Review Article

Molecular Modeling Targeting Transmembrane Serine Protease 2 (TMPRSS2) as an Alternative Drug Target Against Coronaviruses

Author(s): Igor José dos Santos Nascimento, Edeildo Ferreira da Silva-Júnior* and Thiago Mendonça de Aquino *

Volume 23, Issue 3, 2022

Published on: 09 August, 2021

Page: [240 - 259] Pages: 20

DOI: 10.2174/1389450122666210809090909

Price: $65

conference banner
Abstract

Since December 2019, the new Coronavirus disease (COVID-19) caused by the etiological agent SARS-CoV-2 has been responsible for several cases worldwide, becoming pandemic in March 2020. Pharmaceutical companies and academics have joined their efforts to discover new therapies to control the disease since there are no specific drugs to combat this emerging virus. Thus, several tar-gets have been explored; among them, the transmembrane protease serine 2 (TMPRSS2) has gained greater interest in the scientific community. In this context, this review will describe the importance of TMPRSS2 protease and the significant advances in virtual screening focused on discovering new inhibitors. In this review, it was observed that molecular modeling methods could be powerful tools in identifying new molecules against SARS-CoV-2. Thus, this review could be used to guide re-searchers worldwide to explore the biological and clinical potential of compounds that could be promising drug candidates against SARS-CoV-2, acting by inhibition of TMPRSS2 protein.

Keywords: TMPRSS2, SARS-CoV-2, structure-based drug discovery, virtual screening, drug repurposing, coronaviruses.

Graphical Abstract

[1]
Goodarzi P, Mahdavi F, Mirzaei R, et al. Coronavirus disease 2019 (COVID-19): Immunological approaches and emerging pharmacologic treatments. Int Immunopharmacol 2020; 88106885
[http://dx.doi.org/10.1016/j.intimp.2020.106885] [PMID: 32795893]
[2]
Fuzimoto AD, Isidoro C. The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic? J Tradit Complement Med 2020; 10(4): 405-19.
[http://dx.doi.org/10.1016/j.jtcme.2020.05.003] [PMID: 32691005]
[3]
Ullrich S, Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett 2020; 30(17)127377
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[4]
Heimfarth L, Serafini MR, Martins-Filho PR, Quintans JSS, Quintans-Júnior LJ. Drug repurposing and cytokine management in response to COVID-19: A review. Int Immunopharmacol 2020; 88106947
[http://dx.doi.org/10.1016/j.intimp.2020.106947] [PMID: 32919216]
[5]
Wong GLH, Wong VWS, Thompson A, et al. Management of patients with liver derangement during the COVID-19 pandemic: An Asia-Pacific position statement. Lancet Gastroenterol Hepatol 2020; 5(8): 776-87.
[http://dx.doi.org/10.1016/S2468-1253(20)30190-4] [PMID: 32585136]
[6]
WHO Coronavirus Disease (COVID-19) Dashboard | WHO Coronavirus Disease (COVID-19) Dashboard. Available from:. https://covid19.who.int/
[7]
Del Turco S, Vianello A, Ragusa R, Caselli C, Basta G. COVID-19 and cardiovascular consequences: Is the endothelial dysfunction the hardest challenge? Thromb Res 2020; 196: 143-51.
[http://dx.doi.org/10.1016/j.thromres.2020.08.039] [PMID: 32871306]
[8]
Raza SS, Khan MA. Mesenchymal stem cells: A new front emerge in covid19 treatment. Cytotherapy 2020.
[http://dx.doi.org/10.1016/j.jcyt.2020.07.002]
[9]
Pallanti S. Importance of SARs-Cov-2 anosmia: From phenomenology to neurobiology. Compr Psychiatry 2020; 100152184
[http://dx.doi.org/10.1016/j.comppsych.2020.152184] [PMID: 32422426]
[10]
Shi Y, Zhang X, Mu K, et al. D3Targets-2019-nCoV: A webserver for predicting drug targets and for multi-target and multi-site based virtual screening against COVID-19. Acta Pharm Sin B 2020; 10(7): 1239-48.
[http://dx.doi.org/10.1016/j.apsb.2020.04.006] [PMID: 32318328]
[11]
Kim JH, Marks F, Clemens JD. Looking beyond COVID-19 vaccine phase 3 trials. Nat Med 2021; 27(2): 205-11.
[http://dx.doi.org/10.1038/s41591-021-01230-y] [PMID: 33469205]
[12]
Forni G, Mantovani A. COVID-19 vaccines: Where we stand and challenges ahead. Cell Death Differ 2021; 28(2): 626-39.
[http://dx.doi.org/10.1038/s41418-020-00720-9] [PMID: 33479399]
[13]
Burgess RA, Osborne RH, Yongabi KA, et al. The COVID-19 vaccines rush: Participatory community engagement matters more than ever. Lancet 2021; 397(10268): 8-10.
[http://dx.doi.org/10.1016/S0140-6736(20)32642-8] [PMID: 33308484]
[14]
Chilamakuri R, Agarwal S. COVID-19: Characteristics and Therapeutics. Cells 2021; 10(2): 206.
[http://dx.doi.org/10.3390/cells10020206] [PMID: 33494237]
[15]
Ghaebi M, Osali A, Valizadeh H, Roshangar L, Ahmadi M. Vaccine development and therapeutic design for 2019-nCoV/SARS-CoV-2: Challenges and chances. J Cell Physiol 2020; 235(12): 9098-109.
[http://dx.doi.org/10.1002/jcp.29771] [PMID: 32557648]
[16]
Nascimento IJDS, de Aquino TM, Silva-júnior EF. Drug repurposing : A strategy for discovering inhibitors against emerging viral infections. Curr Med Chem 2021; 28(15): 2887-942.
[17]
Lounnas V, Ritschel T, Kelder J, McGuire R, Bywater RP, Foloppe N. Current progress in structure-based rational drug design marks a new mindset in drug discovery. Comput Struct Biotechnol J 2013; 5e201302011
[http://dx.doi.org/10.5936/csbj.201302011] [PMID: 24688704]
[18]
José dos Santos Nascimento I, Mendonça de Aquino T, Fernando da Silva Santos-Júnior P, Xavier de Araújo-Júnior J, Ferreira da Silva-Júnior E. Molecular modeling applied to design of cysteine protease inhibitors - a powerful tool for the identification of hit compounds against neglected tropical diseases. Front Comput Chem 2020; 5: 63-110.
[19]
Rognan D. The impact of in silico screening in the discovery of novel and safer drug candidates. Pharmacol Ther 2017; 175: 47-66.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.034] [PMID: 28223231]
[20]
van Montfort RLM, Workman P. Structure-based drug design: Aiming for a perfect fit. Essays Biochem 2017; 61(5): 431-7.
[http://dx.doi.org/10.1042/EBC20170052] [PMID: 29118091]
[21]
Faheem; Kumar, B.K.; Sekhar, K.V.G.C.; Kunjiappan, S.; Jamalis, J.; Balaña-Fouce, R.; Tekwani, B.L.; Sankaranarayanan, M. Druggable targets of sars-cov-2 and treatment opportunities for covid-19. Bioorg Chem 2020; 104104269
[22]
Drożdżal S, Rosik J, Lechowicz K, et al. FDA approved drugs with pharmacotherapeutic potential for SARS-CoV-2 (COVID-19) therapy. Drug Resist Updat 2020; 53100719
[http://dx.doi.org/10.1016/j.drup.2020.100719] [PMID: 32717568]
[23]
Naqvi AAT, Fatima K, Mohammad T, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10)165878
[http://dx.doi.org/10.1016/j.bbadis.2020.165878] [PMID: 32544429]
[24]
Gil C, Ginex T, Maestro I, et al. COVID-19: Drug targets and potential treatments. J Med Chem 2020; 63(21): 12359-86.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[25]
Pandey A, Nikam AN, Shreya AB, et al. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci 2020; 256117883
[http://dx.doi.org/10.1016/j.lfs.2020.117883] [PMID: 32497632]
[26]
Vallamkondu J, John A, Wani WY, et al. SARS-CoV-2 pathophysiology and assessment of coronaviruses in CNS diseases with a focus on therapeutic targets. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10)165889
[http://dx.doi.org/10.1016/j.bbadis.2020.165889] [PMID: 32603829]
[27]
Khare P, Sahu U, Pandey SC, Samant M. Current approaches for target-specific drug discovery using natural compounds against SARS-CoV-2 infection. Virus Res 2020; 290198169
[http://dx.doi.org/10.1016/j.virusres.2020.198169] [PMID: 32979476]
[28]
Muralidar S, Ambi SV, Sekaran S, Krishnan UM. The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie 2020; 179: 85-100.
[http://dx.doi.org/10.1016/j.biochi.2020.09.018] [PMID: 32971147]
[29]
Tiwari V, Beer JC, Sankaranarayanan NV, Swanson-Mungerson M, Desai UR. Discovering small-molecule therapeutics against SARS-CoV-2. Drug Discov Today 2020; 25(8): 1535-44.
[http://dx.doi.org/10.1016/j.drudis.2020.06.017] [PMID: 32574699]
[30]
Kumar D, Chauhan G, Kalra S, Kumar B, Gill MS. A perspective on potential target proteins of COVID-19: Comparison with SARS-CoV for designing new small molecules. Bioorg Chem 2020; 104104326
[http://dx.doi.org/10.1016/j.bioorg.2020.104326] [PMID: 33142431]
[31]
Burdova A, Bouchal J, Tavandzis S, Kolar Z. TMPRSS2-ERG gene fusion in prostate cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158(4): 502-10.
[http://dx.doi.org/10.5507/bp.2014.065] [PMID: 25485532]
[32]
Strope JD, Pharm D. CHC, Figg WD. TMPRSS2: Potential biomarker for covid-19 outcomes. J Clin Pharmacol D 2020; 60(7): 801-7.
[http://dx.doi.org/10.1002/jcph.1641] [PMID: 32437018]
[33]
Helgeson BE, Tomlins SA, Shah N, et al. Characterization of TMPRSS2:ETV5 and SLC45A3: ETV5 gene fusions in prostate cancer. Cancer Res 2008; 68(1): 73-80.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5352] [PMID: 18172298]
[34]
Rubin MA, Chinnaiyan AM. Bioinformatics approach leads to the discovery of the TMPRSS2: ETS gene fusion in prostate cancer. Lab Invest 2006; 86(11): 1099-102.
[http://dx.doi.org/10.1038/labinvest.3700477] [PMID: 16983328]
[35]
Shen LW, Mao HJ, Wu YL, Tanaka Y, Zhang W. TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections. Biochimie 2017; 142: 1-10.
[http://dx.doi.org/10.1016/j.biochi.2017.07.016] [PMID: 28778717]
[36]
Antalis TM, Bugge TH, Wu Q. Membrane-anchored serine proteases in health and disease Elsevier Inc.. 2011; 99.
[http://dx.doi.org/10.1016/B978-0-12-385504-6.00001-4]
[37]
Fraser B, Beldar S, Hutchinson A, et al. Crystal structure of human tmprss2 in complex with nafamostat. Protein Data Bank 2021.
[38]
van Dam PA, Huizing M, Mestach G, et al. SARS-CoV-2 and cancer: Are they really partners in crime? Cancer Treat Rev 2020; 89102068
[http://dx.doi.org/10.1016/j.ctrv.2020.102068] [PMID: 32731090]
[39]
Vargas-Alarcón G, Posadas-Sánchez R, Ramírez-Bello J. Variability in genes related to SARS-CoV-2 entry into host cells (ACE2, TMPRSS2, TMPRSS11A, ELANE, and CTSL) and its potential use in association studies. Life Sci 2020; 260118313
[http://dx.doi.org/10.1016/j.lfs.2020.118313] [PMID: 32835700]
[40]
Zhou QA, Kato-Weinstein J, Li Y, et al. Potential therapeutic agents and associated bioassay data for covid-19 and related human coronavirus infections. ACS Pharmacol Transl Sci 2020; 3(5): 813-34.
[http://dx.doi.org/10.1021/acsptsci.0c00074] [PMID: 33062950]
[41]
Xiu S, Dick A, Ju H, et al. Inhibitors of sars-cov-2 entry: Current and future opportunities. J Med Chem 2020; 63(21): 12256-74.
[42]
Teralı K, Baddal B, Gülcan HO. Prioritizing potential ACE2 inhibitors in the COVID-19 pandemic: Insights from a molecular mechanics-assisted structure-based virtual screening experiment. J Mol Graph Model 2020; 100107697
[http://dx.doi.org/10.1016/j.jmgm.2020.107697] [PMID: 32739642]
[43]
Jankun J. Covid-19 pandemic; transmembrane protease serine 2 (tmprss2) inhibitors as potential drugs. Transl Univ Toledo J Med Sci 2020; 7: 1-5.
[http://dx.doi.org/10.46570/utjms.vol7-2020-361]
[44]
Bittmann S. COVID 19: Camostat and the role of serine protease entry inhibitor tmprss2. J Regen Biol Med 2020; 2: 1-2.
[45]
Yamamoto M, Kiso M, Sakai-Tagawa Y, et al. The anticoagulant nafamostat potently inhibits sars-cov-2 s protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses 2020; 12(6): 12.
[http://dx.doi.org/10.3390/v12060629] [PMID: 32532094]
[46]
Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostat mesylate blocks activation of sars-coV-2: New treatment option for covid-19. Antimicrob Agents Chemother 2020; 64(6): 1-7.
[http://dx.doi.org/10.1128/AAC.00754-20] [PMID: 32312781]
[47]
Shrimp JH, Kales SC, Sanderson PE, Simeonov A, Shen M, Hall MD. An enzymatic tmprss2 assay for assessment of clinical candidates and discovery of inhibitors as potential treatment of covid-19 ACS Pharmacol Transl Sci 2020.
[48]
Yamamoto M, Matsuyama S, Li X, et al. Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome coronavirus s protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob Agents Chemother 2016; 60(11): 6532-9.
[http://dx.doi.org/10.1128/AAC.01043-16] [PMID: 27550352]
[49]
Kijewska M, Sharfalddin AA, Jaremko Ł, et al. Lossen rearrangement of p-toluenesulfonates of n-oxyimides in basic condition, theoretical study, and molecular docking. Front Chem 2021; 9662533
[http://dx.doi.org/10.3389/fchem.2021.662533] [PMID: 33937199]
[50]
Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol 2011; 162(6): 1239-49.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[51]
Zhao L, Ciallella HL, Aleksunes LM, Zhu H. Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discov Today 2020; 25(9): 1624-38.
[http://dx.doi.org/10.1016/j.drudis.2020.07.005] [PMID: 32663517]
[52]
Surabhi S, Singh B. Computer aided drug design: An overview. J Drug Deliv Ther 2018; 8: 504-9.
[http://dx.doi.org/10.22270/jddt.v8i5.1894]
[53]
Mohs RC, Greig NH. Drug discovery and development: Role of basic biological research. Alzheimers Dement (N Y) 2017; 3(4): 651-7.
[http://dx.doi.org/10.1016/j.trci.2017.10.005] [PMID: 29255791]
[54]
Yu W, Jr ADM. Chapter 5 computer-aided drug design methodsAntibiot Methods Protoc. 2017; 1520: pp. 85-106.
[55]
Njogu PM, Guantai EM, Pavadai E, Chibale K. Computer-aided drug discovery approaches against the tropical infectious diseases malaria, tuberculosis, trypanosomiasis, and leishmaniasis. ACS Infect Dis 2016; 2(1): 8-31.
[http://dx.doi.org/10.1021/acsinfecdis.5b00093] [PMID: 27622945]
[56]
Idris MO, Yekeen AA, Alakanse OS, Durojaye OA. Computer-aided screening for potential TMPRSS2 inhibitors: A combination of pharmacophore modeling, molecular docking and molecular dynamics simulation approaches. J Biomol Struct Dyn 2020; 1-19.
[http://dx.doi.org/10.1080/07391102.2020.1792346] [PMID: 32672528]
[57]
Li Q, Wang Z, Zheng Q, Liu S. Potential clinical drugs as covalent inhibitors of the priming proteases of the spike protein of SARS-CoV-2. Comput Struct Biotechnol J 2020; 18: 2200-8.
[http://dx.doi.org/10.1016/j.csbj.2020.08.016] [PMID: 32868983]
[58]
Elmezayen AD, Al-Obaidi A, Şahin AT, Yelekçi K. Drug repurposing for coronavirus (covid-19): In silico screening of known drugs against coronavirus 3cl hydrolase and protease enzymes. J Biomol Struct Dyn 2020; 1-13.
[http://dx.doi.org/10.1080/07391102.2020.1798812] [PMID: 32306862]
[59]
Huggins DJ. Structural analysis of experimental drugs binding to the SARS-CoV-2 target TMPRSS2. J Mol Graph Model 2020; 100107710
[http://dx.doi.org/10.1016/j.jmgm.2020.107710] [PMID: 32829149]
[60]
Batool M, Ahmad B, Choi S. A structure-based drug discovery paradigm. Int J Mol Sci 2019; 20(11): 20.
[http://dx.doi.org/10.3390/ijms20112783] [PMID: 31174387]
[61]
Muhammed MT, Aki-Yalcin E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem Biol Drug Des 2019; 93(1): 12-20.
[http://dx.doi.org/10.1111/cbdd.13388] [PMID: 30187647]
[62]
França TCC. Homology modeling: an important tool for the drug discovery. J Biomol Struct Dyn 2015; 33(8): 1780-93.
[http://dx.doi.org/10.1080/07391102.2014.971429] [PMID: 25266493]
[63]
Munsamy G, Soliman MES. Homology modeling in drug discovery-an update on the last decade. Lett Drug Des Discov 2017; 14.
[http://dx.doi.org/10.2174/1570180814666170110122027]
[64]
Cavasotto CN, Phatak SS. Homology modeling in drug discovery: Current trends and applications. Drug Discov Today 2009; 14(13-14): 676-83.
[http://dx.doi.org/10.1016/j.drudis.2009.04.006] [PMID: 19422931]
[65]
Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr. Computational methods in drug discovery. Pharmacol Rev 2013; 66(1): 334-95.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[66]
Sousa SF, Cerqueira NM, Fernandes PA, Ramos MJ. Virtual screening in drug design and development. Comb Chem High Throughput Screen 2010; 13(5): 442-53.
[http://dx.doi.org/10.2174/138620710791293001] [PMID: 20236061]
[67]
Subramaniam S, Mehrotra M, Gupta D. Virtual high throughput screening (vHTS)--a perspective. Bioinformation 2008; 3(1): 14-7.
[http://dx.doi.org/10.6026/97320630003014] [PMID: 19052660]
[68]
Good AC, Krystek SR, Mason JS. High-throughput and virtual screening: Core lead discovery technologies move towards integration. Drug Discov Today 2000; 5(12)(Suppl. 1): 61-9.
[http://dx.doi.org/10.1016/S1359-6446(00)00015-5] [PMID: 11564568]
[69]
Bajorath J. Integration of virtual and high-throughput screening. Nat Rev Drug Discov 2002; 1(11): 882-94.
[http://dx.doi.org/10.1038/nrd941] [PMID: 12415248]
[70]
Kontoyianni M. Docking and virtual screening in drug discovery. 2017; pp. 255-66.
[http://dx.doi.org/10.1007/978-1-4939-7201-2_18]
[71]
Christoph G, Krishna P, Kendra E. L.; Marco, C.; Patrick D., F.; Zi-Fu, W.; Guilhem, T.; Shreya, P.; Alec, S.; Anthony, C.; Colin, H.; Minko, G.; Alexander, R.; Noam, L.; Erez, Y.; Roni, L.; Henry D., H.; Vedat, D.; Thanos D., H.; Konstantin, F.; Justin J., P.; Alexander, C.; Igor, D.; Alla, P.; Yurii, M.; Dmytro, R.; Olga, T.; Irina, Y.; Christian C., G.; Ryan, Y.; Dave, P.; Anders M., N.; Mark N., N.; Robert A., D.; Gerhard, W.; Jamie, K.; Haribabu, A. A multi-pronged approach targeting sars-cov-2 proteins using ultra-large virtual screening. ChemRxiv 2020; 2.
[72]
Qing X, Lee XY, De Raeymaeker J, et al. Pharmacophore modeling: Advances, limitations, and current utility in drug discovery. J Receptor Ligand Channel Res 2014; 7: 81-92.
[73]
Yang SY. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discov Today 2010; 15(11-12): 444-50.
[http://dx.doi.org/10.1016/j.drudis.2010.03.013] [PMID: 20362693]
[74]
Schaller D, Šribar D, Noonan T, et al. Next generation 3d pharmacophore modeling. Wiley Interdiscip Rev Comput Mol Sci 2020; 10: 1-20.
[http://dx.doi.org/10.1002/wcms.1468]
[75]
Nguyen B. In silico pharmacophore study and structural optimization of nafamostat yield potentially novel transmembrane protease serine 2 (tmprss2) inhibitors which block the entry of sars-cov-2 virus into human cells 2020; 2
[76]
Choudhary S, Silakari O. Scaffold morphing of arbidol (umifenovir) in search of multi-targeting therapy halting the interaction of sars-cov-2 with ace2 and other proteases involved in covid-19. Elsevier B.V. 2020; p. 289.
[77]
Kandeel M, Yamamoto M, Tani H, et al. Discovery of new fusion inhibitor peptides against SARS-CoV-2 by targeting the spike S2 subunit. Biomol Ther (Seoul) 2021; 29(3): 282-9.
[http://dx.doi.org/10.4062/biomolther.2020.201]]
[78]
Fernández-Prada C, Douanne N, Minguez-Menendez A, et al. Repurposed molecules: A new hope in tackling neglected infectious diseasesin silico drug design. Elsevier 2019; pp. 119-60.
[http://dx.doi.org/10.1016/B978-0-12-816125-8.00005-5]
[79]
Andersen PI, Ianevski A, Lysvand H, et al. Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infect Dis 2020; 93: 268-76.
[http://dx.doi.org/10.1016/j.ijid.2020.02.018] [PMID: 32081774]
[80]
Kuiken T, Fouchier R, Rimmelzwaan G, Osterhaus A. Emerging viral infections in a rapidly changing world. Curr Opin Biotechnol 2003; 14(6): 641-6.
[http://dx.doi.org/10.1016/j.copbio.2003.10.010] [PMID: 14662395]
[81]
Sahu NU, Shah CP, Machhar JS, Kharkar PS. Drug repurposing in search of anti-infectives: Need of the hour in the multidrug resistance era!in silico drug design. Elsevier 2019; pp. 399-426.
[http://dx.doi.org/10.1016/B978-0-12-816125-8.00014-6]
[82]
Mercorelli B, Palù G, Loregian A. Drug repurposing for viral infectious diseases: How far are we? Trends Microbiol 2018; 26(10): 865-76.
[http://dx.doi.org/10.1016/j.tim.2018.04.004] [PMID: 29759926]
[83]
Siegelin MD, Schneider E, Westhoff M-A, Wirtz CR, Karpel-Massler G. Current state and future perspective of drug repurposing in malignant glioma. Semin Cancer Biol 2021; 68: 92-104.
[http://dx.doi.org/10.1016/j.semcancer.2019.10.018] [PMID: 31734137]
[84]
Gns HS, Gr S. An update on drug repurposing: Re-written saga ofthe drug’s fate 2019; 110: 700-16.
[85]
Oprea TI, Bauman JE, Bologa CG, et al. Drug repurposing from an academic perspective. Drug Discov Today Ther Strateg 2011; 8(3-4): 61-9.
[http://dx.doi.org/10.1016/j.ddstr.2011.10.002] [PMID: 22368688]
[86]
Sonawane K, Barale SS, Dhanavade MJ, et al. Homology modeling and docking studies of TMPRSS2 with experimentally known inhibitors camostat mesylate, nafamostat and bromhexine hydrochloride to control SARS-coronavirus-2. ChemRxiv 2020.
[87]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[88]
Napolitano F, Gambardella G, Carrella D, Gao X, di Bernardo D. Computational drug repositioning and elucidation of mechanism of action of compounds against SARS-CoV-2 arXiv preprint arXiv:200407697, 2020.
[89]
Mahdian S, Ebrahim-Habibi A, Zarrabi M. Drug repurposing using computational methods to identify therapeutic options for COVID-19. J Diabetes Metab Disord 2020; 19(2): 1-9.
[PMID: 32837954]
[90]
Mahmoud IS, Jarrar YB, Alshaer W, Ismail S. SARS-CoV-2 entry in host cells-multiple targets for treatment and prevention. Biochimie 2020; 175: 93-8.
[http://dx.doi.org/10.1016/j.biochi.2020.05.012] [PMID: 32479856]
[91]
Jaimes JA, Millet JK, Whittaker GR. Proteolytic cleavage of the sars-cov-2 spike protein and the role of the novel s1/s2 site iScience 2020; 23: 101212
[92]
Madadlou A. Food proteins are a potential resource for mining cathepsin L inhibitory drugs to combat SARS-CoV-2. Eur J Pharmacol 2020; 885173499
[http://dx.doi.org/10.1016/j.ejphar.2020.173499] [PMID: 32841639]
[93]
McInnes C. Virtual screening strategies in drug discovery. Curr Opin Chem Biol 2007; 11(5): 494-502.
[http://dx.doi.org/10.1016/j.cbpa.2007.08.033] [PMID: 17936059]
[94]
Cerqueira NMFSA, Gesto D, Oliveira EF, et al. Receptor-based virtual screening protocol for drug discovery. Arch Biochem Biophys 2015; 582: 56-67.
[http://dx.doi.org/10.1016/j.abb.2015.05.011] [PMID: 26045247]
[95]
Singh N, Decroly E, Khatib A-M, Villoutreix BO. Structure-based drug repositioning over the human TMPRSS2 protease domain: Search for chemical probes able to repress SARS-CoV-2 Spike protein cleavages. Eur J Pharm Sci 2020; 153105495
[http://dx.doi.org/10.1016/j.ejps.2020.105495] [PMID: 32730844]
[96]
Coban M, Morrison J, Freeman WS, Radisky E, Le Roch K, Caulfield T. Targeting Tmprss2, S-Protein:Ace2, and 3CLpro for synergetic inhibitory engagement. ChemRxiv 2020.
[97]
Rensi S, Keys A, Lo Y-C, et al. Homology modeling of tmprss2 yields candidate drugs that may inhibit entry of sars-cov-2 into human cells. ChemRxiv 2020.
[98]
Mulgaonkar NS, Wang H, Mallawarachchi S, Ruzek D, Martina B, Fernando S. Bcr-Abl tyrosine kinase inhibitor imatinib as a potential drug for covid-19. bioRxiv 2020.
[99]
Baby K, Maity S, Mehta CH, Suresh A, Nayak UY, Nayak Y. SARS-CoV-2 entry inhibitors by dual targeting TMPRSS2 and ACE2: An in silico drug repurposing study. Eur J Pharmacol 2021; 896173922
[http://dx.doi.org/10.1016/j.ejphar.2021.173922] [PMID: 33539819]
[100]
Dwarka D, Agoni C, Mellem JJ, Soliman ME, Baijnath H. Identification of potential SARS-CoV-2 inhibitors from South African medicinal plant extracts using molecular modelling approaches. S Afr J Bot 2020; 133: 273-84.
[http://dx.doi.org/10.1016/j.sajb.2020.07.035] [PMID: 32839635]
[101]
Tahir Ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020; 10(4): 313-9.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[102]
Oladele JO, Ajayi EI, Oyeleke OM, et al. A systematic review on COVID-19 pandemic with special emphasis on curative potentials of Nigeria based medicinal plants. Heliyon 2020; 6(9)e04897
[http://dx.doi.org/10.1016/j.heliyon.2020.e04897] [PMID: 32929412]
[103]
Vivek-Ananth RP, Rana A, Rajan N, Biswal HS, Samal A. In silico identification of potential natural product inhibitors of human proteases key to sars-cov-2 infection. Molecules 2020; 25(17): 3822.
[http://dx.doi.org/10.3390/molecules25173822] [PMID: 32842606]
[104]
Yadav PK, Jaiswal A, Singh RK. In silico study on spice-derived antiviral phytochemicals against sars-cov-2 tmprss2 target 2020.
[105]
Rahman N, Basharat Z, Yousuf M, Castaldo G, Rastrelli L, Khan H. Virtual screening of natural products against type ii transmembrane serine protease (tmprss2), the priming agent of coronavirus 2 (sars-cov-2). Molecules 2020; 25(10): 1-12.
[http://dx.doi.org/10.3390/molecules25102271] [PMID: 32408547]
[106]
P., H.; A., F.. Exploring structurally diverse plant secondary metabolites as a potential source of drug targeting different molecular mechanisms of severe acute respiratory syndrome coronavirus-2 (sars-cov-2) pathogenesis. An in silico Approach 2020; 2: 1-38..
[107]
Dar NJ. MuzamilAhmad. Neurodegenerative diseases and Withania somnifera (L.): An update. J Ethnopharmacol 2020; 256112769
[http://dx.doi.org/10.1016/j.jep.2020.112769] [PMID: 32240781]
[108]
Vanden Berghe W, Sabbe L, Kaileh M, Haegeman G, Heyninck K. Molecular insight in the multifunctional activities of Withaferin A. Biochem Pharmacol 2012; 84(10): 1282-91.
[http://dx.doi.org/10.1016/j.bcp.2012.08.027] [PMID: 22981382]
[109]
Hassannia B, Logie E, Vandenabeele P, et al. From ayurvedic folk medicine to preclinical anti-cancer drug. Biochem Pharmacol 2020; 173113602
[http://dx.doi.org/10.1016/j.bcp.2019.08.004] [PMID: 31404528]
[110]
Kumar V, Dhanjal JK, Bhargava P, et al. Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J Biomol Struct Dyn 2020; 0: 1-13.
[http://dx.doi.org/10.1080/7391102.2020.1775704] [PMID: 32469279]
[111]
Chikhale RV, Gupta VK, Eldesoky GE, Wabaidur SM, Patil SA, Islam MA. Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. J Biomol Struct Dyn 2020; 0: 1-16.
[http://dx.doi.org/10.1080/07391102.2020.1798813] [PMID: 32741259]
[112]
Dave GS, Rakholiya KD, Kaneria MJ, et al. High affinity interaction of solanum tuberosum and brassica juncea residue smoke water compounds with proteins involved in coronavirus infection. Phytother Res 2020; 34(12): 3400-10.
[113]
Roomi M, Khan Y. Potential compounds for the inhibition of TMPRSS2. ChemRxiv 2020.
[114]
Morais-Braga MFB, Carneiro JNP, Machado AJT, et al. Psidium guajava L., from ethnobiology to scientific evaluation: Elucidating bioactivity against pathogenic microorganisms. J Ethnopharmacol 2016; 194: 1140-52.
[http://dx.doi.org/10.1016/j.jep.2016.11.017] [PMID: 27845266]
[115]
Mgbeahuruike EE, Yrjönen T, Vuorela H, Holm Y. Bioactive compounds from medicinal plants: Focus on piper species. S Afr J Bot 2017; 112: 54-69.
[http://dx.doi.org/10.1016/j.sajb.2017.05.007]
[116]
De Jesus M, Gaza J, Junio HA, Nellas R. Molecular docking of secondary metabolites from Psidium Guajava L. and Piper Nigrum L. to COVID-19 associated receptors ACE2, spike protein RBD, and TMPRSS2. ChemRxiv 2020.
[117]
Laporte M, Naesens L. Airway proteases: An emerging drug target for influenza and other respiratory virus infections. Curr Opin Virol 2017; 24: 16-24.
[http://dx.doi.org/10.1016/j.coviro.2017.03.018] [PMID: 28414992]
[118]
Kalyaanamoorthy S, Chen YPP. Structure-based drug design to augment hit discovery. Drug Discov Today 2011; 16(17-18): 831-9.
[http://dx.doi.org/10.1016/j.drudis.2011.07.006] [PMID: 21810482]
[119]
Silva LR, da Silva Santos-Júnior PF, de Andrade Brandão J, et al. Druggable targets from coronaviruses for designing new antiviral drugs. Bioorg Med Chem 2020; 28(22)115745
[120]
Lima AN, Philot EA, Trossini GHG, Scott LPB, Maltarollo VG, Honorio KM. Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov. 2016; 11(3): 225-39.
[http://dx.doi.org/10.1517/17460441.2016.1146250] [PMID: 26814169]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy