Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Development of Bioinformatics Tools for microRNA Target Prediction

Author(s): Mst Shamima Khatun, Md Ashad Alam, Watshara Shoombuatong, Md Nurul Haque Mollah, Hiroyuki Kurata* and Md Mehedi Hasan*

Volume 29, Issue 5, 2022

Published on: 04 January, 2022

Page: [865 - 880] Pages: 16

DOI: 10.2174/0929867328666210804090224

Price: $65

Abstract

MicroRNAs (miRNAs) are central players that regulate the post-transcriptional processes of gene expression. Binding of miRNAs to target mRNAs can repress their translation by inducing the degradation or by inhibiting the translation of the target mRNAs. Highthroughput experimental approaches for miRNA target identification are costly and timeconsuming, depending on various factors. It is vitally important to develop bioinformatics methods for accurately predicting miRNA targets. With the increase of RNA sequences in the post-genomic era, bioinformatics methods are being developed for miRNA studies especially for miRNA target prediction. This review summarizes the current development of state-of-the-art bioinformatics tools for miRNA target prediction, points out the progress and limitations of the available miRNA databases, and their working principles. Finally, we discuss the caveat and perspectives of the next-generation algorithms for the prediction of miRNA targets.

Keywords: microRNA, gene expression, NGS, target prediction, machine learning, bioinformatics tools.

[1]
Tömböl, Z.; Szabó, P.M.; Molnár, V.; Wiener, Z.; Tölgyesi, G.; Horányi, J.; Riesz, P.; Reismann, P.; Patócs, A.; Likó, I.; Gaillard, R.C.; Falus, A.; Rácz, K.; Igaz, P. Integrative molecular bioinformatics study of human adrenocortical tumors: microRNA, tissue-specific target prediction, and pathway analysis. Endocr. Relat. Cancer, 2009, 16(3), 895-906.
[http://dx.doi.org/10.1677/ERC-09-0096] [PMID: 19546168]
[2]
Hausser, J.; Berninger, P.; Rodak, C.; Jantscher, Y.; Wirth, S.; Zavolan, M.; Mir, Z. An integrated microRNA expression atlas and target prediction resource. Nucleic acids research,, 2009, 37, 266-272.
[http://dx.doi.org/10.1093/nar/gkp412]
[3]
Bandyopadhyay, S.; Mitra, R. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics, 2009, 25(20), 2625-2631.
[http://dx.doi.org/10.1093/bioinformatics/btp503] [PMID: 19692556]
[4]
Watanabe, Y.; Tomita, M.; Kanai, A. Computational methods for microRNA target prediction. Methods Enzymol., 2007, 427, 65-86.
[http://dx.doi.org/10.1016/S0076-6879(07)27004-1] [PMID: 17720479]
[5]
Chaudhuri, K.; Chatterjee, R. MicroRNA detection and target prediction: Integration of computational and experimental approaches. DNA Cell Biol., 2007, 26(5), 321-337.
[http://dx.doi.org/10.1089/dna.2006.0549] [PMID: 17504028]
[6]
Witkos, T.M.; Koscianska, E.; Krzyzosiak, W.J. Practical aspects of microRNA target prediction. Curr. Mol. Med., 2011, 11(2), 93-109.
[http://dx.doi.org/10.2174/156652411794859250] [PMID: 21342132]
[7]
Marín, R.M.; Vanícek, J. Efficient use of accessibility in microRNA target prediction. Nucleic Acids Res., 2011, 39(1), 19-29.
[http://dx.doi.org/10.1093/nar/gkq768] [PMID: 20805242]
[8]
Kast, J. A quick reality check for microRNA target prediction. Expert Rev. Proteomics, 2011, 8(2), 149-152.
[http://dx.doi.org/10.1586/epr.11.18] [PMID: 21501007]
[9]
Deng, N.; Puetter, A.; Zhang, K.; Johnson, K.; Zhao, Z.; Taylor, C.; Flemington, E.K.; Zhu, D. Isoform-level microRNA-155 target prediction using RNA-seq. Nucleic Acids Res., 2011, 39(9)e61
[http://dx.doi.org/10.1093/nar/gkr042] [PMID: 21317189]
[10]
Ghoshal, A.; Shankar, R.; Bagchi, S.; Grama, A.; Chaterji, S. MicroRNA target prediction using thermodynamic and sequence curves. BMC Genomics, 2015, 16, 999.
[http://dx.doi.org/10.1186/s12864-015-1933-2] [PMID: 26608597]
[11]
Chen, J.; Sun, D.; Chu, H.; Gong, Z.; Zhang, C.; Gong, B.; Li, Y.; Li, N.; Jiang, L. Screening of differential microRNA expression in gastric signet ring cell carcinoma and gastric adenocarcinoma and target gene prediction. Oncol. Rep., 2015, 33(6), 2963-2971.
[http://dx.doi.org/10.3892/or.2015.3935] [PMID: 25964059]
[12]
Wang, F.; Chan, L.W.; Law, H.K.; Cho, W.C.; Tang, P.; Yu, J.; Shyu, C.R.; Wong, S.C.; Yip, S.P.; Yung, B.Y. Exploring microRNA-mediated alteration of EGFR signaling pathway in non-small cell lung cancer using an mRNA:miRNA regression model supported by target prediction databases. Genomics, 2014, 104(6 Pt B), 504-511.
[http://dx.doi.org/10.1016/j.ygeno.2014.09.004] [PMID: 25257143]
[13]
Ritchie, W.; Rasko, J.E.; Flamant, S. MicroRNA target prediction and validation. Adv. Exp. Med. Biol., 2013, 774, 39-53.
[http://dx.doi.org/10.1007/978-94-007-5590-1_3] [PMID: 23377967]
[14]
Pinzón, N.; Li, B.; Martinez, L.; Sergeeva, A.; Presumey, J.; Apparailly, F.; Seitz, H. microRNA target prediction programs predict many false positives. Genome Res., 2017, 27(2), 234-245.
[http://dx.doi.org/10.1101/gr.205146.116] [PMID: 28148562]
[15]
Le, D.H.; Verbeke, L.; Son, L.H.; Chu, D.T.; Pham, V.H. Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs. BMC Bioinformatics, 2017, 18(1), 479.
[http://dx.doi.org/10.1186/s12859-017-1924-1] [PMID: 29137601]
[16]
Bong, I.P.N.; Ng, C.C.; Baharuddin, P.; Zakaria, Z. MicroRNA expression patterns and target prediction in multiple myeloma development and malignancy. Genes Genomics, 2017, 39(5), 533-540.
[http://dx.doi.org/10.1007/s13258-017-0518-7] [PMID: 28458781]
[17]
Hamzeiy, H.; Allmer, J.; Yousef, M. Computational methods for microRNA target prediction. Methods Mol. Biol., 2014, 1107, 207-221.
[http://dx.doi.org/10.1007/978-1-62703-748-8_12] [PMID: 24272439]
[18]
Oliveira, C.; Faoro, H.; Alves, L.R.; Goldenberg, S. RNA-binding proteins and their role in the regulation of gene expression in Trypanosoma cruzi and Saccharomyces cerevisiae. Genet. Mol. Biol., 2017, 40(1), 22-30.
[http://dx.doi.org/10.1590/1678-4685-gmb-2016-0258] [PMID: 28463381]
[19]
Yue, D.; Liu, H.; Huang, Y. Survey of computational algorithms for MicroRNA target prediction. Curr. Genomics, 2009, 10(7), 478-492.
[http://dx.doi.org/10.2174/138920209789208219] [PMID: 20436875]
[20]
Wang, H.; Li, W.H. Increasing MicroRNA target prediction confidence by the relative R(2) method. J. Theor. Biol., 2009, 259(4), 793-798.
[http://dx.doi.org/10.1016/j.jtbi.2009.05.007] [PMID: 19463832]
[21]
Wang, X.; Wang, X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res., 2006, 34(5), 1646-1652.
[http://dx.doi.org/10.1093/nar/gkl068] [PMID: 16549876]
[22]
Hakguder, Z.; Shu, J.; Liao, C.; Pan, K.; Cui, J. Genome-scale MicroRNA target prediction through clustering with Dirichlet process mixture model. BMC Genomics, 2018, 19(Suppl. 7), 658.
[http://dx.doi.org/10.1186/s12864-018-5029-7] [PMID: 30255782]
[23]
Wu, J.; Wang, B.; Zhou, J.; Ji, F. MicroRNA target gene prediction of ischemic stroke by using variational Bayesian inference for Gauss mixture model. Exp. Ther. Med., 2019, 17(4), 2734-2740.
[http://dx.doi.org/10.3892/etm.2019.7262] [PMID: 30906463]
[24]
Liu, W.; Wang, X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol., 2019, 20(1), 18.
[http://dx.doi.org/10.1186/s13059-019-1629-z] [PMID: 30670076]
[25]
Oliveira, A.C.; Bovolenta, L.A.; Nachtigall, P.G.; Herkenhoff, M.E.; Lemke, N.; Pinhal, D. Combining results from distinct microRNA target prediction tools enhances the performance of analyses. Front. Genet., 2017, 8, 59.
[http://dx.doi.org/10.3389/fgene.2017.00059] [PMID: 28559915]
[26]
Loganantharaj, R.; Randall, T.A. The limitations of existing approaches in improving microRNA target prediction accuracy. Methods Mol. Biol., 2017, 1617, 133-158.
[http://dx.doi.org/10.1007/978-1-4939-7046-9_10] [PMID: 28540682]
[27]
Ma, X.; Zhu, Y.; Huang, Y.; Tegeler, T.; Gao, S.J.; Zhang, J. Quantitative proteomic approach for microRNA target prediction based on 18O/16O labeling. Cancer Inform., 2016, 14(Suppl. 5), 163-173.
[PMID: 27980386]
[28]
Chen, R.; Shi, Y.H.; Zhang, H.; Hu, J.Y.; Luo, Y. Systematic prediction of target genes and pathways in cervical cancer from microRNA expression data. Oncol. Lett., 2018, 15(6), 9994-10000.
[http://dx.doi.org/10.3892/ol.2018.8566] [PMID: 29928371]
[29]
Torkey, H.; Heath, L.S.; ElHefnawi, M. MicroTarget: MicroRNA target gene prediction approach with application to breast cancer. J. Bioinform. Comput. Biol., 2017, 15(4)1750013
[http://dx.doi.org/10.1142/S0219720017500135] [PMID: 28552033]
[30]
Roberts, J.T.; Borchert, G.M. Computational prediction of MicroRNA target genes, target prediction databases, and web resources. Methods Mol. Biol., 2017, 1617, 109-122.
[http://dx.doi.org/10.1007/978-1-4939-7046-9_8] [PMID: 28540680]
[31]
Yu, S.; Kim, J.; Min, H.; Yoon, S. Ensemble learning can significantly improve human microRNA target prediction. Methods, 2014, 69(3), 220-229.
[http://dx.doi.org/10.1016/j.ymeth.2014.07.008] [PMID: 25088780]
[32]
Wagner, M.; Vicinus, B.; Frick, V.O.; Auchtor, M.; Rubie, C.; Jeanmonod, P.; Richards, T.A.; Linder, R.; Weichert, F. MicroRNA target prediction: Theory and practice. Mol. Genet. Genomics, 2014, 289(6), 1085-1101.
[http://dx.doi.org/10.1007/s00438-014-0871-z] [PMID: 24938624]
[33]
Peterson, S.M.; Thompson, J.A.; Ufkin, M.L.; Sathyanarayana, P.; Liaw, L.; Congdon, C.B. Common features of microRNA target prediction tools. Front. Genet., 2014, 5, 23.
[http://dx.doi.org/10.3389/fgene.2014.00023] [PMID: 24600468]
[34]
Ekimler, S.; Sahin, K. Computational methods for microRNA target prediction. Genes (Basel), 2014, 5(3), 671-683.
[http://dx.doi.org/10.3390/genes5030671] [PMID: 25153283]
[35]
Bagnacani, A.; Wolfien, M.; Wolkenhauer, O. Tools for understanding miRNA-mRNA interactions for reproducible RNA analysis. Methods Mol. Biol., 2019, 1912, 199-214.
[http://dx.doi.org/10.1007/978-1-4939-8982-9_8] [PMID: 30635895]
[36]
Bertino, J.R.; Banerjee, D.; Mishra, P.J. Pharmacogenomics of microRNA: A miRSNP towards individualized therapy. Pharmacogenomics, 2007, 8(12), 1625-1627.
[http://dx.doi.org/10.2217/14622416.8.12.1625] [PMID: 18085993]
[37]
Brown, J.A.; Bourke, E. Practical bioinformatics analysis of MiRNA data using online tools. Methods Mol. Biol., 2017, 1509, 195-208.
[http://dx.doi.org/10.1007/978-1-4939-6524-3_18] [PMID: 27826929]
[38]
Canturk, K.M.; Ozdemir, M.; Can, C.; Öner, S.; Emre, R.; Aslan, H.; Cilingir, O.; Ciftci, E.; Celayir, F.M.; Aldemir, O.; Özen, M.; Artan, S. Investigation of key miRNAs and target genes in bladder cancer using miRNA profiling and bioinformatic tools. Mol. Biol. Rep., 2014, 41(12), 8127-8135.
[http://dx.doi.org/10.1007/s11033-014-3713-5] [PMID: 25189652]
[39]
Chen, L.; Heikkinen, L.; Wang, C.; Yang, Y.; Sun, H.; Wong, G. Trends in the development of miRNA bioinformatics tools. Brief. Bioinform., 2019, 20(5), 1836-1852.
[http://dx.doi.org/10.1093/bib/bby054] [PMID: 29982332]
[40]
Dai, E.; Lv, Y.; Meng, F.; Yu, X.; Zhang, Y.; Wang, S.; Liu, X.; Liu, D.; Wang, J.; Li, X.; Jiang, W. CREAM: a database for chemotherapy resistance-associated miRSNP. Cell Death Dis., 2014, 5e1272
[http://dx.doi.org/10.1038/cddis.2014.236] [PMID: 24874743]
[41]
Wang, W.; Guan, X.; Khan, M.T.; Xiong, Y.; Wei, D.Q. LMI-DForest: A deep forest model towards the prediction of lncRNA-miRNA interactions. Comput. Biol. Chem., 2020, 89107406
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107406] [PMID: 33120126]
[42]
Gaca, S.; Reichert, S.; Rödel, C.; Rödel, F.; Kreuter, J. Survivin-miRNA-loaded nanoparticles as auxiliary tools for radiation therapy: Preparation, characterisation, drug release, cytotoxicity and therapeutic effect on colorectal cancer cells. J. Microencapsul., 2012, 29(7), 685-694.
[http://dx.doi.org/10.3109/02652048.2012.680511] [PMID: 22703230]
[43]
Gong, J.; Liu, C.; Liu, W.; Wu, Y.; Ma, Z.; Chen, H.; Guo, A.Y. An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools. Database (Oxford), 2015, 2015bav029
[http://dx.doi.org/10.1093/database/bav029] [PMID: 25877638]
[44]
Wang, W.; Dai, Q.; Li, F.; Xiong, Y.; Wei, D.Q. MLCDForest: multi-label classification with deep forest in disease prediction for long non-coding RNAs. Brief. Bioinform., 2021, 22(3), bbaa104.,
[PMID: 32520339]
[45]
Heneghan, H.M.; Miller, N.; Kerin, M.J. Circulating miRNA signatures: promising prognostic tools for cancer. J. Clin. Oncol., 2010, 28(29), e573-e574.
[http://dx.doi.org/10.1200/JCO.2010.29.8901] [PMID: 20697097]
[46]
Koshy, L.; Harikrishnan, S.; Sudhakaran, P.R. Prioritizing rs7294 as a mirSNP contributing to warfarin dosing variability. Pharmacogenomics, 2020, 21(4), 257-267.
[http://dx.doi.org/10.2217/pgs-2019-0137] [PMID: 31973625]
[47]
Koshy, L.; Vijayalekshmi, S.V.; Harikrishnan, S.; Raman, K.V.; Jissa, V.T.; Jayakumaran Nair, A.; Gangaprasad, A.; Nair, G.M.; Sudhakaran, P.R. Lack of association of mirSNP rs11174811 in AVPR1A gene with arterial blood pressure and hypertension in South Indian population. Clin. Exp. Hypertens., 2018, 40(6), 534-538.
[http://dx.doi.org/10.1080/10641963.2017.1403624] [PMID: 29182374]
[48]
Liu, C.; Zhang, F.; Li, T.; Lu, M.; Wang, L.; Yue, W.; Zhang, D. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics, 2012, 13, 661.
[http://dx.doi.org/10.1186/1471-2164-13-661] [PMID: 23173617]
[49]
Lukasik, A.; Wójcikowski, M.; Zielenkiewicz, P. Tools4miRs - one place to gather all the tools for miRNA analysis. Bioinformatics, 2016, 32(17), 2722-2724.
[http://dx.doi.org/10.1093/bioinformatics/btw189] [PMID: 27153626]
[50]
Lukasik, A.; Zielenkiewicz, P. An overview of miRNA and miRNA target analysis tools. Methods Mol. Biol., 2019, 1932, 65-87.
[http://dx.doi.org/10.1007/978-1-4939-9042-9_5] [PMID: 30701492]
[51]
Macfarlane, C.L.; Quek, S.; Pionnier, N.; Turner, J.D.; Wanji, S.; Wagstaff, S.C.; Taylor, M.J. The insufficiency of circulating miRNA and DNA as diagnostic tools or as biomarkers of treatment efficacy for Onchocerca volvulus. Sci. Rep., 2020, 10(1), 6672.
[http://dx.doi.org/10.1038/s41598-020-63249-4] [PMID: 32317658]
[52]
Mendes, N.D.; Freitas, A.T.; Sagot, M.F. Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res., 2009, 37(8), 2419-2433.
[http://dx.doi.org/10.1093/nar/gkp145] [PMID: 19295136]
[53]
Metpally, R.P.; Nasser, S.; Malenica, I.; Courtright, A.; Carlson, E.; Ghaffari, L.; Villa, S.; Tembe, W.; Van Keuren-Jensen, K. Comparison of analysis tools for mirna high throughput sequencing using nerve crush as a model. Front. Genet., 2013, 4, 20.
[http://dx.doi.org/10.3389/fgene.2013.00020] [PMID: 23459507]
[54]
Mullany, L.E.; Wolff, R.K.; Slattery, M.L. Effectiveness and usability of bioinformatics tools to analyze pathways associated with miRNA expression. Cancer Inform., 2015, 14, 121-130.
[http://dx.doi.org/10.4137/CIN.S32716] [PMID: 26560461]
[55]
Okada, Y.; Jinnin, M.; Makino, T.; Kajihara, I.; Makino, K.; Honda, N.; Nakayama, W.; Inoue, K.; Fukushima, S.; Ihn, H. MIRSNP rs2910164 of miR-146a is associated with the muscle involvement in polymyositis/dermatomyositis. Int. J. Dermatol., 2014, 53(3), 300-304.
[http://dx.doi.org/10.1111/j.1365-4632.2012.05739.x] [PMID: 24716199]
[56]
Riffo-Campos, A.L.; Riquelme, I.; Brebi-Mieville, P. Tools for Sequence-Based miRNA Target Prediction: What to Choose? Int. J. Mol. Sci., 2016, 17(12)E1987
[http://dx.doi.org/10.3390/ijms17121987] [PMID: 27941681]
[57]
Rita Balistreri, C.; Allegra, A.; Crapanzano, F.; Pisano, C.; Ruvolo, G. Matrix Metalloproteinases (MMPs), their genetic variants and miRNA in mitral valve diseases: potential biomarker tools and targets for personalized treatments. J. Heart Valve Dis., 2016, 25(4), 463-474.
[PMID: 28009951]
[58]
Shukla, V.; Varghese, V.K.; Kabekkodu, S.P.; Mallya, S.; Satyamoorthy, K. A compilation of Web-based research tools for miRNA analysis. Brief. Funct. Genomics, 2017, 16(5), 249-273.
[http://dx.doi.org/10.1093/bfgp/elw042] [PMID: 28334134]
[59]
Srivastava, P.K.; Moturu, T.R.; Pandey, P.; Baldwin, I.T.; Pandey, S.P. A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genomics, 2014, 15, 348.
[http://dx.doi.org/10.1186/1471-2164-15-348] [PMID: 24885295]
[60]
Tsai, E.M.; Wang, Y.S.; Lin, C.S.; Lin, W.Y.; Hsi, E.; Wu, M.T.; Juo, S.H. A microRNA-520 mirSNP at the MMP2 gene influences susceptibility to endometriosis in Chinese women. J. Hum. Genet., 2013, 58(4), 202-209.
[http://dx.doi.org/10.1038/jhg.2013.1] [PMID: 23364396]
[61]
Veneziano, D.; Marceca, G.P.; Di Bella, S.; Nigita, G.; Distefano, R.; Croce, C.M. Investigating miRNA-lncRNA interactions: computational tools and resources. Methods Mol. Biol., 2019, 1970, 251-277.
[http://dx.doi.org/10.1007/978-1-4939-9207-2_14] [PMID: 30963497]
[62]
Xi, Y.; Edwards, J.R.; Ju, J. Investigation of miRNA biology by bioinformatic tools and impact of miRNAs in colorectal cancer--regulatory relationship of c-Myc and p53 with miRNAs. Cancer Inform., 2007, 3, 245-253.
[http://dx.doi.org/10.1177/117693510700300011] [PMID: 18079974]
[63]
Yousef, G.M. miRSNP-based approach identifies a miRNA that regulates prostate-specific antigen in an allele-specific manner. Cancer Discov., 2015, 5(4), 351-352.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0230] [PMID: 25847955]
[64]
Huang, H.Y.; Lin, Y.C.; Li, J.; Huang, K.Y.; Shrestha, S.; Hong, H.C.; Tang, Y.; Chen, Y.G.; Jin, C.N.; Yu, Y.; Xu, J.T.; Li, Y.M.; Cai, X.X.; Zhou, Z.Y.; Chen, X.H.; Pei, Y.Y.; Hu, L.; Su, J.J.; Cui, S.D.; Wang, F.; Xie, Y.Y.; Ding, S.Y.; Luo, M.F.; Chou, C.H.; Chang, N.W.; Chen, K.W.; Cheng, Y.H.; Wan, X.H.; Hsu, W.L.; Lee, T.Y.; Wei, F.X.; Huang, H.D. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res., 2020, 48(D1), D148-D154.
[PMID: 31647101]
[65]
Chou, C.H.; Shrestha, S.; Yang, C.D.; Chang, N.W.; Lin, Y.L.; Liao, K.W.; Huang, W.C.; Sun, T.H.; Tu, S.J.; Lee, W.H.; Chiew, M.Y.; Tai, C.S.; Wei, T.Y.; Tsai, T.R.; Huang, H.T.; Wang, C.Y.; Wu, H.Y.; Ho, S.Y.; Chen, P.R.; Chuang, C.H.; Hsieh, P.J.; Wu, Y.S.; Chen, W.L.; Li, M.J.; Wu, Y.C.; Huang, X.Y.; Ng, F.L.; Buddhakosai, W.; Huang, P.C.; Lan, K.C.; Huang, C.Y.; Weng, S.L.; Cheng, Y.N.; Liang, C.; Hsu, W.L.; Huang, H.D. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res., 2018, 46(D1), D296-D302.
[http://dx.doi.org/10.1093/nar/gkx1067] [PMID: 29126174]
[66]
Chou, C.H.; Chang, N.W.; Shrestha, S.; Hsu, S.D.; Lin, Y.L.; Lee, W.H.; Yang, C.D.; Hong, H.C.; Wei, T.Y.; Tu, S.J.; Tsai, T.R.; Ho, S.Y.; Jian, T.Y.; Wu, H.Y.; Chen, P.R.; Lin, N.C.; Huang, H.T.; Yang, T.L.; Pai, C.Y.; Tai, C.S.; Chen, W.L.; Huang, C.Y.; Liu, C.C.; Weng, S.L.; Liao, K.W.; Hsu, W.L.; Huang, H.D. miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res., 2016, 44(D1), D239-D247.
[http://dx.doi.org/10.1093/nar/gkv1258] [PMID: 26590260]
[67]
Hsu, S.D.; Tseng, Y.T.; Shrestha, S.; Lin, Y.L.; Khaleel, A.; Chou, C.H.; Chu, C.F.; Huang, H.Y.; Lin, C.M.; Ho, S.Y.; Jian, T.Y.; Lin, F.M.; Chang, T.H.; Weng, S.L.; Liao, K.W.; Liao, I.E.; Liu, C.C.; Huang, H.D. miRTarBase update 2014: An information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res., 2014, 42(Database issue), D78-D85.
[http://dx.doi.org/10.1093/nar/gkt1266] [PMID: 24304892]
[68]
Hsu, S.D.; Lin, F.M.; Wu, W.Y.; Liang, C.; Huang, W.C.; Chan, W.L.; Tsai, W.T.; Chen, G.Z.; Lee, C.J.; Chiu, C.M.; Chien, C.H.; Wu, M.C.; Huang, C.Y.; Tsou, A.P.; Huang, H.D. miRTarBase: A database curates experimentally validated microRNA-target interactions. Nucleic Acids Res., 2011, 39(Database issue), D163-D169.
[http://dx.doi.org/10.1093/nar/gkq1107] [PMID: 21071411]
[69]
Kehl, T.; Kern, F.; Backes, C.; Fehlmann, T.; Stöckel, D.; Meese, E.; Lenhof, H.P.; Keller, A. miRPathDB 2.0: A novel release of the miRNA Pathway Dictionary Database. Nucleic Acids Res., 2020, 48(D1), D142-D147.
[http://dx.doi.org/10.1093/nar/gkz1022] [PMID: 31691816]
[70]
Wu, P.; Xiao, Y.; Guo, T.; Wang, Y.; Liao, S.; Chen, L.; Liu, Z. Identifying miRNA-mRNA pairs and novel miRNAs from hepatocelluar carcinoma miRNomes and TCGA database. J. Cancer, 2019, 10(11), 2552-2559.
[http://dx.doi.org/10.7150/jca.28167] [PMID: 31258761]
[71]
Liu, T.; Zhang, Q.; Zhang, J.; Li, C.; Miao, Y.R.; Lei, Q.; Li, Q.; Guo, A.Y. EVmiRNA: A database of miRNA profiling in extracellular vesicles. Nucleic Acids Res., 2019, 47(D1), D89-D93.
[http://dx.doi.org/10.1093/nar/gky985] [PMID: 30335161]
[72]
Huang, G.J.; Luo, M.S.; Chen, G.P.; Fu, M.Y. MiRNA-mRNA crosstalk in laryngeal squamous cell carcinoma based on the TCGA database. European Archives of Oto-rhino-laryngology: Official Journal of the European Federation of Oto-rhino-laryngological Societies, 2018, 275(3), 571-759.
[73]
Chitarra, W.; Pagliarani, C.; Abbà, S.; Boccacci, P.; Birello, G.; Rossi, M.; Palmano, S.; Marzachì, C.; Perrone, I.; Gambino, G. miRVIT: A novel miRNA database and its application to uncover Vitis responses to Flavescence dorée infection. Front. Plant Sci., 2018, 9, 1034.
[http://dx.doi.org/10.3389/fpls.2018.01034] [PMID: 30065744]
[74]
Karagkouni, D.; Paraskevopoulou, M.D.; Chatzopoulos, S.; Vlachos, I.S.; Tastsoglou, S.; Kanellos, I.; Papadimitriou, D.; Kavakiotis, I.; Maniou, S.; Skoufos, G.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res., 2018, 46(D1), D239-D245.
[http://dx.doi.org/10.1093/nar/gkx1141] [PMID: 29156006]
[75]
Vergoulis, T.; Vlachos, I.S.; Alexiou, P.; Georgakilas, G.; Maragkakis, M.; Reczko, M.; Gerangelos, S.; Koziris, N.; Dalamagas, T.; Hatzigeorgiou, A.G. TarBase 6.0: Capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res., 2012, 40(Database issue), D222-D229.
[http://dx.doi.org/10.1093/nar/gkr1161] [PMID: 22135297]
[76]
Sethupathy, P.; Corda, B.; Hatzigeorgiou, A.G. TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA, 2006, 12(2), 192-197.
[http://dx.doi.org/10.1261/rna.2239606] [PMID: 16373484]
[77]
Paraskevopoulou, M.D.; Vlachos, I.S.; Hatzigeorgiou, A.G. DIANA-TarBase and DIANA suite tools: Studying experimentally supported microrna targets. Current Protocols in Bioinformatics,, 2016, 55, 12 14 11-12 14 18.
[78]
Vlachos, I.S.; Paraskevopoulou, M.D.; Karagkouni, D.; Georgakilas, G.; Vergoulis, T.; Kanellos, I.; Anastasopoulos, I.L.; Maniou, S.; Karathanou, K.; Kalfakakou, D.; Fevgas, A.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res., 2015, 43(Database issue), D153-D159.
[http://dx.doi.org/10.1093/nar/gku1215] [PMID: 25416803]
[79]
Xiao, F.; Zuo, Z.; Cai, G.; Kang, S.; Gao, X.; Li, T. miRecords: An integrated resource for microRNA-target interactions. Nucleic Acids Res., 2009, 37(Database issue), D105-D110.
[http://dx.doi.org/10.1093/nar/gkn851] [PMID: 18996891]
[80]
Chen, Y.; Wang, X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res., 2020, 48(D1), D127-D131.
[http://dx.doi.org/10.1093/nar/gkz757] [PMID: 31504780]
[81]
Wong, N.; Wang, X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res., 2015, 43(Database issue), D146-D152.
[http://dx.doi.org/10.1093/nar/gku1104] [PMID: 25378301]
[82]
Wang, X. miRDB: A microRNA target prediction and functional annotation database with a wiki interface. RNA, 2008, 14(6), 1012-1017.
[http://dx.doi.org/10.1261/rna.965408] [PMID: 18426918]
[83]
Zheng, X.; Fu, X.; Wang, K.; Wang, M. Deep neural networks for human microRNA precursor detection. BMC Bioinformatics, 2020, 21(1), 17.
[http://dx.doi.org/10.1186/s12859-020-3339-7] [PMID: 31931701]
[84]
Thody, J.; Moulton, V.; Mohorianu, I. PAREameters: A tool for computational inference of plant miRNA-mRNA targeting rules using small RNA and degradome sequencing data. Nucleic Acids Res., 2020, 48(5), 2258-2270.
[http://dx.doi.org/10.1093/nar/gkz1234] [PMID: 31943065]
[85]
Sygitowicz, G.; Maciejak-Jastrzebska, A.; Sitkiewicz, D. MicroRNAs in the development of left ventricular remodeling and postmyocardial infarction heart failure. Polish Archives of Internal Med., 2020, 130(1), 59-65.
[86]
Patil, P.G.; Singh, N.V.; Parashuram, S.; Bohra, A.; Mundewadikar, D.M.; Sangnure, V.R.; Babu, K.D.; Sharma, J. Genome wide identification, characterization and validation of novel miRNA-based SSR markers in pomegranate (Punica granatum L.). Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology, 2020, 26(4), 683-696.
[87]
Ha, J.; Park, C.; Park, C.; Park, S. IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization. J. Biomed. Inform., 2020, 102103358
[http://dx.doi.org/10.1016/j.jbi.2019.103358] [PMID: 31857202]
[88]
Chen, X.; Sun, L.G.; Zhao, Y. NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion. Brief. Bioinform., 2020.
[http://dx.doi.org/10.1093/bib/bbz159] [PMID: 31927572]
[89]
Lu, H.C.; Yao, J.Q.; Yang, X.; Han, J.; Wang, J.Z.; Xu, K.; Zhou, R.; Yu, H.; Lv, Q.; Gu, M. Identification of a potentially functional circRNA-miRNA-mRNA regulatory network for investigating pathogenesis and providing possible biomarkers of bladder cancer. Cancer Cell Int., 2020, 20, 31.
[http://dx.doi.org/10.1186/s12935-020-1108-3] [PMID: 32015691]
[90]
Liu, Z.; Xu, S.; Dao, J.; Gan, Z.; Zeng, X. Differential expression of lncRNA/miRNA/mRNA and their related functional networks during the osteogenic/odontogenic differentiation of dental pulp stem cells. J. Cell. Physiol., 2020, 235(4), 3350-3361.
[http://dx.doi.org/10.1002/jcp.29223] [PMID: 31549394]
[91]
Lin, Y.; Zhang, L.; Zhao, Y.; Wang, Z.; Liu, H.; Zhang, L.; Zhang, Y.; Fu, Y.; Wu, J.; Ge, Y.; Zhang, W.; Zhou, S. Comparative analysis and functional identification of temperature-sensitive miRNA in Arabidopsis anthers. Biochem. Biophys. Res. Commun., 2020, 532(1), 1-10.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.033] [PMID: 32826059]
[92]
Liang, T.; Han, L.; Guo, L. Rewired functional regulatory networks among miRNA isoforms (isomiRs) from let-7 and miR-10 gene families in cancer. Comput. Struct. Biotechnol. J., 2020, 18, 1238-1248.
[http://dx.doi.org/10.1016/j.csbj.2020.05.001] [PMID: 32542110]
[93]
Lee, J.H.; Kim, S.W.; Han, J.S.; Shin, S.P.; Lee, S.I.; Park, T.S. Functional analyses of miRNA-146b-5p during myogenic proliferation and differentiation in chicken myoblasts. BMC Mol Cell Biol, 2020, 21(1), 40.
[http://dx.doi.org/10.1186/s12860-020-00284-z] [PMID: 32471354]
[94]
Kumar, P.; Traurig, M.; Baier, L.J. Identification and functional validation of genetic variants in potential miRNA target sites of established BMI genes. Int. J. Obes., 2020, 44(5), 1191-1195.
[http://dx.doi.org/10.1038/s41366-019-0488-8] [PMID: 31745258]
[95]
Just, J.; Yan, Y.; Farup, J.; Sieljacks, P.; Sloth, M.; Venø, M.; Gu, T.; de Paoli, F.V.; Nyengaard, J.R.; Bæk, R.; Jørgensen, M.M.; Kjems, J.; Vissing, K.; Drasbek, K.R. Blood flow-restricted resistance exercise alters the surface profile, miRNA cargo and functional impact of circulating extracellular vesicles. Sci. Rep., 2020, 10(1), 5835.
[http://dx.doi.org/10.1038/s41598-020-62456-3] [PMID: 32245988]
[96]
Jeyaram, A.; Lamichhane, T.N.; Wang, S.; Zou, L.; Dahal, E.; Kronstadt, S.M.; Levy, D.; Parajuli, B.; Knudsen, D.R.; Chao, W.; Jay, S.M. Enhanced loading of functional miRNA Cargo via pH gradient modification of extracellular vesicles. Mol. Ther., 2020, 28(3), 975-985.
[http://dx.doi.org/10.1016/j.ymthe.2019.12.007] [PMID: 31911034]
[97]
Hoefer, I.E. Isolating functional (Iso)miRNA targets during ischemia. Mol. Ther., 2020, 28(1), 7-8.
[http://dx.doi.org/10.1016/j.ymthe.2019.12.003] [PMID: 31870621]
[98]
Guo, J.Y.; Wang, Y.S.; Chen, T.; Jiang, X.X.; Wu, P.; Geng, T.; Pan, Z.H.; Shang, M.K.; Hou, C.X.; Gao, K.; Guo, X.J. Functional analysis of a miRNA-like small RNA derived from Bombyx mori cytoplasmic polyhedrosis virus. Insect Sci., 2020, 27(3), 449-462.
[http://dx.doi.org/10.1111/1744-7917.12671] [PMID: 30869181]
[99]
Cojocneanu, R.; Braicu, C.; Raduly, L.; Jurj, A.; Zanoaga, O.; Magdo, L.; Irimie, A.; Muresan, M.S.; Ionescu, C.; Grigorescu, M.; Berindan-Neagoe, I. Plasma and tissue specific miRNA expression pattern and functional analysis associated to colorectal cancer patients. Cancers (Basel), 2020, 12(4)E843
[http://dx.doi.org/10.3390/cancers12040843] [PMID: 32244548]
[100]
Chang, L.; Zhou, G.; Soufan, O.; Xia, J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res., 2020, 48(W1), W244-W251.
[http://dx.doi.org/10.1093/nar/gkaa467] [PMID: 32484539]
[101]
Bai, Y.; Baker, S.; Exoo, K.; Dai, X.; Ding, L.; Khattak, N.A.; Li, H.; Liu, H.; Liu, X. MMiRNA-Viewer2, a bioinformatics tool for visualizing functional annotation for MiRNA and MRNA pairs in a network. BMC Bioinformatics, 2020, 21(Suppl. 4), 247.
[http://dx.doi.org/10.1186/s12859-020-3436-7] [PMID: 32631332]
[102]
Zou, J.B.; Chai, H.B.; Zhang, X.F.; Guo, D.Y.; Tai, J.; Wang, Y.; Liang, Y.L.; Wang, F.; Cheng, J.X.; Wang, J.; Shi, Y.J. Reconstruction of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in Cerebral Infarction. Sci. Rep., 2019, 9(1), 12176.
[http://dx.doi.org/10.1038/s41598-019-48435-3] [PMID: 31434962]
[103]
Zeh, N.; Schneider, H.; Mathias, S.; Raab, N.; Kleemann, M.; Schmidt-Hertel, S.; Weis, B.; Wissing, S.; Strempel, N.; Handrick, R.; Otte, K. Human CAP cells represent a novel source for functional, miRNA-loaded exosome production. PLoS One, 2019, 14(8)e0221679
[http://dx.doi.org/10.1371/journal.pone.0221679] [PMID: 31461486]
[104]
Yue, B.; Li, H.; Liu, M.; Wu, J.; Li, M.; Lei, C.; Huang, B.; Chen, H. Characterization of lncRNA-miRNA-mRNA network to reveal potential functional ceRNAs in bovine skeletal muscle. Front. Genet., 2019, 10, 91.
[http://dx.doi.org/10.3389/fgene.2019.00091] [PMID: 30842787]
[105]
Yang, G.; Zhang, Y.; Yang, J. Identification of potentially functional CircRNA-miRNA-mRNA regulatory network in gastric carcinoma using bioinformatics analysis. Med. Sci. Monit., 2019, 25, 8777-8796.
[http://dx.doi.org/10.12659/MSM.916902] [PMID: 31747387]
[106]
Yan, Y.; Li, X.Q.; Duan, J.L.; Bao, C.J.; Cui, Y.N.; Su, Z.B.; Xu, J.R.; Luo, Q.; Chen, M.; Xie, Y.; Lu, W.L. Nanosized functional miRNA liposomes and application in the treatment of TNBC by silencing Slug gene. Int. J. Nanomedicine, 2019, 14, 3645-3667.
[http://dx.doi.org/10.2147/IJN.S207837] [PMID: 31190817]
[107]
Wang, B.H.; Zhao, Y.F.; Shen, L.R.; Zhuang, Q. Differential screening and functional prediction analysis of miRNA expression profiles in periodontitis. Shanghai Kou Qiang Yi Xue, 2019, 28(4), 408-411.
[PMID: 31792483]
[108]
Tao, L.; Yang, L.; Huang, X.; Hua, F.; Yang, X. Reconstruction and Analysis of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in dilated cardiomyopathy. Front. Genet., 2019, 10, 1149.
[http://dx.doi.org/10.3389/fgene.2019.01149] [PMID: 31803236]
[109]
Sun, D.; Han, L.; Cao, R.; Wang, H.; Jiang, J.; Deng, Y.; Yu, X. Prediction of a miRNA-mRNA functional synergistic network for cervical squamous cell carcinoma. FEBS Open Bio, 2019, 9(12), 2080-2092.
[http://dx.doi.org/10.1002/2211-5463.12747] [PMID: 31642613]
[110]
Park, I.; Kim, H.J.; Kim, Y.; Hwang, H.S.; Kasai, H.; Kim, J.H.; Park, J.W. Nanoscale imaging reveals miRNA-mediated control of functional states of dendritic spines. Proc. Natl. Acad. Sci. USA, 2019, 116(19), 9616-9621.
[http://dx.doi.org/10.1073/pnas.1819374116] [PMID: 31019087]
[111]
Monga, I.; Kumar, M. Computational resources for prediction and analysis of functional miRNA and their targetome. Methods Mol. Biol., 2019, 1912, 215-250.
[http://dx.doi.org/10.1007/978-1-4939-8982-9_9] [PMID: 30635896]
[112]
Kyuno, D.; Zhao, K.; Bauer, N.; Ryschich, E.; Zöller, M. Therapeutic targeting cancer-initiating cell markers by exosome miRNA: efficacy and functional consequences exemplified for claudin7 and EpCAM. Transl. Oncol., 2019, 12(2), 191-199.
[http://dx.doi.org/10.1016/j.tranon.2018.08.021] [PMID: 30393102]
[113]
Kumar, N.; Dougherty, J.A.; Manring, H.R.; Elmadbouh, I.; Mergaye, M.; Czirok, A.; Greta Isai, D.; Belevych, A.E.; Yu, L.; Janssen, P.M.L.; Fadda, P.; Gyorke, S.; Ackermann, M.A.; Angelos, M.G.; Khan, M. Assessment of temporal functional changes and miRNA profiling of human iPSC-derived cardiomyocytes. Sci. Rep., 2019, 9(1), 13188.
[http://dx.doi.org/10.1038/s41598-019-49653-5] [PMID: 31515494]
[114]
Jiang, Q.; Zhao, H.; Li, R.; Zhang, Y.; Liu, Y.; Wang, J.; Wang, X.; Ju, Z.; Liu, W.; Hou, M.; Huang, J. in silico genome-wide miRNA-QTL-SNPs analyses identify a functional SNP associated with mastitis in Holsteins. BMC Genet., 2019, 20(1), 46.
[http://dx.doi.org/10.1186/s12863-019-0749-5] [PMID: 31096910]
[115]
Han, Q.; Li, C.; Cao, Y.; Bao, J.; Li, K.; Song, R.; Chen, X.; Li, J.; Wu, X. CBX2 is a functional target of miRNA let-7a and acts as a tumor promoter in osteosarcoma. Cancer Med., 2019, 8(8), 3981-3991.
[http://dx.doi.org/10.1002/cam4.2320] [PMID: 31150156]
[116]
Geng, W.; Tang, H.; Luo, S.; Lv, Y.; Liang, D.; Kang, X.; Hong, W. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am. J. Transl. Res., 2019, 11(2), 780-792.
[PMID: 30899379]
[117]
Galka-Marciniak, P.; Urbanek-Trzeciak, M.O.; Nawrocka, P.M.; Dutkiewicz, A.; Giefing, M.; Lewandowska, M.A.; Kozlowski, P. Somatic mutations in miRNA genes in lung cancer-potential functional consequences of non-coding sequence variants. Cancers (Basel), 2019, 11(6)E793
[http://dx.doi.org/10.3390/cancers11060793] [PMID: 31181801]
[118]
Cai, H.; Yang, C.; Liu, S.; Qi, H.; Wu, L.; Xu, L.A.; Xu, M. MiRNA-target pairs regulate adventitious rooting in Populus: A functional role for miR167a and its target Auxin response factor 8. Tree Physiol., 2019, 39(11), 1922-1936.
[http://dx.doi.org/10.1093/treephys/tpz085] [PMID: 31504994]
[119]
Burroughs, A.M.; Ando, Y. Identifying and characterizing functional 3′ nucleotide addition in the miRNA pathway. Methods, 2019, 152, 23-30.
[http://dx.doi.org/10.1016/j.ymeth.2018.08.006] [PMID: 30138674]
[120]
Bai, M.; Sun, L.; Jia, C.; Li, J.; Han, Y.; Liu, H.; Chen, Y.; Jiang, H. Integrated analysis of miRNA and mRNA expression profiles reveals functional mirna-targets in development testes of small tail han sheep. G3 (Bethesda), 2019, 9(2), 523-533.
[http://dx.doi.org/10.1534/g3.118.200947] [PMID: 30559255]
[121]
Asadirad, A.; Hashemi, S.M.; Baghaei, K.; Ghanbarian, H.; Mortaz, E.; Zali, M.R.; Amani, D. Phenotypical and functional evaluation of dendritic cells after exosomal delivery of miRNA-155. Life Sci., 2019, 219, 152-162.
[http://dx.doi.org/10.1016/j.lfs.2019.01.005] [PMID: 30625290]
[122]
Zhu, H.; Lu, J.; Zhao, H.; Chen, Z.; Cui, Q.; Lin, Z.; Wang, X.; Wang, J.; Dong, H.; Wang, S.; Tan, J. Functional long noncoding RNAs (lncRNAs) in clear cell kidney carcinoma revealed by reconstruction and comprehensive analysis of the lncRNA-miRNA-mRNA regulatory network. Med. Sci. Monit., 2018, 24, 8250-8263.
[http://dx.doi.org/10.12659/MSM.910773] [PMID: 30444862]
[123]
Tian, L.; Hu, X.; He, Y.; Wu, Z.; Li, D.; Zhang, H. Construction of lncRNA-miRNA-mRNA networks reveals functional lncRNAs in abdominal aortic aneurysm. Exp. Ther. Med., 2018, 16(5), 3978-3986.
[http://dx.doi.org/10.3892/etm.2018.6690] [PMID: 30344676]
[124]
Qu, M.; Luo, L.; Yang, Y.; Kong, Y.; Wang, D. Nanopolystyrene-induced microRNAs response in Caenorhabditis elegans after long-term and lose-dose exposure. Sci. Total Environ., 2019, 697134131
[http://dx.doi.org/10.1016/j.scitotenv.2019.134131] [PMID: 31476495]
[125]
Kato, M.; de Lencastre, A.; Pincus, Z.; Slack, F.J. Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biol., 2009, 10(5), R54.
[http://dx.doi.org/10.1186/gb-2009-10-5-r54] [PMID: 19460142]
[126]
Lim, L.P.; Lau, N.C.; Weinstein, E.G.; Abdelhakim, A.; Yekta, S.; Rhoades, M.W.; Burge, C.B.; Bartel, D.P. The microRNAs of Caenorhabditis elegans. Genes Dev., 2003, 17(8), 991-1008.
[http://dx.doi.org/10.1101/gad.1074403] [PMID: 12672692]
[127]
Paraskevopoulou, M.D.; Vlachos, I.S.; Karagkouni, D.; Georgakilas, G.; Kanellos, I.; Vergoulis, T.; Zagganas, K.; Tsanakas, P.; Floros, E.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res., 2016, 44(D1), D231-D238.
[http://dx.doi.org/10.1093/nar/gkv1270] [PMID: 26612864]
[128]
Enright, A.J.; John, B.; Gaul, U.; Tuschl, T.; Sander, C.; Marks, D.S. MicroRNA targets in Drosophila. Genome Biol., 2003, 5(1), R1.
[http://dx.doi.org/10.1186/gb-2003-5-1-r1] [PMID: 14709173]
[129]
Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife, 2015, 4, 4.
[http://dx.doi.org/10.7554/eLife.05005] [PMID: 26267216]
[130]
Wen, M.; Cong, P.; Zhang, Z.; Lu, H.; Li, T. DeepMirTar: a deep-learning approach for predicting human miRNA targets. Bioinformatics, 2018, 34(22), 3781-3787.
[http://dx.doi.org/10.1093/bioinformatics/bty424] [PMID: 29868708]
[131]
Pla, A.; Zhong, X.; Rayner, S. miRAW: A deep learning-based approach to predict microRNA targets by analyzing whole microRNA transcripts. PLOS Comput. Biol., 2018, 14(7)e1006185
[http://dx.doi.org/10.1371/journal.pcbi.1006185] [PMID: 30005074]
[132]
Manavalan, B.; Hasan, M.M.; Basith, S.; Gosu, V.; Shin, T.H.; Lee, G. Empirical comparison and analysis of web-based DNA N4-methylcytosine site prediction tools. Mol. Ther. Nucleic Acids, 2020, 22, 406-420.
[http://dx.doi.org/10.1016/j.omtn.2020.09.010] [PMID: 33230445]
[133]
Hasan, M.M.; Khatun, M.S.; Kurata, H. iLBE for computational identification of linear B-cell epitopes by integrating sequence and evolutionary features. Genomics Proteomics Bioinformatics,, 2020, S1672-0229(18), 30274-2.
[http://dx.doi.org/10.1016/j.gpb.2019.04.004] [PMID: 33099033]
[134]
Hasan, M.M.; Schaduangrat, N.; Basith, S.; Lee, G.; Shoombuatong, W.; Manavalan, B. HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation. Bioinformatics, 2020, 36(11), 3350-3356.
[http://dx.doi.org/10.1093/bioinformatics/btaa160] [PMID: 32145017]
[135]
Hasan, M.M.; Manavalan, B.; Shoombuatong, W.; Khatun, M.S.; Kurata, H. i6mA-Fuse: improved and robust prediction of DNA 6 mA sites in the Rosaceae genome by fusing multiple feature representation. Plant Mol. Biol., 2020, 103(1-2), 225-234.
[http://dx.doi.org/10.1007/s11103-020-00988-y] [PMID: 32140819]
[136]
Hasan, M.M.; Manavalan, B.; Shoombuatong, W.; Khatun, M.S.; Kurata, H. i4mC-Mouse: Improved identification of DNA N4-methylcytosine sites in the mouse genome using multiple encoding schemes. Comput. Struct. Biotechnol. J., 2020, 18, 906-912.
[http://dx.doi.org/10.1016/j.csbj.2020.04.001] [PMID: 32322372]
[137]
Basith, S.; Manavalan, B.; Hwan Shin, T.; Lee, G. Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening. Med. Res. Rev., 2020, 40(4), 1276-1314.
[http://dx.doi.org/10.1002/med.21658] [PMID: 31922268]
[138]
Lv, H.; Dao, F.Y.; Zhang, D.; Guan, Z.X.; Yang, H.; Su, W.; Liu, M.L.; Ding, H.; Chen, W.; Lin, H. iDNA-MS: An integrated computational tool for detecting DNA modification sites in multiple genomes. iScience,, 2020, 23(4), 100991.
[139]
Hasan, M.M.; Basith, S.; Khatun, M.S.; Lee, G.; Manavalan, B.; Kurata, H. Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework.Brief. Bioinform.,, 2021, 22(3), bbaa202.
[http://dx.doi.org/10.1093/bib/bbaa202] [PMID: 32910169]
[140]
Hasan, M.M.; Manavalan, B.; Khatun, M.S.; Kurata, H. i4mC-ROSE, a bioinformatics tool for the identification of DNA N4-methylcytosine sites in the Rosaceae genome. Int. J. Biol. Macromol., 2020, 157, 752-758.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.009] [PMID: 31805335]
[141]
Manavalan, B.; Basith, S.; Shin, T.H.; Wei, L.; Lee, G. AtbPpred: A robust sequence-based prediction of anti-tubercular peptides using extremely randomized trees. Comput. Struct. Biotechnol. J., 2019, 17, 972-981.
[http://dx.doi.org/10.1016/j.csbj.2019.06.024] [PMID: 31372196]
[142]
Hasan, M.M.; Manavalan, B.; Khatun, M.S.; Kurata, H. Prediction of S-nitrosylation sites by integrating support vector machines and random forest. Mol Omics, 2019, 15(6), 451-458.
[http://dx.doi.org/10.1039/C9MO00098D] [PMID: 31710075]
[143]
Manavalan, B.; Subramaniyam, S.; Shin, T.H.; Kim, M.O.; Lee, G. Machine-learning-based prediction of cell-penetrating peptides and their uptake efficiency with improved accuracy. J. Proteome Res., 2018, 17(8), 2715-2726.
[http://dx.doi.org/10.1021/acs.jproteome.8b00148] [PMID: 29893128]
[144]
Hasan, M.M.; Shoombuatong, W.; Kurata, H.; Manavalan, B. Critical evaluation of web-based DNA N6-methyladenine site prediction tools.Brief. Funct. Genomics, 2021, elaa028.,
[http://dx.doi.org/10.1093/bfgp/elaa028] [PMID: 33491072]
[145]
Charoenkwan, P.; Chiangjong, W.; Nantasenamat, C.; Hasan, M.M.; Manavalan, B.; Shoombuatong, W. StackIL6: a stacking ensemble model for improving the prediction of IL-6 inducing peptides. Brief. Bioinform., 2021, bbab172.,
[http://dx.doi.org/10.1093/bib/bbab172] [PMID: 33963832]
[146]
Manavalan, B.; Lee, J. SVMQA: support-vector-machine-based protein single-model quality assessment. Bioinformatics, 2017, 33(16), 2496-2503.
[http://dx.doi.org/10.1093/bioinformatics/btx222] [PMID: 28419290]
[147]
Hasan, M.M.; Alam, M.A.; Shoombuatong, W.; Deng, H.W.; Manavalan, B.; Kurata, H. NeuroPred-FRL: an interpretable prediction model for identifying neuropeptide using feature representation learning.Brief. Bioinform., 2021, bbab167.,
[http://dx.doi.org/10.1093/bib/bbab167] [PMID: 33975333]
[148]
Lv, H.; Dao, F.Y.; Guan, Z.X.; Yang, H.; Li, Y.W.; Lin, H. Deep-Kcr: accurate detection of lysine crotonylation sites using deep learning method.Brief. Bioinform., 2020, bbaa255.,
[http://dx.doi.org/10.1093/bib/bbaa255] [PMID: 33099604]
[149]
Charoenkwan, P.; Yana, J.; Schaduangrat, N.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. iBitter-SCM: Identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides. Genomics, 2020, 112(4), 2813-2822.
[http://dx.doi.org/10.1016/j.ygeno.2020.03.019] [PMID: 32234434]
[150]
Liu, G.; Liu, G.J.; Tan, J.X.; Lin, H. DNA physical properties outperform sequence compositional information in classifying nucleosome-enriched and depleted regions. Genomics, 2019, 111(5), 1167-1175.
[http://dx.doi.org/10.1016/j.ygeno.2018.07.013] [PMID: 30055231]
[151]
Khatun, S.; Hasan, M.; Kurata, H. Efficient computational model for identification of antitubercular peptides by integrating amino acid patterns and properties. FEBS Lett., 2019, 593(21), 3029-3039.
[http://dx.doi.org/10.1002/1873-3468.13536] [PMID: 31297788]
[152]
Khatun, M.S.; Hasan, M.M.; Kurata, H. PreAIP: Computational prediction of anti-inflammatory peptides by integrating multiple complementary features. Front. Genet., 2019, 10, 129.
[http://dx.doi.org/10.3389/fgene.2019.00129] [PMID: 30891059]
[153]
Hasan, M.M.; Rashid, M.M.; Khatun, M.S.; Kurata, H. Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information. Sci. Rep., 2019, 9(1), 8258.
[http://dx.doi.org/10.1038/s41598-019-44548-x] [PMID: 31164681]
[154]
Xiong, Y.; Wang, Q.; Yang, J.; Zhu, X.; Wei, D.Q. PredT4SE-Stack: prediction of bacterial type IV secreted effectors from protein sequences using a stacked ensemble method. Front. Microbiol., 2018, 9, 2571.
[http://dx.doi.org/10.3389/fmicb.2018.02571] [PMID: 30416498]
[155]
Dao, F.Y.; Lv, H.; Zulfiqar, H.; Yang, H.; Su, W.; Gao, H.; Ding, H.; Lin, H. A computational platform to identify origins of replication sites in eukaryotes. Brief. Bioinform., 2020, 22(2), 1940-1950.
[http://dx.doi.org/10.1093/bib/bbaa017] [PMID: 32065211]
[156]
Wei, L.; He, W.; Malik, A.; Su, R.; Cui, L.; Manavalan, B. Computational prediction and interpretation of cell-specific replication origin sites from multiple eukaryotes by exploiting stacking framework. Brief. Bioinform., 2020, bbaa275.,
[http://dx.doi.org/10.1093/bib/bbaa275] [PMID: 33152766]
[157]
Xu, Z.C.; Feng, P.M.; Yang, H.; Qiu, W.R.; Chen, W.; Lin, H. iRNAD: a computational tool for identifying D modification sites in RNA sequence. Bioinformatics, 2019, 35(23), 4922-4929.
[http://dx.doi.org/10.1093/bioinformatics/btz358] [PMID: 31077296]
[158]
Lin, H. Computational analysis in medicinal chemistry. the case of pharmacogenomics and pharmacoproteomics. Med. Chem., 2020, 16(5), 593.
[http://dx.doi.org/10.2174/157340641605200608102355] [PMID: 32787749]
[159]
Charoenkwan, P.; Yana, J.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. iUmami-SCM: A Novel sequence-based predictor for prediction and analysis of umami peptides using a scoring card method with propensity scores of dipeptides. J. Chem. Inf. Model., 2020, 60(12), 6666-6678.
[http://dx.doi.org/10.1021/acs.jcim.0c00707] [PMID: 33094610]
[160]
Alam, M.A.; Komori, O.; Deng, H-W.; Calhoun, D.V.; Wang, Y.P. Robust kernel canonical correlation analysis to detect gene-gene co-association: A genetics study. J. Bioinform. Comput. Biol., 2019, 17, 23.
[161]
Zhang, Z.Y.; Yang, Y.H.; Ding, H.; Wang, D.; Chen, W.; Lin, H. Design powerful predictor for mRNA subcellular location prediction in Homo sapiens. Brief. Bioinform., 2020.
[http://dx.doi.org/10.1093/bib/bbz177] [PMID: 31994694]
[162]
Wang, J.; Du, P.F.; Xue, X.Y.; Li, G.P.; Zhou, Y.K.; Zhao, W.; Lin, H.; Chen, W. VisFeature: a stand-alone program for visualizing and analyzing statistical features of biological sequences. Bioinformatics, 2020, 36(4), 1277-1278.
[PMID: 31504195]
[163]
Kruger, J.; Rehmsmeier, M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res., 2006, 34, 451-454.
[http://dx.doi.org/10.1093/nar/gkl243]
[164]
Dai, X.; Zhuang, Z.; Zhao, P.X. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res., 2018, 46(W1), W49-W54.
[http://dx.doi.org/10.1093/nar/gky316] [PMID: 29718424]
[165]
Dai, X.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server. Nucleic Acids Res., 2011, 39, 155-159.
[166]
Zhang, Z.M.; Wang, J.S.; Zulfiqar, H.; Lv, H.; Dao, F.Y.; Lin, H. Early diagnosis of pancreatic ductal adenocarcinoma by combining relative expression orderings with machine-learning method. Front. Cell Dev. Biol., 2020, 8582864
[http://dx.doi.org/10.3389/fcell.2020.582864] [PMID: 33178697]
[167]
Yan, C.; Wu, F.X.; Wang, J.; Duan, G. PESM: predicting the essentiality of miRNAs based on gradient boosting machines and sequences. BMC Bioinformatics, 2020, 21(1), 111.
[http://dx.doi.org/10.1186/s12859-020-3426-9] [PMID: 32183740]
[168]
Wang, X. Improving microRNA target prediction by modeling with unambiguously identified microRNA-target pairs from CLIP-ligation studies. Bioinformatics, 2016, 32(9), 1316-1322.
[http://dx.doi.org/10.1093/bioinformatics/btw002] [PMID: 26743510]
[169]
Gudyś, A.; Szcześniak, M.W.; Sikora, M.; Makałowska, I. HuntMi: an efficient and taxon-specific approach in pre-miRNA identification. BMC Bioinformatics, 2013, 14, 83.
[http://dx.doi.org/10.1186/1471-2105-14-83] [PMID: 23497112]
[170]
Bradley, T.; Moxon, S. FilTar: using RNA-Seq data to improve microRNA target prediction accuracy in animals. Bioinformatics, 2020, 36(8), 2410-2416.
[http://dx.doi.org/10.1093/bioinformatics/btaa007] [PMID: 31930382]
[171]
Hackenberg, M.; Rodriguez-Ezpeleta, N.; Aransay, A.M. miRanalyzer: An update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res., 2011, 39, 132-138.
[172]
Gan, H.H.; Gunsalus, K.C. The role of tertiary structure in MicroRNA target recognition. Methods Mol. Biol., 2019, 1970, 43-64.
[http://dx.doi.org/10.1007/978-1-4939-9207-2_4] [PMID: 30963487]
[173]
Calin-Jageman, I.; Nicholson, A.W. RNA structure-depen-dent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III. Nucleic Acids Res., 2003, 31(9), 2381-2392.
[http://dx.doi.org/10.1093/nar/gkg329] [PMID: 12711683]
[174]
L’Yi, S.; Jung, D.; Oh, M.; Kim, B.; Freishtat, R.J.; Giri, M.; Hoffman, E.; Seo, J. miRTarVis+: Web-based interactive visual analytics tool for microRNA target predictions. Methods, 2017, 124, 78-88.
[http://dx.doi.org/10.1016/j.ymeth.2017.06.004] [PMID: 28600227]
[175]
Washietl, S.; Hofacker, I.L.; Lukasser, M.; Hüttenhofer, A.; Stadler, P.F. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat. Biotechnol., 2005, 23(11), 1383-1390.
[http://dx.doi.org/10.1038/nbt1144] [PMID: 16273071]
[176]
Evers, M.; Huttner, M.; Dueck, A.; Meister, G.; Engelmann, J.C. miRA: adaptable novel miRNA identification in plants using small RNA sequencing data. BMC Bioinformatics, 2015, 16, 370.
[http://dx.doi.org/10.1186/s12859-015-0798-3] [PMID: 26542525]
[177]
Gao, D.; Middleton, R.; Rasko, J.E.; Ritchie, W. miREval 2.0: a web tool for simple microRNA prediction in genome sequences. Bioinformatics, 2013, 29(24), 3225-3226.
[http://dx.doi.org/10.1093/bioinformatics/btt545] [PMID: 24048357]
[178]
Buermans, H.P.; Ariyurek, Y.; van Ommen, G.; den Dunnen, J.T. ’T Hoen, P.A. New methods for next generation sequencing based microRNA expression profiling. BMC Genomics, 2010, 11, 716.
[http://dx.doi.org/10.1186/1471-2164-11-716] [PMID: 21171994]
[179]
Sablok, G.; Milev, I.; Minkov, G.; Minkov, I.; Varotto, C.; Yahubyan, G.; Baev, V. isomiRex: web-based identification of microRNAs, isomiR variations and differential expression using next-generation sequencing datasets. FEBS Lett., 2013, 587(16), 2629-2634.
[http://dx.doi.org/10.1016/j.febslet.2013.06.047] [PMID: 23831580]
[180]
An, J.; Lai, J.; Lehman, M.L.; Nelson, C.C. miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data. Nucleic Acids Res., 2013, 41(2), 727-737.
[http://dx.doi.org/10.1093/nar/gks1187] [PMID: 23221645]
[181]
Friedländer, M.R.; Chen, W.; Adamidi, C.; Maaskola, J.; Einspanier, R.; Knespel, S.; Rajewsky, N. Discovering microRNAs from deep sequencing data using miRDeep. Nat. Biotechnol., 2008, 26(4), 407-415.
[http://dx.doi.org/10.1038/nbt1394] [PMID: 18392026]
[182]
Kuang, Z.; Wang, Y.; Li, L.; Yang, X. miRDeep-P2: accurate and fast analysis of the microRNA transcriptome in plants. Bioinformatics, 2019, 35(14), 2521-2522.
[http://dx.doi.org/10.1093/bioinformatics/bty972] [PMID: 30521000]
[183]
Yang, X.; Li, L. miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics, 2011, 27(18), 2614-2615.
[http://dx.doi.org/10.1093/bioinformatics/btr430] [PMID: 21775303]
[184]
Wang, H.; Hu, Y.; Xie, Y.; Wang, L.; Wang, J.; Lei, L.; Huang, M.; Zhang, C. Prediction of MicroRNA and gene target in synovium-associated pain of knee osteoarthritis based on canonical correlation analysis. BioMed Res. Int., 2019, 20194506876
[http://dx.doi.org/10.1155/2019/4506876] [PMID: 31737663]
[185]
Rennie, W.; Kanoria, S.; Liu, C.; Carmack, C.S.; Lu, J.; Ding, Y. Sfold tools for MicroRNA target prediction. Methods Mol. Biol., 2019, 1970, 31-42.
[http://dx.doi.org/10.1007/978-1-4939-9207-2_3] [PMID: 30963486]
[186]
Tyagi, S.; Vaz, C.; Gupta, V.; Bhatia, R.; Maheshwari, S.; Srinivasan, A.; Bhattacharya, A. CID-miRNA: a web server for prediction of novel miRNA precursors in human genome. Biochem. Biophys. Res. Commun., 2008, 372(4), 831-834.
[http://dx.doi.org/10.1016/j.bbrc.2008.05.134] [PMID: 18522801]
[187]
Wei, G.; Sun, L.; Qin, S.; Li, R.; Chen, L.; Jin, P.; Ma, F. Dme-Hsa Disease Database (DHDD): Conserved Human Disease-Related miRNA and Their Targeting Genes in Drosophila melanogaster. Int. J. Mol. Sci., 2018, 19(9)E2642
[http://dx.doi.org/10.3390/ijms19092642] [PMID: 30200613]
[188]
Chen, F.; Zhou, H.; Wu, C.; Yan, H. Identification of miRNA profiling in prediction of tumor recurrence and progress and bioinformatics analysis for patients with primary esophageal cancer: Study based on TCGA database. Pathol. Res. Pract., 2018, 214(12), 2081-2086.
[http://dx.doi.org/10.1016/j.prp.2018.10.009] [PMID: 30477645]
[189]
Romero-Cordoba, S.L.; Salido-Guadarrama, I.; Rodriguez-Dorantes, M.; Hidalgo-Miranda, A. miRNA biogenesis: biological impact in the development of cancer. Cancer Biol. Ther., 2014, 15(11), 1444-1455.
[http://dx.doi.org/10.4161/15384047.2014.955442] [PMID: 25482951]
[190]
Chen, X.; Xie, D.; Zhao, Q.; You, Z.H. MicroRNAs and complex diseases: from experimental results to computational models. Brief. Bioinform., 2019, 20(2), 515-539.
[http://dx.doi.org/10.1093/bib/bbx130] [PMID: 29045685]
[191]
Zeng, X.; Zhang, X.; Zou, Q. Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks. Brief. Bioinform., 2016, 17(2), 193-203.
[http://dx.doi.org/10.1093/bib/bbv033] [PMID: 26059461]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy