduction in cell migration (p < 0.05) after the treatments of zebularine and the combination of scriptaid and zebularine. Besides, cell cycle analysis demonstrated that scriptaid and the combination of both drugs could induce cell cycle arrest at the G0/G1 phase in both MDA-MB-231 and MCF-7 cells. Furthermore, histochemical staining allowed the observation of apoptotic features, such as nuclear chromatin condensation, cell shrinkage, membrane blebbing, nuclear chromatin fragmentation and cytoplasmic extension, in both MDA-MB-231 and MCF-7 cells after the treatments. Further, apoptotic studies revealed the upregulation of pro-apoptotic Bax, downregulation of anti-apoptotic Bcl-2 and elevation of Bax/Bcl-2 ratio in MDA-MB-231 cells treated with zebularine and MCF-7 cells treated with all drug regimens.

Conclusion: Collectively, these findings suggest that scriptaid and zebularine are potential anti-cancer drugs, either single or in combination, for the therapy of breast cancer. Further investigations of the gene regulatory pathways directed by scriptaid and zebularine are definitely warranted in the future.

Keywords: Breast cancer, scriptaid, zebularine, anti-cancer effects, apoptosis, cell cycle.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
O’Shaughnessy, J. Extending survival with chemotherapy in metastatic breast cancer. Oncologist, 2005, 10(Suppl. 3), 20-29.
[http://dx.doi.org/10.1634/theoncologist.10-90003-20] [PMID: 16368868]
[3]
Li, Y.; Humphries, B.; Yang, C.; Wang, Z. Nanoparticle-mediated therapeutic agent delivery for treating metastatic breast cancer-challenges and opportunities. Nanomaterials (Basel), 2018, 8(6), 361.
[http://dx.doi.org/10.3390/nano8060361] [PMID: 29794968]
[4]
Nedeljković, M.; Damjanović, A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells, 2019, 8(9), 957.
[http://dx.doi.org/10.3390/cells8090957] [PMID: 31443516]
[5]
Mrakovcic, M.; Bohner, L.; Hanisch, M.; Fröhlich, L.F. Epigenetic targeting of autophagy via HDAC inhibition in tumor cells: Role of P53. Int. J. Mol. Sci., 2018, 19(12), 3952.
[http://dx.doi.org/10.3390/ijms19123952] [PMID: 30544838]
[6]
Karsli-Ceppioglu, S.; Dagdemir, A.; Judes, G.; Ngollo, M.; Penault-Llorca, F.; Pajon, A.; Bignon, Y.J.; Bernard-Gallon, D. Epigenetic mechanisms of breast cancer: An update of the current knowledge. Epigenomics, 2014, 6(6), 651-664.
[http://dx.doi.org/10.2217/epi.14.59] [PMID: 25531258]
[7]
Lustberg, M.B.; Ramaswamy, B. Epigenetic therapy in breast ancer. Curr. Breast Cancer Rep., 2011, 3(1), 34-43.
[http://dx.doi.org/10.1007/s12609-010-0034-0] [PMID: 23097683]
[8]
Wu, Y.S.; Lee, Z.Y.; Chuah, L.H.; Mai, C.W.; Ngai, S.C. Epigenetics in metastatic breast cancer: Its regulation and implications in diagnosis, prognosis and therapeutics. Curr. Cancer Drug Targets, 2019, 19(2), 82-100.
[http://dx.doi.org/10.2174/1568009618666180430130248] [PMID: 29714144]
[9]
Kim, T.Y.; Bang, Y.J.; Robertson, K.D. Histone deacetylase inhibitors for cancer therapy. Epigenetics, 2006, 1(1), 14-23.
[http://dx.doi.org/10.4161/epi.1.1.2644] [PMID: 17998811]
[10]
Abaza, M.S.I.; Bahman, A.M.; Al-Attiyah, R.J.; Kollamparambil, A.M. Synergistic induction of apoptosis and chemosensitization of human colorectal cancer cells by histone deacetylase inhibitor, scriptaid, and proteasome inhibitors: Potential mechanisms of action. Tumour Biol., 2012, 33(6), 1951-1972.
[http://dx.doi.org/10.1007/s13277-012-0456-6] [PMID: 23011889]
[11]
Takai, N.; Ueda, T.; Nishida, M.; Nasu, K.; Narahara, H. A novel histone deacetylase inhibitor, scriptaid, induces growth inhibition, cell cycle arrest and apoptosis in human endometrial cancer and ovarian cancer cells. Int. J. Mol. Med., 2006, 17(2), 323-329.
[http://dx.doi.org/10.3892/ijmm.17.2.323] [PMID: 16391833]
[12]
Giacinti, L.; Giacinti, C.; Gabellini, C.; Rizzuto, E.; Lopez, M.; Giordano, A. Scriptaid effects on breast cancer cell lines. J. Cell. Physiol., 2012, 227(10), 3426-3433.
[http://dx.doi.org/10.1002/jcp.24043] [PMID: 22213035]
[13]
Yao, R.; Han, D.; Sun, X.; Xie, Y.; Wu, Q.; Fu, C.; Yao, Y.; Li, H.; Li, Z.; Xu, K. Scriptaid inhibits cell survival, cell cycle, and promotes apoptosis in multiple myeloma via epigenetic regulation of p21. Exp. Hematol., 2018, 60, 63-72.
[http://dx.doi.org/10.1016/j.exphem.2017.12.012] [PMID: 29305109]
[14]
Janyst, K.; Janyst, M.; Siernicka, M.; Lasek, W. Synergistic antitumor effects of histone deacetylase inhibitor scriptaid and bortezomib against ovarian cancer cells. Oncol. Rep., 2018, 39(4), 1999-2005.
[http://dx.doi.org/10.3892/or.2018.6248] [PMID: 29436692]
[15]
Nakamura, K.; Aizawa, K.; Nakabayashi, K.; Kato, N.; Yamauchi, J.; Hata, K.; Tanoue, A. DNA methyltransferase inhibitor zebularine inhibits human hepatic carcinoma cells proliferation and induces apoptosis. PLoS One, 2013, 8(1)e54036
[http://dx.doi.org/10.1371/journal.pone.0054036] [PMID: 23320119]
[16]
Chen, M.; Shabashvili, D.; Nawab, A.; Yang, S.X.; Dyer, L.M.; Brown, K.D.; Hollingshead, M.; Hunter, K.W.; Kaye, F.J.; Hochwald, S.N.; Marquez, V.E.; Steeg, P.; Zajac-Kaye, M. DNA methyltransferase inhibitor, zebularine, delays tumor growth and induces apoptosis in a genetically engineered mouse model of breast cancer. Mol. Cancer Ther., 2012, 11(2), 370-382.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0458] [PMID: 22203734]
[17]
Cheng, J.C.; Yoo, C.B.; Weisenberger, D.J.; Chuang, J.; Wozniak, C.; Liang, G.; Marquez, V.E.; Greer, S.; Orntoft, T.F.; Thykjaer, T.; Jones, P.A. Preferential response of cancer cells to zebularine. Cancer Cell, 2004, 6(2), 151-158.
[http://dx.doi.org/10.1016/j.ccr.2004.06.023] [PMID: 15324698]
[18]
Billam, M.; Sobolewski, M.D.; Davidson, N.E. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res. Treat., 2010, 120(3), 581-592.
[http://dx.doi.org/10.1007/s10549-009-0420-3] [PMID: 19459041]
[19]
Chiam, K.; Centenera, M.M.; Butler, L.M.; Tilley, W.D.; Bianco-Miotto, T. GSTP1 DNA methylation and expression status is indicative of 5-aza-2¢-deoxycytidine efficacy in human prostate cancer cells. PLoS One, 2011, 6(9)e25634
[http://dx.doi.org/10.1371/journal.pone.0025634] [PMID: 21980513]
[20]
Orta, M.L.; Pastor, N.; Burgos-Morón, E.; Domínguez, I.; Calderón-Montaño, J.M.; Huertas Castaño, C.; López-Lázaro, M.; Helleday, T.; Mateos, S. Zebularine induces replication-dependent double-strand breaks which are preferentially repaired by homologous recombination. DNA Repair (Amst.), 2017, 57, 116-124.
[http://dx.doi.org/10.1016/j.dnarep.2017.07.002] [PMID: 28732309]
[21]
Momparler, R.L.; Côté, S.; Momparler, L.F.; Idaghdour, Y. Epigenetic therapy of acute myeloid leukemia using 5-aza-2¢-deoxycytidine (decitabine) in combination with inhibitors of histone methylation and deacetylation. Clin. Epigenetics, 2014, 6(1), 19.
[http://dx.doi.org/10.1186/1868-7083-6-19] [PMID: 25313314]
[22]
Cecconi, D.; Donadelli, M.; Dalla Pozza, E.; Rinalducci, S.; Zolla, L.; Scupoli, M.T.; Righetti, P.G.; Scarpa, A.; Palmieri, M. Synergistic effect of trichostatin A and 5-aza-2¢-deoxycytidine on growth inhibition of pancreatic endocrine tumour cell lines: A proteomic study. Proteomics, 2009, 9(7), 1952-1966.
[http://dx.doi.org/10.1002/pmic.200701089] [PMID: 19294695]
[23]
Al-Khdhairawi, A.A.Q.; Krishnan, P.; Mai, C.W.; Chung, F.F.L.; Leong, C.O.; Yong, K.T.; Chong, K.W.; Low, Y.Y.; Kam, T.S.; Lim, K.H. A bis-benzopyrroloisoquinoline alkaloid incorporating a cyclobutane core and a chlorophenanthroindolizidine alkaloid with cytotoxic activity from Ficus Fistulosa Var. Tengerensis. J. Nat. Prod., 2017, 80(10), 2734-2740.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00500] [PMID: 28926237]
[24]
Liang, C.C.; Park, A.Y.; Guan, J.L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc., 2007, 2(2), 329-333.
[http://dx.doi.org/10.1038/nprot.2007.30] [PMID: 17406593]
[25]
Kong, W.Y.; Yee, Z.Y.; Mai, C.W.; Fang, C.M.; Abdullah, S.; Ngai, S.C. Zebularine and trichostatin A sensitized human breast adenocarcinoma cells towards tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis. Heliyon, 2019, 5(9)e02468
[http://dx.doi.org/10.1016/j.heliyon.2019.e02468] [PMID: 31687564]
[26]
Khodapasand, E.; Jafarzadeh, N.; Farrokhi, F.; Kamalidehghan, B.; Houshmand, M. Is Bax/Bcl-2 ratio considered as a prognostic marker with age and tumor location in colorectal cancer? Iran. Biomed. J., 2015, 19(2), 69-75.
[PMID: 25864810]
[27]
Raisova, M.; Hossini, A.M.; Eberle, J.; Riebeling, C.; Wieder, T.; Sturm, I.; Daniel, P.T.; Orfanos, C.E.; Geilen, C.C. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J. Invest. Dermatol., 2001, 117(2), 333-340.
[http://dx.doi.org/10.1046/j.0022-202x.2001.01409.x] [PMID: 11511312]
[28]
Becker, S. A historic and scientific review of breast cancer: The next global healthcare challenge. Int. J. Gynaecol. Obstet., 2015, 131(Suppl. 1), S36-S39.
[http://dx.doi.org/10.1016/j.ijgo.2015.03.015] [PMID: 26433503]
[29]
Napso, T.; Fares, F. Zebularine induces prolonged apoptosis effects via the caspase-3/PARP pathway in head and neck cancer cells. Int. J. Oncol., 2014, 44(6), 1971-1979.
[http://dx.doi.org/10.3892/ijo.2014.2386] [PMID: 24728469]
[30]
Liu, L.; Sun, X.; Xie, Y.; Zhuang, Y.; Yao, R.; Xu, K. Anticancer effect of histone deacetylase inhibitor scriptaid as a single agent for hepatocellular carcinoma. Biosci. Rep., 2018, 38(4)BSR20180360
[http://dx.doi.org/10.1042/BSR20180360] [PMID: 29945926]
[31]
Berghauser Pont, L.M.E.; Kleijn, A.; Kloezeman, J.J.; van den Bossche, W.; Kaufmann, J.K.; de Vrij, J.; Leenstra, S.; Dirven, C.M.F.; Lamfers, M.L.M. The HDAC inhibitors scriptaid and LBH589 combined with the oncolytic virus delta24-RGD exert enhanced anti-tumor efficacy in patient-derived glioblastoma cells. PLoS One, 2015, 10(5), e0127058.
[http://dx.doi.org/10.1371/journal.pone.0127058] [PMID: 25993039]
[32]
Damaskos, C.; Garmpis, N.; Valsami, S.; Kontos, M.; Spartalis, E.; Kalampokas, T.; Kalampokas, E.; Athanasiou, A.; Moris, D.; Daskalopoulou, A.; Davakis, S.; Tsourouflis, G.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone deacetylase inhibitors: An attractive therapeutic strategy against breast cancer. Anticancer Res., 2017, 37(1), 35-46.
[http://dx.doi.org/10.21873/anticanres.11286] [PMID: 28011471]
[33]
Yoo, C.B.; Cheng, J.C.; Jones, P.A. Zebularine: A new drug for epigenetic therapy. Biochem. Soc. Trans., 2004, 32(Pt 6), 910-912.
[http://dx.doi.org/10.1042/BST0320910] [PMID: 15506921]
[34]
Zhou, L.; Cheng, X.; Connolly, B.A.; Dickman, M.J.; Hurd, P.J.; Hornby, D.P. Zebularine: A novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J. Mol. Biol., 2002, 321(4), 591-599.
[http://dx.doi.org/10.1016/S0022-2836(02)00676-9] [PMID: 12206775]
[35]
Balch, C.; Yan, P.; Craft, T.; Young, S.; Skalnik, D.G.; Huang, T.H.M.; Nephew, K.P. Antimitogenic and chemosensitizing effects of the methylation inhibitor zebularine in ovarian cancer. Mol. Cancer Ther., 2005, 4(10), 1505-1514.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0216] [PMID: 16227399]
[36]
Ruiz-Magaña, M.J.; Rodríguez-Vargas, J.M.; Morales, J.C.; Saldivia, M.A.; Schulze-Osthoff, K.; Ruiz-Ruiz, C. The DNA methyltransferase inhibitors zebularine and decitabine induce mitochondria-mediated apoptosis and DNA damage in p53 mutant leukemic T cells. Int. J. Cancer, 2012, 130(5), 1195-1207.
[http://dx.doi.org/10.1002/ijc.26107] [PMID: 21455989]
[37]
Ye, K.; Wang, S.; Wang, J.; Han, H.; Ma, B.; Yang, Y. Zebularine enhances apoptosis of human osteosarcoma cells by suppressing methylation of ARHI. Cancer Sci., 2016, 107(12), 1851-1857.
[http://dx.doi.org/10.1111/cas.13088] [PMID: 27685841]
[38]
Su, G.H.; Sohn, T.A.; Ryu, B.; Kern, S.E. A novel histone deacetylase inhibitor identified by high-throughput transcriptional screening of a compound library. Cancer Res., 2000, 60(12), 3137-3142.
[PMID: 10866300]
[39]
Ritch, S.J.; Brandhagen, B.N.; Goyeneche, A.A.; Telleria, C.M. Advanced assessment of migration and invasion of cancer cells in response to mifepristone therapy using double fluorescence cytochemical labeling. BMC Cancer, 2019, 19(1), 376.
[http://dx.doi.org/10.1186/s12885-019-5587-3] [PMID: 31014286]
[40]
Yamaguchi, R.; Perkins, G. Animal models for studying tumor microenvironment (TME) and resistance to lymphocytic infiltration. Cancer Biol. Ther., 2018, 19(9), 745-754.
[http://dx.doi.org/10.1080/15384047.2018.1470722] [PMID: 29723108]
[41]
Messica, Y.; Laser-Azogui, A.; Volberg, T.; Elisha, Y.; Lysakovskaia, K.; Eils, R.; Gladilin, E.; Geiger, B.; Beck, R. The role of vimentin in regulating cell invasive migration in dense cultures of breast carcinoma cells. Nano Lett., 2017, 17(11), 6941-6948.
[http://dx.doi.org/10.1021/acs.nanolett.7b03358] [PMID: 29022351]
[42]
Song, Y.; Ye, M.; Zhou, J.; Wang, Z.W.; Zhu, X. Restoring E-Cadherin expression by natural compounds for anticancer therapies in genital and urinary cancers. Mol. Ther. Oncolytics, 2019, 14, 130-138.
[http://dx.doi.org/10.1016/j.omto.2019.04.005] [PMID: 31194121]
[43]
Yan, H.B.; Wang, X.F.; Zhang, Q.; Tang, Z.Q.; Jiang, Y.H.; Fan, H.Z.; Sun, Y.H.; Yang, P.Y.; Liu, F. Reduced expression of the chromatin remodeling gene ARID1A enhances gastric cancer cell migration and invasion via downregulation of E-cadherin transcription. Carcinogenesis, 2014, 35(4), 867-876.
[http://dx.doi.org/10.1093/carcin/bgt398] [PMID: 24293408]
[44]
Zhao, Y.; Yan, Q.; Long, X.; Chen, X.; Wang, Y. Vimentin affects the mobility and invasiveness of prostate cancer cells. Cell Biochem. Funct., 2008, 26(5), 571-577.
[http://dx.doi.org/10.1002/cbf.1478] [PMID: 18464297]
[45]
Wong, S.H.M.; Fang, C.M.; Loh, S.H.S.; Ngai, S.C. Trichostatin A and zebularine along with E-cadherin re-expression enhance tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cell cycle arrest in human breast adenocarcinoma cells. Asia Pac. J. Mol. Biol. Biotechnol., 2021, 29(1), 26-41.
[http://dx.doi.org/10.35118/apjmbb.2021.029.1.04]
[46]
Eroglu, O.; Celen, M. Investigation of the effects of zebularine on caspase-3 and caspase-9 involved in anticancer and apoptotic mechanisms in SKBR3 breast cancer cell line. J. Cancer Ther., 2019, 10(3), 229-244.
[http://dx.doi.org/10.4236/jct.2019.103019]
[47]
Kim, D.J.; Dunleavey, J.M.; Xiao, L.; Ollila, D.W.; Troester, M.A.; Otey, C.A.; Li, W.; Barker, T.H.; Dudley, A.C. Suppression of TGFβ-mediated conversion of endothelial cells and fibroblasts into cancer associated (myo)fibroblasts via HDAC inhibition. Br. J. Cancer, 2018, 118(10), 1359-1368.
[http://dx.doi.org/10.1038/s41416-018-0072-3] [PMID: 29695769]
[48]
Zhou, P.; Lu, Y.; Sun, X.H. Effects of a novel DNA methyltransferase inhibitor zebularine on human lens epithelial cells. Mol. Vis., 2012, 18, 22-28.
[PMID: 22259221]
[49]
Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer, 2017, 17(2), 93-115.
[http://dx.doi.org/10.1038/nrc.2016.138] [PMID: 28127048]
[50]
Janaki Ramaiah, M.; Naushad, S.M.; Lavanya, A.; Srinivas, C.; Anjana Devi, T.; Sampathkumar, S.; Dharan, D.B.; Bhadra, M.P. Scriptaid cause histone deacetylase inhibition and cell cycle arrest in HeLa cancer cells: A study on structural and functional aspects. Gene, 2017, 627, 379-386.
[http://dx.doi.org/10.1016/j.gene.2017.06.031] [PMID: 28668345]
[51]
Nalls, D.; Tang, S.N.; Rodova, M.; Srivastava, R.K.; Shankar, S. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One, 2011, 6(8)e24099
[http://dx.doi.org/10.1371/journal.pone.0024099] [PMID: 21909380]
[52]
Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2), 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[53]
Adams, J.M.; Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 2007, 26(9), 1324-1337.
[http://dx.doi.org/10.1038/sj.onc.1210220] [PMID: 17322918]
[54]
Gonzalez, M.S.; De Brasi, C.D.; Bianchini, M.; Gargallo, P.; Moiraghi, B.; Bengió, R.; Larripa, I.B. BAX/BCL-XL gene expression ratio inversely correlates with disease progression in chronic myeloid leukemia. Blood Cells Mol. Dis., 2010, 45(3), 192-196.
[http://dx.doi.org/10.1016/j.bcmd.2010.07.011] [PMID: 20728382]
[55]
Neureiter, D.; Zopf, S.; Leu, T.; Dietze, O.; Hauser-Kronberger, C.; Hahn, E.G.; Herold, C.; Ocker, M. Apoptosis, proliferation and differentiation patterns are influenced by zebularine and SAHA in pancreatic cancer models. Scand. J. Gastroenterol., 2007, 42(1), 103-116.
[http://dx.doi.org/10.1080/00365520600874198] [PMID: 17190770]
[56]
Hemann, M.T.; Lowe, S.W. The p53-Bcl-2 connection. Cell Death Differ., 2006, 13(8), 1256-1259.
[http://dx.doi.org/10.1038/sj.cdd.4401962] [PMID: 16710363]
[57]
Takemura, Y.; Satoh, M.; Hatanaka, K.; Kubota, S. Zebularine exerts its antiproliferative activity through S phase delay and cell death in human malignant mesothelioma cells. Biosci. Biotechnol. Biochem., 2018, 82(7), 1159-1164.
[http://dx.doi.org/10.1080/09168451.2018.1459466] [PMID: 29685095]
[58]
Wang, Z.Y.; Zhang, J.A.; Wu, X.J.; Liang, Y.F.; Lu, Y.B.; Gao, Y.C.; Dai, Y.C.; Yu, S.Y.; Jia, Y.; Fu, X.X.; Rao, X.; Xu, J.F.; Zhong, J. IL-6 inhibition reduces STAT3 activation and enhances the antitumor effect of carboplatin. Mediators Inflamm., 2016, 20168026494
[http://dx.doi.org/10.1155/2016/8026494] [PMID: 27006530]
[59]
Wu, F.L.; Li, R.T.; Yang, M.; Yue, G.F.; Wang, H.Y.; Liu, Q.; Cui, F.B.; Wu, P.Y.; Ding, H.; Yu, L.X.; Qian, X.P.; Liu, B.R. Gelatinases-stimuli nanoparticles encapsulating 5-fluorouridine and 5-aza-2¢-deoxycytidine enhance the sensitivity of gastric cancer cells to chemical therapeutics. Cancer Lett., 2015, 363(1), 7-16.
[http://dx.doi.org/10.1016/j.canlet.2015.01.006] [PMID: 25592042]
[60]
Urbinati, G.; Marsaud, V.; Plassat, V.; Fattal, E.; Lesieur, S.; Renoir, J.M. Liposomes loaded with histone deacetylase inhibitors for breast cancer therapy. Int. J. Pharm., 2010, 397(1-2), 184-193.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.046] [PMID: 20603204]
[61]
Li, Y.; Cheng, H.; Xu, W.; Tian, X.; Li, X.; Zhu, C. Expression of robo protein in bladder cancer tissues and its effect on the growth of cancer cells by blocking Robo protein. Int. J. Clin. Exp. Pathol., 2015, 8(9), 9932-9940.
[PMID: 26617702]
[62]
Cramer, S.A.; Adjei, I.M.; Labhasetwar, V. Advancements in the delivery of epigenetic drugs. Expert Opin. Drug Deliv., 2015, 12(9), 1501-1512.
[http://dx.doi.org/10.1517/17425247.2015.1021678] [PMID: 25739728]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy