Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Review and Comparative Analysis of Machine Learning-based Predictors for Predicting and Analyzing Anti-angiogenic Peptides

Author(s): Phasit Charoenkwan, Wararat Chiangjong, Md Mehedi Hasan, Chanin Nantasenamat and Watshara Shoombuatong*

Volume 29, Issue 5, 2022

Published on: 05 January, 2022

Page: [849 - 864] Pages: 16

DOI: 10.2174/0929867328666210810145806

Price: $65

conference banner
Abstract

Cancer is one of the leading causes of death worldwide and the underlying angiogenesis represents one of the hallmarks of cancer. Efforts are already under way for the discovery of anti-angiogenic peptides (AAPs) as a promising therapeutic route, which tackle the formation of new blood vessels. As such, the identification of AAPs constitutes a viable path for understanding their mechanistic properties pertinent for the discovery of new anti-cancer drugs. In spite of the abundance of peptide sequences in public databases, experimental efforts in the identification of anti-angiogenic peptides have progressed very slowly owing to high expenditures and laborious nature. Owing to its inherent ability to make sense of large volumes of data, machine learning (ML) represents a lucrative technique that can be harnessed for peptide-based drug discovery. In this review, we conducted a comprehensive and comparative analysis of ML-based AAP predictors in terms of their employed feature descriptors, ML algorithms, cross-validation methods and prediction performance. Moreover, the common framework of these AAP predictors and their inherent weaknesses are also discussed. Particularly, we explore future perspectives for improving the prediction accuracy and model interpretability, which represent an interesting avenue for overcoming some of the inherent weaknesses of existing AAP predictors. We anticipate that this review would assist researchers in the rapid screening and identification of promising AAPs for clinical use.

Keywords: Anti-angiogenic peptides, therapeutic peptides, classification, machine learning, feature representation, feature selection.

[1]
Hanahan, D; Weinberg, RA Hallmarks of cancer: the next generation. cell, 2011, 144, 646-674.
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[3]
Pearce, A.; Haas, M.; Viney, R.; Pearson, S-A.; Haywood, P.; Brown, C.; Ward, R. Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study. PLoS One, 2017, 12(10)e0184360
[http://dx.doi.org/10.1371/journal.pone.0184360] [PMID: 29016607]
[4]
Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther., 2016, 38(7), 1551-1566.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[5]
Adair, T.H.; Montani, J-P. Angiogenesis.In: Colloquium series on integrated systems physiology: from molecule to function; Morgan & Claypool Life Sciences, 2010, pp. 1-84.
[6]
Dimova, I.; Popivanov, G.; Djonov, V. Angiogenesis in cancer - general pathways and their therapeutic implications. J. BUON, 2014, 19(1), 15-21.
[PMID: 24659637]
[7]
Ribatti, D. The history of angiogenesis inhibitors. Leukemia, 2007, 21(8), 1606-1609.
[http://dx.doi.org/10.1038/sj.leu.2404756] [PMID: 17637715]
[8]
Ferrara, N.; Adamis, A.P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov., 2016, 15(6), 385-403.
[http://dx.doi.org/10.1038/nrd.2015.17] [PMID: 26775688]
[9]
Li, T.; Kang, G.; Wang, T.; Huang, H. Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol. Lett., 2018, 16(1), 687-702.
[http://dx.doi.org/10.3892/ol.2018.8733] [PMID: 29963134]
[10]
Kerbel, R.S. Tumor angiogenesis: past, present and the near future. Carcinogenesis, 2000, 21(3), 505-515.
[http://dx.doi.org/10.1093/carcin/21.3.505] [PMID: 10688871]
[11]
Blancas, A.A.; Wong, L.E.; Glaser, D.E.; McCloskey, K.E. Specialized tip/stalk-like and phalanx-like endothelial cells from embryonic stem cells. Stem Cells Dev., 2013, 22(9), 1398-1407.
[http://dx.doi.org/10.1089/scd.2012.0376] [PMID: 23249281]
[12]
Jakobsson, L.; Franco, C.A.; Bentley, K.; Collins, R.T.; Ponsioen, B.; Aspalter, I.M.; Rosewell, I.; Busse, M.; Thurston, G.; Medvinsky, A.; Schulte-Merker, S.; Gerhardt, H. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol., 2010, 12(10), 943-953.
[http://dx.doi.org/10.1038/ncb2103] [PMID: 20871601]
[13]
Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[14]
Abdalla, A.M.E.; Xiao, L.; Ullah, M.W.; Yu, M.; Ouyang, C.; Yang, G. Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics, 2018, 8(2), 533-548.
[http://dx.doi.org/10.7150/thno.21674] [PMID: 29290825]
[15]
Rajabi, M.; Mousa, S.A. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(2), 34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[16]
Arif, M.; Ali, F.; Ahmad, S.; Kabir, M.; Ali, Z.; Hayat, M. Pred-BVP-Unb: Fast prediction of bacteriophage Virion proteins using un-biased multi-perspective properties with recursive feature elimination. Genomics, 2020, 112(2), 1565-1574.
[PMID: 31526842]
[17]
Cortés, A.J.; López-Hernández, F. Harnessing Crop wild diversity for climate change adaptation. Genes (Basel), 2021, 12(5), 783.
[http://dx.doi.org/10.3390/genes12050783] [PMID: 34065368]
[18]
Ettayapuram Ramaprasad, A.S.; Singh, S.; Gajendra, PS. R.; Venkatesan, S. AntiAngioPred: a server for prediction of anti-angiogenic peptides. PLoS One, 2015, 10(9)e0136990
[http://dx.doi.org/10.1371/journal.pone.0136990] [PMID: 26335203]
[19]
Blanco, J.L.; Porto-Pazos, A.B.; Pazos, A.; Fernandez-Lozano, C. Prediction of high anti-angiogenic activity peptides in silico using a generalized linear model and feature selection. Sci. Rep., 2018, 8(1), 15688.
[http://dx.doi.org/10.1038/s41598-018-33911-z] [PMID: 30356060]
[20]
Zhang, L.; Yang, R.; Zhang, C. Using a classifier fusion strategy to identify anti-angiogenic peptides. Sci. Rep., 2018, 8(1), 14062.
[http://dx.doi.org/10.1038/s41598-018-32443-w] [PMID: 30218091]
[21]
Zahiri, J.; Khorsand, B.; Yousefi, A.A.; Kargar, M.; Shirali Hossein Zade, R.; Mahdevar, G. AntAngioCOOL: computational detection of anti-angiogenic peptides. J. Transl. Med., 2019, 17(1), 71.
[http://dx.doi.org/10.1186/s12967-019-1813-7] [PMID: 30832671]
[22]
Wei, L.; Zhou, C.; Su, R.; Zou, Q. PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning. Bioinformatics, 2019, 35(21), 4272-4280.
[http://dx.doi.org/10.1093/bioinformatics/btz246] [PMID: 30994882]
[23]
Laengsri, V.; Nantasenamat, C.; Schaduangrat, N.; Nuchnoi, P.; Prachayasittikul, V.; Shoombuatong, W. TargetAntiAngio: A sequence-based tool for the prediction and analysis of anti-angiogenic peptides. Int. J. Mol. Sci., 2019, 20(12), 2950.
[http://dx.doi.org/10.3390/ijms20122950] [PMID: 31212918]
[24]
Zhang, Y.P.; Zou, Q. PPTPP: a novel therapeutic peptide prediction method using physicochemical property encoding and adaptive feature representation learning. Bioinformatics, 2020, 36(13), 3982-3987.
[http://dx.doi.org/10.1093/bioinformatics/btaa275] [PMID: 32348463]
[25]
Boohaker, R.J.; Lee, M.W.; Vishnubhotla, P.; Perez, J.M.; Khaled, A.R. The use of therapeutic peptides to target and to kill cancer cells. Curr. Med. Chem., 2012, 19(22), 3794-3804.
[http://dx.doi.org/10.2174/092986712801661004] [PMID: 22725698]
[26]
Marya, K.H.; Khan, H.; Nabavi, S.M.; Habtemariam, S. Anti-diabetic potential of peptides: Future prospects as therapeutic agents. Life Sci., 2018, 193, 153-158.
[http://dx.doi.org/10.1016/j.lfs.2017.10.025] [PMID: 29055800]
[27]
Recio, C.; Maione, F.; Iqbal, A.J.; Mascolo, N.; De Feo, V. The potential therapeutic application of peptides and peptidomimetics in cardiovascular disease. Front. Pharmacol., 2017, 7, 526-526.
[http://dx.doi.org/10.3389/fphar.2016.00526] [PMID: 28111551]
[28]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194-194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[29]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[30]
Dhanabal, M.; Ramchandran, R.; Waterman, M.J.; Lu, H.; Knebelmann, B.; Segal, M.; Sukhatme, V.P. Endostatin induces endothelial cell apoptosis. J. Biol. Chem., 1999, 274(17), 11721-11726.
[http://dx.doi.org/10.1074/jbc.274.17.11721] [PMID: 10206987]
[31]
Adams, J.C. Thrombospondin-1. Int. J. Biochem. Cell Biol., 1997, 29(6), 861-865.
[http://dx.doi.org/10.1016/S1357-2725(96)00171-9] [PMID: 9304800]
[32]
O’reilly, M.S.; Folkman, M.J. Angiostatin protein.In: Google patents,; , 1997.
[33]
Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005, 69(Suppl. 3), 4-10.
[http://dx.doi.org/10.1159/000088478] [PMID: 16301830]
[34]
Shih, T.; Lindley, C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin. Ther., 2006, 28(11), 1779-1802.
[http://dx.doi.org/10.1016/j.clinthera.2006.11.015] [PMID: 17212999]
[35]
Ben Mousa, A. Sorafenib in the treatment of advanced hepatocellular carcinoma.Saudi journal of gastroenterology : official journal of the Saudi gastroenterology association, 2008, 14, 40-42.,
[36]
Raoul, J.L.; Adhoute, X.; Penaranda, G.; Perrier, H.; Castellani, P.; Oules, V.; Bourlière, M. Sorafenib: Experience and better manage-ment of side effects improve overall survival in hepatocellular carcinoma patients: A real-life retrospective analysis. Liver Cancer, 2019, 8(6), 457-467.
[http://dx.doi.org/10.1159/000497161] [PMID: 31799203]
[37]
Nieberler, M.; Reuning, U.; Reichart, F.; Notni, J.; Wester, H-J.; Schwaiger, M.; Weinmüller, M.; Räder, A.; Steiger, K.; Kessler, H. Exploring the role of RGD-recognizing integrins in cancer. Cancers (Basel), 2017, 9(9), 116.
[http://dx.doi.org/10.3390/cancers9090116] [PMID: 28869579]
[38]
Khalili, P.; Arakelian, A.; Chen, G.; Plunkett, M.L.; Beck, I.; Parry, G.C.; Doñate, F.; Shaw, D.E.; Mazar, A.P.; Rabbani, S.A. A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol. Cancer Ther., 2006, 5(9), 2271-2280.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0100] [PMID: 16985061]
[39]
Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet., 2015, 16(6), 321-332.
[http://dx.doi.org/10.1038/nrg3920] [PMID: 25948244]
[40]
Schrider, D.R.; Kern, A.D. Supervised machine learning for population genetics: a new paradigm. Trends Genet., 2018, 34(4), 301-312.
[http://dx.doi.org/10.1016/j.tig.2017.12.005] [PMID: 29331490]
[41]
Cortés, A.J.; López-Hernández, F.; Osorio-Rodriguez, D. Predicting thermal adaptation by looking into populations’ genomic past. Front. Genet., 2020, 11564515
[http://dx.doi.org/10.3389/fgene.2020.564515] [PMID: 33101385]
[42]
Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics, 2010, 26(5), 680-682.
[http://dx.doi.org/10.1093/bioinformatics/btq003] [PMID: 20053844]
[43]
Hasan, M.M.; Khatun, M.S.; Kurata, H. Large-scale assessment of bioinformatics tools for lysine succinylation sites. Cells, 2019, 8(2), 95.
[http://dx.doi.org/10.3390/cells8020095] [PMID: 30696115]
[44]
Hasan, M.M.; Khatun, M.S.; Mollah, M.N.H.; Yong, C.; Dianjing, G.; Dianjing, G. NTyroSite: Computational identification of protein nitrotyrosine sites using sequence evolutionary features. Molecules, 2018, 23(7), 1667.
[http://dx.doi.org/10.3390/molecules23071667] [PMID: 29987232]
[45]
Hasan, M.M.; Guo, D.; Kurata, H. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information. Mol. Biosyst., 2017, 13(12), 2545-2550.
[http://dx.doi.org/10.1039/C7MB00491E] [PMID: 28990628]
[46]
Hasan, M.M.; Khatun, M.S.; Kurata, H. A comprehensive review of in silico analysis for protein S-sulfenylation sites. Protein Pept. Lett., 2018, 25(9), 815-821.
[http://dx.doi.org/10.2174/0929866525666180905110619] [PMID: 30182830]
[47]
Hasan, M.M.; Khatun, M.S.; Mollah, M.N.H.; Yong, C.; Guo, D. A systematic identification of species-specific protein succinylation sites using joint element features information. Int. J. Nanomedicine, 2017, 12, 6303-6315.
[http://dx.doi.org/10.2147/IJN.S140875] [PMID: 28894368]
[48]
Hasan, M.M.; Kurata, H. GPSuc: Global prediction of generic and species-specific succinylation sites by aggregating multiple sequence features. PLoS One, 2018, 13(10)e0200283
[http://dx.doi.org/10.1371/journal.pone.0200283] [PMID: 30312302]
[49]
Hasan, M.M.; Manavalan, B.; Khatun, M.S.; Kurata, H. i4mC-ROSE, a bioinformatics tool for the identification of DNA N4-methylcytosine sites in the Rosaceae genome. Int. J. Biol. Macromol., 2020, 157, 752-758.
[PMID: 31805335]
[50]
Hasan, M.M.; Manavalan, B.; Khatun, M.S.; Kurata, H. Prediction of S-nitrosylation sites by integrating support vector machines and random forest. Mol. Omics, 2019, 15(6), 451-458.
[http://dx.doi.org/10.1039/C9MO00098D] [PMID: 31710075]
[51]
Hasan, M.M.; Rashid, M.M.; Khatun, M.S.; Kurata, H. Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information. Sci. Rep., 2019, 9(1), 8258.
[http://dx.doi.org/10.1038/s41598-019-44548-x] [PMID: 31164681]
[52]
Hasan, M.M.; Yang, S.; Zhou, Y.; Mollah, M.N.H. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties. Mol. Biosyst., 2016, 12(3), 786-795.
[http://dx.doi.org/10.1039/C5MB00853K] [PMID: 26739209]
[53]
Hasan, M.M.; Zhou, Y.; Lu, X.; Li, J.; Song, J.; Zhang, Z. Computational identification of protein pupylation sites by using profile-based composition of k-spaced amino acid pairs. PLoS One, 2015, 10(6)e0129635
[http://dx.doi.org/10.1371/journal.pone.0129635] [PMID: 26080082]
[54]
Khatun, M.S.; Hasan, M.M.; Kurata, H. PreAIP: Computational prediction of anti-inflammatory peptides by integrating multiple complementary features. Front. Genet., 2019, 10, 129.
[http://dx.doi.org/10.3389/fgene.2019.00129] [PMID: 30891059]
[55]
Khatun, S.; Hasan, M.; Kurata, H. Efficient computational model for identification of antitubercular peptides by integrating amino acid patterns and properties. FEBS Lett., 2019, 593(21), 3029-3039.
[http://dx.doi.org/10.1002/1873-3468.13536] [PMID: 31297788]
[56]
Charoenkwan, P.; Chiangjong, W.; Lee, V.S.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method. Sci. Rep., 2021, 11(1), 3017.
[http://dx.doi.org/10.1038/s41598-021-82513-9] [PMID: 33542286]
[57]
Charoenkwan, P.; Kanthawong, S.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. iDPPIV-SCM: A sequence-based predictor for identifying and analyzing dipeptidyl peptidase IV (DPP-IV) inhibitory peptides using a scoring card method. J. Proteome Res., 2020, 19(10), 4125-4136.
[http://dx.doi.org/10.1021/acs.jproteome.0c00590] [PMID: 32897718]
[58]
Charoenkwan, P.; Kanthawong, S.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. iAMY-SCM: Improved prediction and analysis of amyloid proteins using a scoring card method with propensity scores of dipeptides. Genomics, 2021, 113(1 Pt 2), 689-698.
[http://dx.doi.org/10.1016/j.ygeno.2020.03.019] [PMID: 33017626]
[59]
Charoenkwan, P.; Kanthawong, S.; Schaduangrat, N.; Yana, J.; Shoombuatong, W. PVPred-SCM: Improved prediction and analysis of phage virion proteins using a scoring card method. Cells, 2020, 9(2), 353.
[http://dx.doi.org/10.3390/cells9020353] [PMID: 32028709]
[60]
Charoenkwan, P.; Shoombuatong, W.; Lee, H-C.; Chaijaruwanich, J.; Huang, H-L.; Ho, S-Y. SCMCRYS: predicting protein crystallization using an ensemble scoring card method with estimating propensity scores of P-collocated amino acid pairs. PLoS One, 2013, 8(9)e72368
[http://dx.doi.org/10.1371/journal.pone.0072368] [PMID: 24019868]
[61]
Charoenkwan, P.; Yana, J.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. iUmami-SCM: A novel sequence-based predictor for prediction and analysis of umami peptides using a scoring card method with propensity scores of dipeptides. J. Chem. Inf. Model., 2020, 60(12), 6666-6678.
[http://dx.doi.org/10.1021/acs.jcim.0c00707] [PMID: 33094610]
[62]
Charoenkwan, P.; Yana, J.; Schaduangrat, N.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. iBitter-SCM: Identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides. Genomics, 2020, 112(4), 2813-2822.
[http://dx.doi.org/10.1016/j.ygeno.2020.03.019] [PMID: 32234434]
[63]
Charton, M.; Charton, B.I. The dependence of the Chou-Fasman parameters on amino acid side chain structure. J. Theor. Biol., 1983, 102(1), 121-134.
[http://dx.doi.org/10.1016/0022-5193(83)90265-5] [PMID: 6876837]
[64]
Boopathi, V.; Subramaniyam, S.; Malik, A.; Lee, G.; Manavalan, B.; Yang, D-C. mACPpred: a support vector machine-based meta-predictor for identification of anticancer peptides. Int. J. Mol. Sci., 2019, 20(8), 1964.
[http://dx.doi.org/10.3390/ijms20081964] [PMID: 31013619]
[65]
Manavalan, B.; Basith, S.; Shin, T.H.; Wei, L.; Lee, G. mAHTPred: a sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation. Bioinformatics, 2019, 35(16), 2757-2765.
[http://dx.doi.org/10.1093/bioinformatics/bty1047] [PMID: 30590410]
[66]
Manavalan, B.; Basith, S.; Shin, T.H.; Wei, L.; Lee, G. AtbPpred: A robust sequence-based prediction of anti-tubercular peptides using extremely randomized trees. Comput. Struct. Biotechnol. J., 2019, 17, 972-981.
[http://dx.doi.org/10.1016/j.csbj.2019.06.024] [PMID: 31372196]
[67]
Basith, S.; Manavalan, B.; Shin, T.H.; Lee, G. iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree. Comput. Struct. Biotechnol. J., 2018, 16, 412-420.
[http://dx.doi.org/10.1016/j.csbj.2018.10.007] [PMID: 30425802]
[68]
Manavalan, B.; Shin, T.H.; Kim, M.O.; Lee, G. PIP-EL: A new ensemble learning method for improved proinflammatory peptide predictions. Front. Immunol., 2018, 9, 1783.
[http://dx.doi.org/10.3389/fimmu.2018.01783] [PMID: 30108593]
[69]
Manavalan, B.; Basith, S.; Shin, T.H.; Lee, D.Y.; Wei, L.; Lee, G. 4mCpred-EL: An ensemble learning framework for identification of DNA N4-methylcytosine sites in the mouse genome. Cells, 2019, 8(11), 1332.
[http://dx.doi.org/10.3390/cells8111332] [PMID: 31661923]
[70]
Basith, S.; Manavalan, B.; Hwan Shin, T.; Lee, G. Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening. Med. Res. Rev., 2020, 40(4), 1276-1314.
[http://dx.doi.org/10.1002/med.21658] [PMID: 31922268]
[71]
Basith, S.; Manavalan, B.; Shin, T.H.; Lee, G. SDM6A: A web-based integrative machine-learning framework for predicting 6mA sites in the rice genome. Mol. Ther. Nucleic Acids, 2019, 18, 131-141.
[http://dx.doi.org/10.1016/j.omtn.2019.08.011] [PMID: 31542696]
[72]
Breiman, L. Random forests. Mach. Learn., 2001, 45, 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[73]
Breiman, L. Classification and regression trees; Routledge, 2017, p. 368.
[http://dx.doi.org/10.1201/9781315139470]
[74]
Manavalan, B.; Basith, S.; Shin, T.H.; Wei, L.; Lee, G. Meta-4mCpred: A sequence-based meta-predictor for accurate DNA 4mC site prediction using effective feature representation. Mol. Ther. Nucleic Acids, 2019, 16, 733-744.
[http://dx.doi.org/10.1016/j.omtn.2019.04.019] [PMID: 31146255]
[75]
Manavalan, B.; Basith, S.; Shin, T.H.; Choi, S.; Kim, M.O.; Lee, G. MLACP: machine-learning-based prediction of anticancer peptides. Oncotarget, 2017, 8(44), 77121-77136.
[http://dx.doi.org/10.18632/oncotarget.20365] [PMID: 29100375]
[76]
Manavalan, B.; Lee, J. SVMQA: support-vector-machine-based protein single-model quality assessment. Bioinformatics, 2017, 33(16), 2496-2503.
[http://dx.doi.org/10.1093/bioinformatics/btx222] [PMID: 28419290]
[77]
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20, 273-297.
[http://dx.doi.org/10.1007/BF00994018]
[78]
Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.J.; Vapnik, V. Support vector regression machines. In: Advances in neural information processing systems; , 1997, pp. 155-161.
[79]
Wei, L.; Zhou, C.; Chen, H.; Song, J.; Su, R. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics, 2018, 34(23), 4007-4016.
[http://dx.doi.org/10.1093/bioinformatics/bty451] [PMID: 29868903]
[80]
Rao, B.; Zhou, C.; Zhang, G.; Su, R.; Wei, L. ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides. Brief. Bioinform., 2020, 21(5), 1846-1855.
[http://dx.doi.org/10.1093/bib/bbz088] [PMID: 31729528]
[81]
Manavalan, B.; Basith, S.; Shin, T.H.; Wei, L.; Lee, G. mAHTPred: a sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation. Bioinformatics, 2019, 35(16), 2757-2765.
[PMID: 30590410]
[82]
Hasan, M.M.; Basith, S.; Khatun, M.S.; Lee, G.; Manavalan, B.; Kurata, H. Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework. Brief. Bioinform.,, 2020, 22(3), bbaa202.
[PMID: 32910169]
[83]
Charoenkwan, P.; Chiangjong, W.; Nantasenamat, C.; Hasan, M.M.; Manavalan, B.; Shoombuatong, W. StackIL6: a stacking ensemble model for improving the prediction of IL-6 inducing peptides. Brief. Bioinform., 2021, bbab172.
[http://dx.doi.org/10.1093/bib/bbab172] [PMID: 33963832]
[84]
Su, R.; Hu, J.; Zou, Q.; Manavalan, B.; Wei, L. Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools. Brief. Bioinform., 2020, 21(2), 408-420.
[http://dx.doi.org/10.1093/bib/bby124] [PMID: 30649170]
[85]
Su, Z-D.; Huang, Y.; Zhang, Z-Y.; Zhao, Y-W.; Wang, D.; Chen, W.; Chou, K-C.; Lin, H. iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics, 2018, 34(24), 4196-4204.
[http://dx.doi.org/10.1093/bioinformatics/bty508] [PMID: 29931187]
[86]
Wei, L.; Su, R.; Luan, S.; Liao, Z.; Manavalan, B.; Zou, Q.; Shi, X. Iterative feature representations improve N4-methylcytosine site prediction. Bioinformatics, 2019, 35(23), 4930-4937.
[http://dx.doi.org/10.1093/bioinformatics/btz408] [PMID: 31099381]
[87]
Xu, Z-C.; Feng, P-M.; Yang, H.; Qiu, W-R.; Chen, W.; Lin, H. iRNAD: a computational tool for identifying D modification sites in RNA sequence. Bioinformatics, 2019, 35(23), 4922-4929.
[http://dx.doi.org/10.1093/bioinformatics/btz358] [PMID: 31077296]
[88]
Zhang, Z-Y.; Yang, Y-H.; Ding, H.; Wang, D.; Chen, W.; Lin, H. Design powerful predictor for mRNA subcellular location prediction in Homo sapiens. Brief. Bioinform., 2021, 22(1), 526-535.
[http://dx.doi.org/10.1093/bib/bbz177] [PMID: 31994694]
[89]
Zhu, X-J.; Feng, C-Q.; Lai, H-Y.; Chen, W.; Hao, L. Predicting protein structural classes for low-similarity sequences by evaluating different features. Knowl. Base. Syst., 2019, 163, 787-793.
[http://dx.doi.org/10.1016/j.knosys.2018.10.007]
[90]
Cao, D-S.; Xiao, N.; Xu, Q-S.; Chen, A.F. Rcpi: R/Bioconductor package to generate various descriptors of proteins, compounds and their interactions. Bioinformatics, 2015, 31(2), 279-281.
[http://dx.doi.org/10.1093/bioinformatics/btu624] [PMID: 25246429]
[91]
Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; Hornik, K.; Hothorn, T.; Huber, W.; Iacus, S.; Irizarry, R.; Leisch, F.; Li, C.; Maechler, M.; Rossini, A.J.; Sawitzki, G.; Smith, C.; Smyth, G.; Tierney, L.; Yang, J.Y.; Zhang, J. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol., 2004, 5(10), R80.
[http://dx.doi.org/10.1186/gb-2004-5-10-r80] [PMID: 15461798]
[92]
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw., 2008, 28, 1-26.
[http://dx.doi.org/10.18637/jss.v028.i05]
[93]
Thakur, N.; Qureshi, A.; Kumar, M. AVPpred: collection and prediction of highly effective antiviral peptides.Nucleic Acids Res.,, 2012, 40(Web Server issue), W199-204.
[http://dx.doi.org/10.1093/nar/gks450] [PMID: 22638580]
[94]
Lata, S.; Sharma, B.K.; Raghava, G.P. Analysis and prediction of antibacterial peptides. BMC Bioinformatics, 2007, 8, 263.
[http://dx.doi.org/10.1186/1471-2105-8-263] [PMID: 17645800]
[95]
Manavalan, B.; Shin, T.H.; Kim, M.O.; Lee, G. AIPpred: sequence-based prediction of anti-inflammatory peptides using random forest. Front. Pharmacol., 2018, 9, 276.
[http://dx.doi.org/10.3389/fphar.2018.00276] [PMID: 29636690]
[96]
Wei, L.; Xing, P.; Su, R.; Shi, G.; Ma, Z.S.; Zou, Q. CPPred-RF: a sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency. J. Proteome Res., 2017, 16(5), 2044-2053.
[http://dx.doi.org/10.1021/acs.jproteome.7b00019] [PMID: 28436664]
[97]
Rajput, A.; Gupta, A.K.; Kumar, M. Prediction and analysis of quorum sensing peptides based on sequence features. PLoS One, 2015, 10(3)e0120066
[http://dx.doi.org/10.1371/journal.pone.0120066] [PMID: 25781990]
[98]
Li, N; Kang, J; Jiang, L; He, B; Lin, H; Huang, J. PSBinder: a web service for predicting polystyrene surface-binding peptides.BioMed research international, 2017,, 2017.
[http://dx.doi.org/10.1155/2017/5761517]
[99]
Hayashi, Y.; Yasugi, F.; Arai, M. Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase. PLoS One, 2015, 10(4), e0122217-e0122217.
[http://dx.doi.org/10.1371/journal.pone.0122217] [PMID: 25837679]
[100]
O'Reilly, MS; Boehm, T; Shing, Y; Fukai, N; Vasios, G; Lane, WS; Flynn, E; Birkhead, JR; Olsen, BR; Folkman, J Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. cell,, 1997, 88, 277-285.
[101]
Hiraki, Y.; Mitsui, K.; Endo, N.; Takahashi, K.; Hayami, T.; Inoue, H.; Shukunami, C.; Tokunaga, K.; Kono, T.; Yamada, M.; Takahashi, H.E.; Kondo, J. Molecular cloning of human chondromodulin-I, a cartilage-derived growth modulating factor, and its expression in Chinese hamster ovary cells. Eur. J. Biochem., 1999, 260(3), 869-878.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00227.x] [PMID: 10103018]
[102]
Miura, S.; Kondo, J.; Kawakami, T.; Shukunami, C.; Aimoto, S.; Tanaka, H.; Hiraki, Y. Synthetic disulfide-bridged cyclic peptides mimic the anti-angiogenic actions of chondromodulin-I. Cancer Sci., 2012, 103(7), 1311-1318.
[http://dx.doi.org/10.1111/j.1349-7006.2012.02276.x] [PMID: 22429838]
[103]
Yang, X.; Cai, W.; Xu, Z.; Chen, J.; Li, C.; Liu, S.; Yang, Z.; Pan, Q.; Li, M.; Ma, J.; Gao, G. High efficacy and minimal peptide required for the anti-angiogenic and anti-hepatocarcinoma activities of plasminogen K5. J. Cell. Mol. Med., 2010, 14(10), 2519-2530.
[http://dx.doi.org/10.1111/j.1582-4934.2009.01004.x] [PMID: 20050964]
[104]
Hohenester, E.; Sasaki, T.; Olsen, B.R.; Timpl, R. Crystal structure of the angiogenesis inhibitor endostatin at 1.5 A resolution. EMBO J., 1998, 17(6), 1656-1664.
[http://dx.doi.org/10.1093/emboj/17.6.1656] [PMID: 9501087]
[105]
Taraboletti, G.; Roberts, D.D.; Liotta, L.A. Thrombospondin-induced tumor cell migration: haptotaxis and chemotaxis are mediated by different molecular domains. J. Cell Biol., 1987, 105(5), 2409-2415.
[http://dx.doi.org/10.1083/jcb.105.5.2409] [PMID: 3680388]
[106]
Oshima, Y.; Sato, K.; Tashiro, F.; Miyazaki, J.; Nishida, K.; Hiraki, Y.; Tano, Y.; Shukunami, C. Anti-angiogenic action of the C-terminal domain of tenomodulin that shares homology with chondromodulin-I. J. Cell Sci., 2004, 117(Pt 13), 2731-2744.
[http://dx.doi.org/10.1242/jcs.01112] [PMID: 15150318]
[107]
Cemazar, M.; Kwon, S.; Mahatmanto, T.; Ravipati, A.S.; Craik, D.J. Discovery and applications of disulfide-rich cyclic peptides. Curr. Top. Med. Chem., 2012, 12(14), 1534-1545.
[http://dx.doi.org/10.2174/156802612802652484] [PMID: 22827522]
[108]
Chan, L.Y.; Craik, D.J.; Daly, N.L. Cyclic thrombospondin-1 mimetics: grafting of a thrombospondin sequence into circular disulfide-rich frameworks to inhibit endothelial cell migration. Biosci. Rep., 2015, 35(6), 35.
[http://dx.doi.org/10.1042/BSR20150210] [PMID: 26464514]
[109]
Chan, L.Y.; Craik, D.J.; Daly, N.L. Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy. Sci. Rep., 2016, 6, 35347.
[http://dx.doi.org/10.1038/srep35347] [PMID: 27734947]
[110]
Millward, S.W.; Fiacco, S.; Austin, R.J.; Roberts, R.W. Design of cyclic peptides that bind protein surfaces with antibody-like affinity. ACS Chem. Biol., 2007, 2(9), 625-634.
[http://dx.doi.org/10.1021/cb7001126] [PMID: 17894440]
[111]
Eikesdal, H.P.; Sugimoto, H.; Birrane, G.; Maeshima, Y.; Cooke, V.G.; Kieran, M.; Kalluri, R. Identification of amino acids essential for the antiangiogenic activity of tumstatin and its use in combination antitumor activity. Proc. Natl. Acad. Sci. USA, 2008, 105(39), 15040-15045.
[http://dx.doi.org/10.1073/pnas.0807055105] [PMID: 18818312]
[112]
Xiong, Y.; Fru, M.F.; Yu, Y.; Montani, J-P.; Ming, X-F.; Yang, Z. Long term exposure to L-arginine accelerates endothelial cell senescence through arginase-II and S6K1 signaling. Aging (Albany NY), 2014, 6(5), 369-379.
[http://dx.doi.org/10.18632/aging.100663] [PMID: 24860943]
[113]
Chae, C.B.; Bae, D.G.; Yoon, W.H. Arginine-rich antivascular endothelial growth factor peptides that inhibit growth and metastasis of human tumor cells by blocking angiogenesis. J. Biol. Chem., 2000, 275(18), 13588-96.
[114]
Buerkle, M.A.; Pahernik, S.A.; Sutter, A.; Jonczyk, A.; Messmer, K.; Dellian, M. Inhibition of the alpha-ν integrins with a cyclic RGD peptide impairs angiogenesis, growth and metastasis of solid tumours in vivo. Br. J. Cancer, 2002, 86(5), 788-795.
[http://dx.doi.org/10.1038/sj.bjc.6600141] [PMID: 11875744]
[115]
Xu, H.; Pan, L.; Ren, Y.; Yang, Y.; Huang, X.; Liu, Z. RGD-modified angiogenesis inhibitor HM-3 dose: dual function during cancer treatment. Bioconjug. Chem., 2011, 22(7), 1386-1393.
[http://dx.doi.org/10.1021/bc2000929] [PMID: 21668003]
[116]
Li, Y.; Wang, J.; Gao, Y.; Zhu, J.; Wientjes, M.G.; Au, J.L-S. Relationships between liposome properties, cell membrane binding, intracellular processing, and intracellular bioavailability. AAPS J., 2011, 13(4), 585-597.
[http://dx.doi.org/10.1208/s12248-011-9298-1] [PMID: 21904966]
[117]
Al-Abd, A.M.; Alamoudi, A.J.; Abdel-Naim, A.B.; Neamatallah, T.A.; Ashour, O.M. Anti-angiogenic agents for the treatment of solid tumors: Potential pathways, therapy and current strategies - A review. J. Adv. Res., 2017, 8(6), 591-605.
[http://dx.doi.org/10.1016/j.jare.2017.06.006] [PMID: 28808589]
[118]
Rege, T.A.; Fears, C.Y.; Gladson, C.L. Endogenous inhibitors of angiogenesis in malignant gliomas: nature’s antiangiogenic therapy. Neuro-oncol., 2005, 7(2), 106-121.
[http://dx.doi.org/10.1215/S115285170400119X] [PMID: 15831230]
[119]
Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; Vredenburgh, J.; Huang, J.; Zheng, M.; Cloughesy, T. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol., 2009, 27(28), 4733-4740.
[http://dx.doi.org/10.1200/JCO.2008.19.8721] [PMID: 19720927]
[120]
Portielje, J.E.; Kruit, W.H.; Schuler, M.; Beck, J.; Lamers, C.H.; Stoter, G.; Huber, C.; de Boer-Dennert, M.; Rakhit, A.; Bolhuis, R.L.; Aulitzky, W.E. Phase I study of subcutaneously administered recombinant human interleukin 12 in patients with advanced renal cell cancer. Clin. Cancer Res., 1999, 5(12), 3983-3989.
[PMID: 10632329]
[121]
Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347), 298-307.
[http://dx.doi.org/10.1038/nature10144] [PMID: 21593862]
[122]
Miyazawa, M.; Katsuda, M.; Maguchi, H.; Katanuma, A.; Ishii, H.; Ozaka, M.; Yamao, K.; Imaoka, H.; Kawai, M.; Hirono, S.; Okada, K.I.; Yamaue, H. Phase II clinical trial using novel peptide cocktail vaccine as a postoperative adjuvant treatment for surgically resected pancreatic cancer patients. Int. J. Cancer, 2017, 140(4), 973-982.
[http://dx.doi.org/10.1002/ijc.30510] [PMID: 27861852]
[123]
Suzuki, H.; Fukuhara, M.; Yamaura, T.; Mutoh, S.; Okabe, N.; Yaginuma, H.; Hasegawa, T.; Yonechi, A.; Osugi, J.; Hoshino, M.; Kimura, T.; Higuchi, M.; Shio, Y.; Ise, K.; Takeda, K.; Gotoh, M. Multiple therapeutic peptide vaccines consisting of combined novel cancer testis antigens and anti-angiogenic peptides for patients with non-small cell lung cancer. J. Transl. Med., 2013, 11, 97.
[http://dx.doi.org/10.1186/1479-5876-11-97] [PMID: 23578144]
[124]
Lv, H.; Zhang, Z-M.; Li, S-H.; Tan, J-X.; Chen, W.; Lin, H. Evaluation of different computational methods on 5-methylcytosine sites identification. Brief. Bioinform., 2020, 21(3), 982-995.
[PMID: 31157855]
[125]
Lai, H-Y.; Zhang, Z-Y.; Su, Z-D.; Su, W.; Ding, H.; Chen, W.; Lin, H. iProEP: a computational predictor for predicting promoter. Mol. Ther. Nucleic Acids, 2019, 17, 337-346.
[http://dx.doi.org/10.1016/j.omtn.2019.05.028] [PMID: 31299595]
[126]
Dao, F-Y.; Lv, H.; Wang, F.; Feng, C-Q.; Ding, H.; Chen, W.; Lin, H. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics, 2019, 35(12), 2075-2083.
[http://dx.doi.org/10.1093/bioinformatics/bty943] [PMID: 30428009]
[127]
Le, N.Q.K.; Yapp, E.K.Y.; Ho, Q-T.; Nagasundaram, N.; Ou, Y-Y.; Yeh, H-Y. iEnhancer-5Step: Identifying enhancers using hidden information of DNA sequences via Chou’s 5-step rule and word embedding. Anal. Biochem., 2019, 571, 53-61.
[http://dx.doi.org/10.1016/j.ab.2019.02.017] [PMID: 30822398]
[128]
Tahir, M.; Hayat, M.; Chong, K.T. Prediction of N6-methyladenosine sites using convolution neural network model based on distributed feature representations. Neural Netw., 2020, 129, 385-391.
[http://dx.doi.org/10.1016/j.neunet.2020.05.027] [PMID: 32593932]
[129]
Xie, R.; Li, J.; Wang, J.; Dai, W.; Leier, A.; Marquez-Lago, T.T.; Akutsu, T.; Lithgow, T.; Song, J.; Zhang, Y. DeepVF: a deep learning-based hybrid framework for identifying virulence factors using the stacking strategy.Brief Bioinform.,, 2021, 22(3), bbaa125.
[PMID: 32599617]
[130]
Huang, H-L.; Charoenkwan, P.; Kao, T-F.; Lee, H-C.; Chang, F-L.; Huang, W-L.; Ho, S-J.; Shu, L-S.; Chen, W-L.; Ho, S-Y. Prediction and analysis of protein solubility using a novel scoring card method with dipeptide composition.In: BMC bioinformatics; Springer, 2012, p. S3.
[http://dx.doi.org/10.1186/1471-2105-13-S17-S3]
[131]
Hasan, M.M.; Schaduangrat, N.; Basith, S.; Lee, G.; Shoombuatong, W.; Manavalan, B. HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation. Bioinformatics, 2020, 36(11), 3350-3356.
[http://dx.doi.org/10.1093/bioinformatics/btaa160] [PMID: 32145017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy