Abstract
Background: Artificial Intelligence (AI)-based automatic lung nodule detection system improves the detection rate of nodules. It is important to evaluate the clinical value of the AI system by comparing AI-assisted nodule detection with actual radiology reports.
Objective: To compare the detection rate of lung nodules between the actual radiology reports and AI-assisted reading in lung cancer CT screening.
Methods: Participants in chest CT screening from November to December 2019 were retrospectively included. In the real-world radiologist observation, 14 residents and 15 radiologists participated in finalizing radiology reports. In AI-assisted reading, one resident and one radiologist reevaluated all subjects with the assistance of an AI system to locate and measure the detected lung nodules. A reading panel determined the type and number of detected lung nodules between these two methods.
Results: In 860 participants (57±7 years), the reading panel confirmed 250 patients with >1 solid nodule, while radiologists observed 131, lower than 247 by AI-assisted reading (p<0.001). The panel confirmed 111 patients with >1 non-solid nodule, whereas radiologist observation identified 28, lower than 110 by AI-assisted reading (p<0.001). The accuracy and sensitivity of radiologist observation for solid nodules were 86.2% and 52.4%, lower than 99.1% and 98.8% by AI-assisted reading, respectively. These metrics were 90.4% and 25.2% for non-solid nodules, lower than 98.8% and 99.1% by AI-assisted reading, respectively.
Conclusion: Comparing with the actual radiology reports, AI-assisted reading greatly improves the accuracy and sensitivity of nodule detection in chest CT, which benefits lung nodule detection, especially for non-solid nodules.
Keywords: Artificial intelligence, lung nodule, detectability, real-world study, radiologist observation, computed tomography.
Graphical Abstract
[http://dx.doi.org/10.1007/978-3-319-24223-1_1] [PMID: 26667336]
[http://dx.doi.org/10.1056/NEJMoa0906085] [PMID: 19955524]
[http://dx.doi.org/10.1056/NEJMoa1209120] [PMID: 23697514]
[http://dx.doi.org/10.1056/NEJMoa1102873] [PMID: 21714641]
[http://dx.doi.org/10.1056/NEJMoa1911793] [PMID: 31995683]
[http://dx.doi.org/10.1259/bjr/28883951] [PMID: 15020365]
[http://dx.doi.org/10.1016/j.rcl.2018.01.004] [PMID: 29622072]
[http://dx.doi.org/10.3390/s19173722] [PMID: 31466261]
[http://dx.doi.org/10.1016/j.media.2016.09.002] [PMID: 27614793]
[http://dx.doi.org/10.1007/s00521-017-3048-y]
[http://dx.doi.org/10.1016/j.patrec.2019.11.013]
[http://dx.doi.org/10.3390/diagnostics9010029] [PMID: 30866425]
[http://dx.doi.org/10.3390/diagnostics9040207] [PMID: 31795409]
[http://dx.doi.org/10.1007/s10278-020-00320-6] [PMID: 31997045]
[http://dx.doi.org/10.1007/978-3-319-19992-4_46] [PMID: 26221705]
[http://dx.doi.org/10.1038/srep46479] [PMID: 28422152]
[http://dx.doi.org/10.1038/s41598-018-27569-w] [PMID: 29915334]
[PMID: 26346558]
[http://dx.doi.org/10.1007/s00134-021-06446-7] [PMID: 34089064]
[http://dx.doi.org/10.1016/j.acra.2020.01.020] [PMID: 32151538]
[http://dx.doi.org/10.1007/s10654-019-00519-0] [PMID: 31016436]
[http://dx.doi.org/10.1148/ryai.2019180084] [PMID: 33937792]
[http://dx.doi.org/10.1007/s11604-020-01009-0] [PMID: 32592003]
[http://dx.doi.org/10.1109/TPAMI.2016.2577031] [PMID: 27295650]
[http://dx.doi.org/10.1109/TPAMI.2019.2918284] [PMID: 31135351]
[http://dx.doi.org/10.1002/sim.2677] [PMID: 16927452]
[http://dx.doi.org/10.7326/0003-4819-152-8-201004200-00007]
[http://dx.doi.org/10.1001/jama.2012.5521] [PMID: 22610500]
[http://dx.doi.org/10.6004/jnccn.2012.0022] [PMID: 22308518]
[http://dx.doi.org/10.1097/00005382-199901000-00006] [PMID: 9894954]
[PMID: 6657962]
[http://dx.doi.org/10.1016/j.crad.2017.12.011]
[http://dx.doi.org/10.5152/dir.2016.16187] [PMID: 28206951]
[http://dx.doi.org/10.1016/j.compmedimag.2007.02.002] [PMID: 17349778]
[http://dx.doi.org/10.1016/j.compbiomed.2018.10.033] [PMID: 30415174]
[http://dx.doi.org/10.1186/1475-925X-13-41] [PMID: 24713067]
[http://dx.doi.org/10.1016/j.cmpb.2015.10.006] [PMID: 26652979]
[http://dx.doi.org/10.1007/s10278-020-00417-y] [PMID: 33532893]
[http://dx.doi.org/10.1002/mp.14401] [PMID: 32681587]
[http://dx.doi.org/10.3390/jcm9123908] [PMID: 33276433]
[http://dx.doi.org/10.1016/j.crad.2021.04.006] [PMID: 34023068]
[http://dx.doi.org/10.1259/bjr.20180028] [PMID: 29869919]
[http://dx.doi.org/10.2174/1573405615666190206153321] [PMID: 31989890]
[http://dx.doi.org/10.1016/j.acra.2016.11.007] [PMID: 28110797]
[http://dx.doi.org/10.1155/2019/1545747] [PMID: 31354393]