Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Novel Pathways and Mechanisms of Nicotine-Induced Oral Carcinogenesis

Author(s): Mohit Sharma , Smitha S. Shetty and Raghu A. Radhakrishnan *

Volume 17, Issue 1, 2022

Published on: 06 August, 2021

Page: [66 - 79] Pages: 14

DOI: 10.2174/1574892816666210806161312

Price: $65

Abstract

Background: Smokeless Tobacco (SLT) contains 9 times more nicotine than Smoked Tobacco (SMT). The carcinogenic effect of nicotine is intensified by converting nicotine-to-nicotine- derived Nitrosamines (NDNs).

Methods: A review of the literature was conducted with a tailored search strategy to unravel the novel pathways and mechanisms of nicotine-induced oral carcinogenesis.

Results: Nicotine and NDNs act on nicotinic Acetylcholine Receptors (nAChRs) as agonists. Nicotine facilitates cravings through α4β2nAChR and α7nAChR, via enhanced brain dopamine release. Nicotine binding to nAChR promotes proliferation, migration, invasion, chemoresistance, radioresistance, and metastasis of oral cancer cells. Nicotine binding to α7nAChR on keratinocytes triggers Ras/Raf-1/MEK1/ERK cascade, promoting anti-apoptosis and pro-proliferative effects. Furthermore, the nicotine-enhanced metastasis is subdued on nAChR blockade through reduced nuclear localization of p-EGFR.

Conclusion: Protracted exposure to nicotine/NDN augments cancer-stimulatory α7nAChR and desensitizes cancer inhibitory α4β2nAChR. Since nAChRs dictate both addictive and carcinogenic effects of nicotine, it seems counterintuitive to designate nicotine just as an addictive agent devoid of any carcinogenicity.

Keywords: Oral cancer, carcinogen, nicotine, nitrosamines, smokeless, tobacco.

[1]
Gupta J, Gupta KK, Kabiraj A, Samadi FM. Smokeless tobacco and oral cancer: A review. Int J Oral Sci 2012; 3(2): 74-8.
[2]
Gupta AK, Tulsyan S, Bharadwaj M, Mehrotra R. Grass roots approach to control levels of carcinogenic nitrosamines, NNN and NNK in smokeless tobacco products. Food Chem Toxicol 2019; 124: 359-66.
[http://dx.doi.org/10.1016/j.fct.2018.12.011] [PMID: 30543893]
[3]
Gupta AK, Mehrotra R. Alarmingly high levels of nicotine and carcinogenic nitrosamines in smokeless tobacco products sold worldwide. Nicotine Tob Res 2021; 23(3): 621-2.
[http://dx.doi.org/10.1093/ntr/ntaa184] [PMID: 32951041]
[4]
Sanner T, Grimsrud TK. Nicotine: Carcinogenicity and effects on response to cancer treatment - A review. Front Oncol 2015; 5: 196.
[http://dx.doi.org/10.3389/fonc.2015.00196] [PMID: 26380225]
[5]
Rajagopalan P, Patel K, Jain AP, et al. Molecular alterations associated with chronic exposure to cigarette smoke and chewing tobacco in normal oral keratinocytes. Cancer Biol Ther 2018; 19(9): 773-85.
[http://dx.doi.org/10.1080/15384047.2018.1470724] [PMID: 29723088]
[6]
Nanjappa V, Renuse S, Sathe GJ, et al. Chronic exposure to chewing tobacco selects for overexpression of stearoyl-CoA desaturase in normal oral keratinocytes. Cancer Biol Ther 2015; 16(11): 1593-603.
[http://dx.doi.org/10.1080/15384047.2015.1078022] [PMID: 26391970]
[7]
Bhat MY, Advani J, Rajagopalan P, et al. Cigarette smoke and chewing tobacco alter expression of different sets of miRNAs in oral keratinocytes. Sci Rep 2018; 8(1): 7040.
[http://dx.doi.org/10.1038/s41598-018-25498-2] [PMID: 29728663]
[8]
Stepanov I, Gupta PC, Dhumal G, et al. High levels of tobacco-specific N-nitrosamines and nicotine in Chaini Khaini, a product marketed as snus. Tob Control 2015; 24(e4): e271-4.
[http://dx.doi.org/10.1136/tobaccocontrol-2014-051744] [PMID: 25217658]
[9]
Rupani MP, Parikh KD, Kakadia MJ, Pathak MM, Patel MR, Shah MA. Cross-sectional study on smokeless tobacco use, awareness and expenditure in an urban slum of Bhavnagar, Western India. Natl Med J India 2019; 32(3): 137-40.
[http://dx.doi.org/10.4103/0970-258X.278686] [PMID: 32129305]
[10]
Patil S, Arakeri G, Alamir AWH, et al. Is toombak a risk factor for oral leukoplakia and oral squamous cell carcinoma? A systematic review. J Oral Pathol Med 2020; 49(2): 103-9.
[http://dx.doi.org/10.1111/jop.12954] [PMID: 31436350]
[11]
Khan Z, Suliankatchi RA, Heise TL, Dreger S. Naswar (smokeless tobacco) use and the risk of oral cancer in Pakistan: A systematic review with meta-analysis. Nicotine Tob Res 2019; 21(1): 32-40.
[http://dx.doi.org/10.1093/ntr/ntx281] [PMID: 29294113]
[12]
Raj AT, Patil S, Sarode SC, Sarode GS. Systematic reviews and meta-analyses on smokeless tobacco products should include shammah. Nicotine Tob Res 2019; 21(8): 1147.
[http://dx.doi.org/10.1093/ntr/nty144] [PMID: 29986117]
[13]
Agrawal SS, Ray RS. Nicotine contents in some commonly used toothpastes and toothpowders: a present scenario. J Toxicol 2012; 2012: 237506.
[http://dx.doi.org/10.1155/2012/237506] [PMID: 22287960]
[14]
Mishra A, Chaturvedi P, Datta S, Sinukumar S, Joshi P, Garg A. Harmful effects of nicotine. Indian J Med Paediatr Oncol 2015; 36(1): 24-31.
[http://dx.doi.org/10.4103/0971-5851.151771] [PMID: 25810571]
[15]
Gemenetzidis E, Bose A, Riaz AM, et al. FOXM1 upregulation is an early event in human squamous cell carcinoma and it is enhanced by nicotine during malignant transformation. PLoS One 2009; 4(3): e4849.
[http://dx.doi.org/10.1371/journal.pone.0004849] [PMID: 19287496]
[16]
Schaal C, Chellappan SP. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res 2014; 12(1): 14-23.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0541] [PMID: 24398389]
[17]
Schuller HM. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nat Rev Cancer 2009; 9(3): 195-205.
[http://dx.doi.org/10.1038/nrc2590] [PMID: 19194381]
[18]
Wang C, Niu W, Chen H, et al. Nicotine suppresses apoptosis by regulating α7nAChR/Prx1 axis in oral precancerous lesions. Oncotarget 2017; 8(43): 75065-75.
[http://dx.doi.org/10.18632/oncotarget.20506] [PMID: 29088845]
[19]
Wisniewski DJ, Ma T, Schneider A. Nicotine induces oral dysplastic keratinocyte migration via fatty acid synthase-dependent epidermal growth factor receptor activation. Exp Cell Res 2018; 370(2): 343-52.
[http://dx.doi.org/10.1016/j.yexcr.2018.06.036] [PMID: 29966661]
[20]
Schuller HM, Orloff M. Tobacco-specific carcinogenic nitrosamines. Ligands for nicotinic acetylcholine receptors in human lung cancer cells. Biochem Pharmacol 1998; 55(9): 1377-84.
[http://dx.doi.org/10.1016/S0006-2952(97)00651-5] [PMID: 10076528]
[21]
Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA. Receptor-mediated tobacco toxicity: Cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of alpha7 nicotinic receptor in oral keratinocytes. FASEB J 2006; 20(12): 2093-101.
[http://dx.doi.org/10.1096/fj.06-6191com] [PMID: 17012261]
[22]
Egleton RD, Brown KC, Dasgupta P. Nicotinic acetylcholine receptors in cancer: Multiple roles in proliferation and inhibition of apoptosis. Trends Pharmacol Sci 2008; 29(3): 151-8.
[http://dx.doi.org/10.1016/j.tips.2007.12.006] [PMID: 18262664]
[23]
Janda KD, Lockner JW. Enantiopure haptens for nicotine vaccine development. US2019011936325, 2019.
[24]
Newman M, Sanberg PR, Shytle D, Silver AA. Exo-S-mecamylamine formulation and use in treatment. US1018861329, 2019.
[25]
Luo S, Zhangsun D, Zhu X, et al. Novel mutant of α-Conotoxin peptide TXID, pharmaceutical composition and use thereof. WO2018113697, 2018.
[26]
Bymaster F, McKinney AA, Skolnick P. Use of (+)-1-(3,4-dichlorophenyl)-3-azabicyclo[3.1.0]hexane to treat addictive disorders including nicotine addiction. US201720941527, 2017.
[27]
Agarwal S, Darokar MP, Kalra A, et al. A Nicotine free synergistic polyherbal masticatory formulation and a process for the preparation thereof. WO2015001574, 2015.
[28]
Ciccocioppo R. Andrographis paniculata compositions and methods for treatment of addictions. WO2014008351, 2014.
[29]
Arredondo J, Chernyavsky AI, Grando SA. Nicotinic receptors mediate tumorigenic action of tobacco-derived nitrosamines on immortalized oral epithelial cells. Cancer Biol Ther 2006; 5(5): 511-7.
[http://dx.doi.org/10.4161/cbt.5.5.2601] [PMID: 16582591]
[30]
Zhao Y. The oncogenic functions of nicotinic acetylcholine receptors. J Oncol 2016; 2016: 9650481.
[http://dx.doi.org/10.1155/2016/9650481] [PMID: 26981122]
[31]
Nair U, Bartsch H, Nair J. Alert for an epidemic of oral cancer due to use of the betel quid substitutes gutkha and pan masala: A review of agents and causative mechanisms. Mutagenesis 2004; 19(4): 251-62.
[http://dx.doi.org/10.1093/mutage/geh036] [PMID: 15215323]
[32]
Knezevich A, Muzic J, Hatsukami DK, Hecht SS, Stepanov I. Nornicotine nitrosation in saliva and its relation to endogenous synthesis of N′-nitrosonornicotine in humans. Nicotine Tob Res 2013; 15(2): 591-5.
[http://dx.doi.org/10.1093/ntr/nts172] [PMID: 22923602]
[33]
Agbor MA, Azodo CC, Tefouet TS. Smokeless tobacco use, tooth loss and oral health issues among adults in Cameroon. Afr Health Sci 2013; 13(3): 785-90.
[http://dx.doi.org/10.4314/ahs.v13i3.38] [PMID: 24250322]
[34]
Han J, Sanad YM, Deck J, et al. Bacterial populations associated with smokeless tobacco products. Appl Environ Microbiol 2016; 82(20): 6273-83.
[http://dx.doi.org/10.1128/AEM.01612-16] [PMID: 27565615]
[35]
Chen X, Gao D, Liu Y, Sha L, Zhang N, Zheng Y. New use of drug nifedipine. CN11050765229, 2019.
[36]
Im H-i, Kim BS. Pharmaceutical composition for the prevention or treatment of nicotine addiction and withdrawal symptoms including miRNA. US10946037, 2021.
[37]
Liu H, Mi G, Yang H, Yang Z, Zhou Y. Anti-addiction medical application of L-Corydalmine (L-CDL). CN106176740, 2016.
[38]
Xing C. Kava extracts, isolated kavalactones, and uses in treating tobacco and nicotine addiction. WO2019040828, 2019.
[39]
Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: What have we learned from 40 years of research. J Neural Transm (Vienna) 2019; 126(4): 481-516.
[http://dx.doi.org/10.1007/s00702-018-1957-2] [PMID: 30569209]
[40]
Ban JS, Ga M-H, Kim GS, et al. Composition for preventing or treating nicotinism containing extract of Liriope platyphylla as active ingredient. JP2020200320, 2020.
[41]
Khan Z, Khan S, Christianson L, Rehman S, Ekwunife O, Samkange-Zeeb F. Smokeless tobacco and oral potentially malignant disorders in South Asia: A systematic review and meta-analysis. Nicotine Tob Res 2017; 20(1): 12-21.
[PMID: 27928050]
[42]
Sinha DN, Abdulkader RS, Gupta PC. Smokeless tobacco-associated cancers: A systematic review and meta-analysis of Indian studies. Int J Cancer 2016; 138(6): 1368-79.
[http://dx.doi.org/10.1002/ijc.29884] [PMID: 26443187]
[43]
Asthana S, Labani S, Kailash U, Sinha DN, Mehrotra R. Association of smokeless tobacco use and oral cancer: A systematic global review and meta-analysis. Nicotine Tob Res 2019; 21(9): 1162-71.
[http://dx.doi.org/10.1093/ntr/nty074] [PMID: 29790998]
[44]
Giulianotti M, Toll L, Welmaker GS, Wu J, Yu Y. Compositions, methods of use, and methods of treatment. US20200179361, 2020.
[45]
Maillet E, Lauderdale F. Low dose noribogaine for treating nicotine addiction and preventing relapse of nicotine use. US20170368074, 2017.
[46]
Tabuteau H. Bupropion and dextromethorphan for treating nicotine addiction. US2019008805, 2019.
[47]
Briggs SA, Hall BJ, Wells C, et al. Dextromethorphan interactions with histaminergic and serotonergic treatments to reduce nicotine self-administration in rats. Pharmacol Biochem Behav 2016; 142: 1-7.
[http://dx.doi.org/10.1016/j.pbb.2015.12.004] [PMID: 26704812]
[48]
Ayers J, Crooks PA, Dwoskin LP, Grinevich V, Sumithran S. Bis-pyridino containing compounds for the use in the treatment of CNS pathologies. US8546415, 2013.
[49]
Janda K, Kalnik M, Thisted T. Nicotine-degrading enzymes for treating nicotine addiction and nicotine poisoning. US2019015484, 2019.
[50]
Kalnik MW, Biesova Z, Thisted T, et al. Novel nicotine-binding antibodies. WO2019036419, 2019.
[51]
Horenstein NA, Quadri M, Stokes C, Shoaib M, Papke RL. Cracking the betel nut: cholinergic activity of areca alkaloids and related compounds. Nicotine Tob Res 2019; 21(6): 805-12.
[http://dx.doi.org/10.1093/ntr/ntx187] [PMID: 29059390]
[52]
Johnston GA, Krogsgaard-Larsen P, Stephanson A. Betel nut constituents as inhibitors of gamma-aminobutyric acid uptake. Nature 1975; 258(5536): 627-8.
[http://dx.doi.org/10.1038/258627a0] [PMID: 1207742]
[53]
Xie H, Liu J, Ling TY. Expression of cytochrome P450 related genes in oral submucous fibrosis tissue. Chung Hua Kou Chiang Hsueh Tsa Chih 2012; 47(12): 743-7.
[PMID: 23328101]
[54]
Warnakulasuriya S, Straif K. Carcinogenicity of smokeless tobacco: Evidence from studies in humans & experimental animals. Indian J Med Res 2018; 148(6): 681-6.
[http://dx.doi.org/10.4103/ijmr.IJMR_149_18] [PMID: 30778001]
[55]
Zarth AT, Upadhyaya P, Yang J, Hecht SS. DNA Adduct formation from metabolic 5′-hydroxylation of the tobacco-specific carcinogen N′-nitrosonornicotine in human enzyme systems and in rats. Chem Res Toxicol 2016; 29(3): 380-9.
[http://dx.doi.org/10.1021/acs.chemrestox.5b00520] [PMID: 26808005]
[56]
Stepanov I, Yershova K, Carmella S, Upadhyaya P, Hecht SS. Levels of (S)-N′-nitrosonornicotine in U.S. tobacco products. Nicotine Tob Res 2013; 15(7): 1305-10.
[http://dx.doi.org/10.1093/ntr/nts249] [PMID: 23212437]
[57]
Zhang S, Wang M, Villalta PW, et al. Analysis of pyridyloxobutyl and pyridylhydroxybutyl DNA adducts in extrahepatic tissues of F344 rats treated chronically with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol. Chem Res Toxicol 2009; 22(5): 926-36.
[http://dx.doi.org/10.1021/tx900015d] [PMID: 19358518]
[58]
Carlson ES, Upadhyaya P, Hecht SS. Evaluation of nitrosamide formation in the cytochrome P450-mediated metabolism of tobacco-specific nitrosamines. Chem Res Toxicol 2016; 29(12): 2194-205.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00384] [PMID: 27989137]
[59]
Li N, Jian X, Hu Y, Xu C, Yao Z, Zhong X. Discovery of novel biomarkers in oral submucous fibrosis by microarray analysis. Cancer Epidemiol Biomarkers Prev 2008; 17(9): 2249-59.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2908] [PMID: 18768491]
[60]
Ring HZ, Valdes AM, Nishita DM, et al. Gene-gene interactions between CYP2B6 and CYP2A6 in nicotine metabolism. Pharmacogenet Genomics 2007; 17(12): 1007-15.
[http://dx.doi.org/10.1097/01.fpc.0000220560.59972.33] [PMID: 18004205]
[61]
Vondracek M, Xi Z, Larsson P, et al. Cytochrome P450 expression and related metabolism in human buccal mucosa. Carcinogenesis 2001; 22(3): 481-8.
[http://dx.doi.org/10.1093/carcin/22.3.481] [PMID: 11238190]
[62]
Li N, Jian XC, Xu CJ. Expression of loricrin and cytochrome P450 3A5 in oral submucous fibrosis and their significance. Hua Xi Kou Qiang Yi Xue Za Zhi 2009; 27(1): 29-33.
[PMID: 19323390]
[63]
Macha MA, Matta A, Chauhan SS, Siu KW, Ralhan R. Guggulsterone (GS) inhibits smokeless tobacco and nicotine-induced NF-κB and STAT3 pathways in head and neck cancer cells. Carcinogenesis 2011; 32(3): 368-80.
[http://dx.doi.org/10.1093/carcin/bgq278] [PMID: 21177768]
[64]
Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA. Receptor-mediated tobacco toxicity: Alterations of the NF-kappaB expression and activity downstream of alpha7 nicotinic receptor in oral keratinocytes. Life Sci 2007; 80(24-25): 2191-4.
[http://dx.doi.org/10.1016/j.lfs.2007.01.013] [PMID: 17291542]
[65]
Decrescenzo G, Roix J, Saha S, Welsch D. Cancer treatments using combinations of CDK and ERK inhibitors. U.S. Patent 2,020,297,730, 2020.
[66]
Song H, Wan Y, Xu YY. Betel quid chewing without tobacco: A meta-analysis of carcinogenic and precarcinogenic effects. Asia Pac J Public Health 2015; 27(2): NP47-57.
[http://dx.doi.org/10.1177/1010539513486921] [PMID: 23666841]
[67]
Gupta B, Johnson NW. Systematic review and meta-analysis of association of smokeless tobacco and of betel quid without tobacco with incidence of oral cancer in South Asia and the Pacific. PLoS One 2014; 9(11): e113385.
[http://dx.doi.org/10.1371/journal.pone.0113385] [PMID: 25411778]
[68]
Jin T, Hao J, Fan D. Nicotine induces aberrant hypermethylation of tumor suppressor genes in pancreatic epithelial ductal cells. Biochem Biophys Res Commun 2018; 499(4): 934-40.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.022] [PMID: 29626481]
[69]
Lin SC, Lu SY, Lee SY, Lin CY, Chen CH, Chang KW. Areca (betel) nut extract activates mitogen-activated protein kinases and NF-kappaB in oral keratinocytes. Int J Cancer 2005; 116(4): 526-35.
[http://dx.doi.org/10.1002/ijc.21104] [PMID: 15825184]
[70]
Yang SH, Lee TY, Ho CA, et al. Exposure to nicotine-derived nitrosamine ketone and arecoline synergistically facilitates tumor aggressiveness via overexpression of epidermal growth factor receptor and its downstream signaling in head and neck squamous cell carcinoma. PLoS One 2018; 13(8): e0201267.
[http://dx.doi.org/10.1371/journal.pone.0201267] [PMID: 30148841]
[71]
Gao YJ, Ling TY, Yin XM, Li X, Huang Y. Effects of arecoline and nicotine on the expression of hTERT in oral keratinocytes. Chung Hua Kou Chiang Hsueh Tsa Chih 2007; 42(1): 26-30.
[PMID: 17331439]
[72]
Wang YC, Tsai YS, Huang JL, et al. Arecoline arrests cells at prometaphase by deregulating mitotic spindle assembly and spindle assembly checkpoint: Implication for carcinogenesis. Oral Oncol 2010; 46(4): 255-62.
[http://dx.doi.org/10.1016/j.oraloncology.2010.01.003] [PMID: 20138568]
[73]
Tsai YS, Lee KW, Huang JL, et al. Arecoline, a major alkaloid of areca nut, inhibits p53, represses DNA repair, and triggers DNA damage response in human epithelial cells. Toxicology 2008; 249(2-3): 230-7.
[http://dx.doi.org/10.1016/j.tox.2008.05.007] [PMID: 18585839]
[74]
Islam S, Muthumala M, Matsuoka H, et al. How each component of betel quid is involved in oral carcinogenesis: Mutual interactions and synergistic effects with other carcinogens-a review article. Curr Oncol Rep 2019; 21(6): 53.
[http://dx.doi.org/10.1007/s11912-019-0800-8] [PMID: 31028548]
[75]
Lin KH, Lin CY, Liu CC, Chou MY, Lin JK. Arecoline N-oxide: Its mutagenicity and possible role as ultimate carcinogen in areca oral carcinogenesis. J Agric Food Chem 2011; 59(7): 3420-8.
[http://dx.doi.org/10.1021/jf104831n] [PMID: 21370913]
[76]
Kuo TM, Luo SY, Chiang SL, et al. Fibrotic effects of arecoline N-oxide in oral potentially malignant disorders. J Agric Food Chem 2015; 63(24): 5787-94.
[http://dx.doi.org/10.1021/acs.jafc.5b01351] [PMID: 26061808]
[77]
Kuo TM, Nithiyanantham S, Lee CP, et al. Arecoline N-oxide regulates oral squamous cell carcinoma development through NOTCH1 and FAT1 expressions. J Cell Physiol 2019; 234(8): 13984-93.
[http://dx.doi.org/10.1002/jcp.28084] [PMID: 30624777]
[78]
Wang YC, Huang JL, Lee KW, et al. Downregulation of the DNA repair gene DDB2 by arecoline is through p53's DNA-binding domain and is correlated with poor outcome of head and neck cancer patients with betel quid consumption. Cancers (Basel) 2020; 12(8): E2053.
[http://dx.doi.org/10.3390/cancers12082053] [PMID: 32722430]
[79]
Yang J, Wang Z Y, Huang L, et al. Do betel quid and areca nut chewing deteriorate prognosis of oral cancer? A systematic review, meta-analysis, and research agenda. Oral Dis 2021; 27(6): 1366-75.
[80]
Wang Y, He J, Jiang H, et al. Nicotine enhances store-operated calcium entry by upregulating HIF-1α and SOCC components in non-small cell lung cancer cells. Oncol Rep 2018; 40(4): 2097-104.
[http://dx.doi.org/10.3892/or.2018.6580] [PMID: 30015910]
[81]
Tsunoda K, Tsujino I, Koshi R, Sugano N, Sato S, Asano M. Nicotine-mediated Ca(2+)-influx induces IL-8 secretion in oral squamous cell carcinoma cell. J Cell Biochem 2016; 117(4): 1009-15.
[http://dx.doi.org/10.1002/jcb.25387] [PMID: 26418512]
[82]
Brugge J, Takahashi N. Methods of use for TRP channel antagonist-based combination cancer therapies. WO2018165034, 2018.
[83]
Desai N. Methods of treating solid tumors using nanoparticle mTOR inhibitor combination therapy. WO2017004267, 2017.
[84]
Chunming Z, Jue L, Quan W, Shuxian P, Yanqin L. Application of rapamycin in preparing medicament for treating nicotine addiction. CN10278414221, 2012.
[85]
Bose A, Teh MT, Hutchison IL, Wan H, Leigh IM, Waseem A. Two mechanisms regulate keratin K15 expression in keratinocytes: Role of PKC/AP-1 and FOXM1 mediated signalling. PLoS One 2012; 7(6): e38599.
[http://dx.doi.org/10.1371/journal.pone.0038599] [PMID: 22761689]
[86]
Lazar M, Sullivan J, Chipitsyna G, et al. Involvement of osteopontin in the matrix-degrading and proangiogenic changes mediated by nicotine in pancreatic cancer cells. J Gastrointest Surg 2010; 14(10): 1566-77.
[http://dx.doi.org/10.1007/s11605-010-1338-0] [PMID: 20824368]
[87]
Lin CH, Lee HH, Kuei CH, et al. Nicotinic acetylcholine receptor subunit alpha-5 promotes radioresistance via recruiting E2F activity in oral squamous cell carcinoma. J Clin Med 2019; 8(9): 1454.
[http://dx.doi.org/10.3390/jcm8091454] [PMID: 31547418]
[88]
Shimizu R, Ibaragi S, Eguchi T, et al. Nicotine promotes lymph node metastasis and cetuximab resistance in head and neck squamous cell carcinoma. Int J Oncol 2019; 54(1): 283-94.
[PMID: 30431077]
[89]
Yoshimura R, Xu L, Sun B, Tank AW. Nicotinic and muscarinic acetylcholine receptors are essential for the long-term response of tyrosine hydroxylase gene expression to chronic nicotine treatment in rat adrenal medulla. Brain Res Mol Brain Res 2004; 126(2): 188-97.
[http://dx.doi.org/10.1016/j.molbrainres.2004.04.007] [PMID: 15249143]
[90]
Gueorguiev VD, Zeman RJ, Meyer EM, Sabban EL. Involvement of alpha7 nicotinic acetylcholine receptors in activation of tyrosine hydroxylase and dopamine beta-hydroxylase gene expression in PC12 cells. J Neurochem 2000; 75(5): 1997-2005.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0751997.x] [PMID: 11032889]
[91]
Evinger M J, Mathew E, Cikos S, et al. Nicotine stimulates expression of the PNMT gene through a novel promoter sequence. J Mol Neurosci 2005; 26(1): 039-56.
[http://dx.doi.org/10.1385/JMN:26:1:039]
[92]
Lee J, Cooke JP. Nicotine and pathological angiogenesis. Life Sci 2012; 91(21-22): 1058-64.
[http://dx.doi.org/10.1016/j.lfs.2012.06.032] [PMID: 22796717]
[93]
Papke RL, Horenstein NA, Stokes C. Nicotinic activity of arecoline, the psychoactive element of “Betel Nuts”, suggests a basis for habitual use and anti-inflammatory activity. PLoS One 2015; 10(10): e0140907.
[http://dx.doi.org/10.1371/journal.pone.0140907] [PMID: 26488401]
[94]
Allan M, Taylor LS, Mauer LJ. Common-ion effects on the deliquescence lowering of crystalline ingredient blends. Food Chem 2016; 195: 2-10.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.063] [PMID: 26575706]
[95]
Sharma M, Shetty SS, Radhakrishnan R. Oral submucous fibrosis as an overhealing wound: Implications in malignant transformation. Recent Pat Anticancer Drug Discov 2018; 13(3): 272-91.
[http://dx.doi.org/10.2174/1574892813666180227103147] [PMID: 29485009]
[96]
Lee CH, Hung HW, Hung PH, Shieh YS. Epidermal growth factor receptor regulates beta-catenin location, stability, and transcriptional activity in oral cancer. Mol Cancer 2010; 9: 64.
[http://dx.doi.org/10.1186/1476-4598-9-64] [PMID: 20302655]
[97]
Bollu LR, Katreddy RR, Blessing AM, et al. Intracellular activation of EGFR by fatty acid synthase dependent palmitoylation. Oncotarget 2015; 6(33): 34992-5003.
[http://dx.doi.org/10.18632/oncotarget.5252] [PMID: 26378037]
[98]
Zhao Y, Zhang M, Yan F, Casto BC, Tang X. Nicotine-induced upregulation of antioxidant protein PRX 1 in oral squamous cell carcinoma. Chin Sci Bull 2013; 58(16): 1912-8.
[http://dx.doi.org/10.1007/s11434-013-5779-1]
[99]
Wu HJ, Chi CW, Liu TY. Effects of pH on nicotine-induced DNA damage and oxidative stress. J Toxicol Environ Health A 2005; 68(17-18): 1511-23.
[http://dx.doi.org/10.1080/15287390590967478] [PMID: 16076763]
[100]
Nishioka T, Yamamoto D, Zhu T, Guo J, Kim SH, Chen CY. Nicotine overrides DNA damage-induced G1/S restriction in lung cells. PLoS One 2011; 6(4): e18619.
[http://dx.doi.org/10.1371/journal.pone.0018619] [PMID: 21559516]
[101]
Hsu CC, Su YF, Tsai KY, et al. Gamma synuclein is a novel nicotine responsive protein in oral cancer malignancy. Cancer Cell Int 2020; 20: 300.
[http://dx.doi.org/10.1186/s12935-020-01401-w] [PMID: 32669976]
[102]
Barf T, Covey T, Hamdy A, et al. Therapeutic combinations of a BTK inhibitor, a PI3K inhibitor and/or a JAK-2 inhibitor. US201815920336, 2018.
[103]
Wang M, Niu W, Qi M, et al. Nicotine promotes cervical metastasis of oral cancer by regulating peroxiredoxin 1 and epithelial-mesenchymal transition in mice. OncoTargets Ther 2019; 12: 3327-38.
[http://dx.doi.org/10.2147/OTT.S194129] [PMID: 31118684]
[104]
Qi MC, Chen H, Wang LP, Zhang M, Tang XF. Interaction between transcriptional factor E26 transformation specific 1 and peroxiredoxin 1 in nicotine-induced oral precancerous lesion cells. Chung Hua Kou Chiang Hsueh Tsa Chih 2017; 52(12): 729-34.
[PMID: 29275566]
[105]
Chiang CH. Abstract 3585: Nicotine contributes to oral cancer by promotion of cell invasion through ASAP1 signaling pathway. Cancer Res 2013; 73(8)(Suppl.): 3585.
[106]
Deng X, Liu Z, Liu X, et al. MiR-296-3p negatively regulated by nicotine stimulates cytoplasmic translocation of c-Myc via MK2 to suppress chemotherapy resistance. Mol Ther 2018; 26(4): 1066-81.
[http://dx.doi.org/10.1016/j.ymthe.2018.01.023] [PMID: 29525743]
[107]
Hu L, Ai J, Long H, et al. Integrative microRNA and gene profiling data analysis reveals novel biomarkers and mechanisms for lung cancer. Oncotarget 2016; 7(8): 8441-54.
[http://dx.doi.org/10.18632/oncotarget.7264] [PMID: 26870998]
[108]
Kakizaki T, Hatakeyama H, Nakamaru Y, et al. Role of microRNA-296-3p in the malignant transformation of sinonasal inverted papilloma. Oncol Lett 2017; 14(1): 987-92.
[http://dx.doi.org/10.3892/ol.2017.6193] [PMID: 28693263]
[109]
Bradner JE, Mckeown MR, Rahl PB, Young RA, Marineau JJ. Method for identifiying MYC inhibitors. EP2917203, 2015.
[110]
Yu CC, Chang YC. Enhancement of cancer stem-like and epithelial-mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL. Toxicol Appl Pharmacol 2013; 266(3): 459-69.
[http://dx.doi.org/10.1016/j.taap.2012.11.023] [PMID: 23219715]
[111]
Wang C, Xu X, Jin H, Liu G. Nicotine may promote tongue squamous cell carcinoma progression by activating the Wnt/β-catenin and Wnt/PCP signaling pathways. Oncol Lett 2017; 13(5): 3479-86.
[http://dx.doi.org/10.3892/ol.2017.5899] [PMID: 28521453]
[112]
Hsu CC, Tsai KY, Su YF, et al. α7-Nicotine acetylcholine receptor mediated nicotine induced cell survival and cisplatin resistance in oral cancer. Arch Oral Biol 2020; 111: 104653.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104653] [PMID: 31935534]
[113]
Chang YC, Hu CC, Tseng TH, Tai KW, Lii CK, Chou MY. Synergistic effects of nicotine on arecoline-induced cytotoxicity in human buccal mucosal fibroblasts. J Oral Pathol Med 2001; 30(8): 458-64.
[http://dx.doi.org/10.1034/j.1600-0714.2001.030008458.x] [PMID: 11545236]
[114]
Lin WJ, Jiang RS, Wu SH, Chen FJ, Liu SA. Smoking, alcohol, and betel quid and oral cancer: A prospective cohort study. J Oncol 2011; 2011: 525976.
[http://dx.doi.org/10.1155/2011/525976]
[115]
Fujii T, Mashimo M, Moriwaki Y, et al. Physiological functions of the cholinergic system in immune cells. J Pharmacol Sci 2017; 134(1): 1-21.
[http://dx.doi.org/10.1016/j.jphs.2017.05.002] [PMID: 28552584]
[116]
Wang DW, Zhou RB, Yao YM, et al. Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro. J Pharmacol Exp Ther 2010; 335(3): 553-61.
[http://dx.doi.org/10.1124/jpet.110.169961] [PMID: 20843956]
[117]
Kar Mahapatra S, Bhattacharjee S, Chakraborty SP, Majumdar S, Roy S. Alteration of immune functions and Th1/Th2 cytokine balance in nicotine-induced murine macrophages: Immunomodulatory role of eugenol and N-acetylcysteine. Int Immunopharmacol 2011; 11(4): 485-95.
[http://dx.doi.org/10.1016/j.intimp.2010.12.020] [PMID: 21237301]
[118]
Wongtrakool C, Grooms K, Ping XD, et al. In utero nicotine exposure promotes M2 activation in neonatal mouse alveolar macrophages. Pediatr Res 2012; 72(2): 147-53.
[http://dx.doi.org/10.1038/pr.2012.55] [PMID: 22562289]
[119]
Nouri-Shirazi M, Guinet E. Exposure to nicotine adversely affects the dendritic cell system and compromises host response to vaccination. J Immunol 2012; 188(5): 2359-70.
[http://dx.doi.org/10.4049/jimmunol.1102552] [PMID: 22279108]
[120]
Alkhattabi N, Todd I, Negm O, Tighe PJ, Fairclough LC. Tobacco smoke and nicotine suppress expression of activating signaling molecules in human dendritic cells. Toxicol Lett 2018; 299: 40-6.
[http://dx.doi.org/10.1016/j.toxlet.2018.09.002] [PMID: 30227238]
[121]
Silva LC, Fonseca FP, Almeida OP, et al. CD1a+ and CD207+ cells are reduced in oral submucous fibrosis and oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 2020; 25(1): e49-55.
[http://dx.doi.org/10.4317/medoral.23177] [PMID: 31880289]
[122]
Tebbutt J, Khan Z, Ariyaratnam R. A case report of oral nicotine-associated keratosis and a review of oral mucosal changes in tobacco and similar products. Br Dent J 2020; 228(10): 757-60.
[http://dx.doi.org/10.1038/s41415-020-1530-x] [PMID: 32444744]
[123]
Stepanov I, Carmella SG, Briggs A, et al. Presence of the carcinogen N′-nitrosonornicotine in the urine of some users of oral nicotine replacement therapy products. Cancer Res 2009; 69(21): 8236-40.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1084] [PMID: 19843845]
[124]
Kalra R, Singh SP, Pena-Philippides JC, Langley RJ, Razani-Boroujerdi S, Sopori ML. Immunosuppressive and anti-inflammatory effects of nicotine administered by patch in an animal model. Clin Diagn Lab Immunol 2004; 11(3): 563-8.
[PMID: 15138183]
[125]
Williams JR. Volatilized delivery of anatabine for treatment of substance addiction. WO2015009500, 2015.
[126]
Jensen M. Electronic cigarette liquid and method of use to reduce, replace, or eliminate nicotine intake/addiction. US2015150303, 2015.
[127]
Cain DF, Clarke A, Jacobs CA. Cytisinicline in the treatment of smoking addiction for refractory subjects. CA3058996, 2021.
[128]
Cain D, Clarke A, Jacobs CA. Compositions comprising cytisine in the treatment and/or prevention of addiction in subjects in need thereof. WO2021050203, 2021.
[129]
Glatman S, Papke R. Betel quid cessation therapy with nicotine and pilocarpine. WO2019143857, 2019.
[130]
Williams JR. Pharmaceutical formulations containing cannabidiol and nicotine for treating smokeless tobacco addiction. CN109152773, 2019.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy