Review Article

Exploring AT2R and its Polymorphism in Different Diseases: An Approach to Develop AT2R as a Drug Target beyond Hypertension

Author(s): Bhanu Sharma, Tahir Hussain, Mohammed A. Khan and Varun Jaiswal *

Volume 23, Issue 1, 2022

Published on: 06 August, 2021

Page: [99 - 113] Pages: 15

DOI: 10.2174/1389450122666210806125919

Price: $65

Abstract

Abstract: The Angiotensin II type 2 Receptor (AT2R) is one of the critical components of the renin- angiotensin system (RAS), which performs diverse functions like inhibiting cell differentiation, cell proliferation, vasodilatation, reduces oxidative stress and inflammation. AT2R is relatively less studied in comparison to other components of RAS despite its uniqueness (sex-linked) and diverse functions. The AT2R is differentially expressed in different tissues, and its gene polymorphisms are associated with several diseases. The molecular mechanism behind the association of AT2R and its gene polymorphisms with the diseases remains to be fully understood, which hinders the development of AT2R as a drug target. Single nucleotide polymorphisms (SNPs) in AT2R are found at different locations (exons, introns, promoter, and UTR regions) and were studied for association with different diseases. There may be different mechanisms behind these associations as some AT2R SNP variants were associated with differential expression, the SNPs (A1675G/ A1332G) affect the alternate splicing of AT2R mRNA, A1332G genotype results in shortening of the AT2R mRNA and subsequently defective protein. Few SNPs were found to be associated with the diseases in either females (C4599A) or males (T1334C). Several other SNPs were expected to be associated with other similar/related diseases, but studies have not been done yet. The present review emphasizes on the significance of AT2R and its polymorphisms associated with the diseases to explore the precise role of AT2R in different diseases and the possibility to develop AT2R as a potential drug target.

Keywords: Renin-angiotensin system, angiotensin II type 2 receptor, single nucleotide polymorphism, angiotensin-converting enzyme, drug target, hypertension.

Graphical Abstract

[1]
Barnas U, Schmidt A, Illievich A, et al. Evaluation of risk factors for the development of nephropathy in patients with IDDM: insertion/deletion angiotensin converting enzyme gene polymorphism, hypertension and metabolic control. Diabetologia 1997; 40(3): 327-31.
[http://dx.doi.org/10.1007/s001250050682] [PMID: 9084972]
[2]
Kambayashi Y, Bardhan S, Takahashi K, et al. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 1993; 268(33): 24543-6.
[http://dx.doi.org/10.1016/S0021-9258(19)74499-8] [PMID: 8227011]
[3]
Koike G, Horiuchi M, Yamada T, Szpirer C, Jacob HJ, Dzau VJ. Human type 2 angiotensin II receptor gene: cloned, mapped to the X chromosome, and its mRNA is expressed in the human lung. Biochem Biophys Res Commun 1994; 203(3): 1842-50.
[http://dx.doi.org/10.1006/bbrc.1994.2402] [PMID: 7945336]
[4]
de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 2000; 52(3): 415-72.
[PMID: 10977869]
[5]
Li Y, Li XH, Yuan H. Angiotensin II type-2 receptor-specific effects on the cardiovascular system. Cardiovasc Diagn Ther 2012; 2(1): 56-62.
[PMID: 24282697]
[6]
Tsuchida S, Matsusaka T, Chen X, et al. Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 1998; 101(4): 755-60.
[http://dx.doi.org/10.1172/JCI1899] [PMID: 9466969]
[7]
Unger T, Steckelings UM, dos Santos RA, Eds. The protective arm of the renin angiotensin system (RAS): functional aspects and therapeutic implications. Academic Press 2015.
[8]
Endo Y, Arima S, Yaoita H, et al. Function of angiotensin II type 2 receptor in the postglomerular efferent arteriole. Kidney Int Suppl 1997; 63: S205-7.
[PMID: 9407460]
[9]
Levy BI. How to explain the differences between renin angiotensin system modulators. Am J Hypertens 2005; 18(9 Pt 2): 134S-41S.
[http://dx.doi.org/10.1016/j.amjhyper.2005.05.005] [PMID: 16125050]
[10]
Salimi S, Mokhtari M, Yaghmaei M, Jamshidi M, Naghavi A. Association of angiotensin-converting enzyme intron 16 insertion/deletion and angiotensin II type 1 receptor A1166C gene polymorphisms with preeclampsia in South East of Iran. J Biomed Biotechnol 2011; 2011: 941515.
[http://dx.doi.org/10.1155/2011/941515] [PMID: 21808598]
[11]
Matavelli LC, Siragy HM. AT2 receptor activities and pathophysiological implications. J Cardiovasc Pharmacol 2015; 65(3): 226-32.
[http://dx.doi.org/10.1097/FJC.0000000000000208] [PMID: 25636068]
[12]
Gard PR, Mandy A, Sutcliffe MA. Evidence of a possible role of altered angiotensin function in the treatment, but not etiology, of depression. Biol Psychiatry 1999; 45(8): 1030-4.
[http://dx.doi.org/10.1016/S0006-3223(98)00101-2] [PMID: 10386186]
[13]
Gard PR. The brain renin–angiotensin system: A target for novel antidepressants and anxiolytics. Drug Dev Res 2005; 65: 270-7.
[http://dx.doi.org/10.1002/ddr.20028]
[14]
Saavedra JM, Pavel J. Angiotensin II AT1 receptor antagonists inhibit the angiotensin-CRF-AVP axis and are potentially useful for the treatment of stress-related and mood disorders. Drug Dev Res 2005; 65: 237-69.
[http://dx.doi.org/10.1002/ddr.20027]
[15]
Zhao J, You X, Xu Z, et al. Review on application of SNP detection methods in animal research. Nongye Gongcheng Xuebao (Beijing) 2018; 34: 299-305.
[16]
Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 2011; 12(7): 499-510.
[http://dx.doi.org/10.1038/nrg3012] [PMID: 21681211]
[17]
Jiang Z, Wang H, Michal JJ, et al. Genome wide sampling sequencing for SNP genotyping: methods, challenges and future development. Int J Biol Sci 2016; 12(1): 100-8.
[http://dx.doi.org/10.7150/ijbs.13498] [PMID: 26722221]
[18]
Sato M, Hosoya S, Yoshikawa S, et al. A highly flexible and repeatable genotyping method for aquaculture studies based on target amplicon sequencing using next-generation sequencing technology. Sci Rep 2019; 9(1): 6904.
[http://dx.doi.org/10.1038/s41598-019-43336-x] [PMID: 31061473]
[19]
Mosterd A, D’Agostino RB, Silbershatz H, et al. Trends in the prevalence of hypertension, antihypertensive therapy, and left ventricular hypertrophy from 1950 to 1989. N Engl J Med 1999; 340(16): 1221-7.
[http://dx.doi.org/10.1056/NEJM199904223401601] [PMID: 10210704]
[20]
Zhang Y, Zhang KX, Wang GL, Huang W, Zhu DL. Angiotensin II type 2 receptor gene polymorphisms and essential hypertension. Acta Pharmacol Sin 2003; 24(11): 1089-93.
[PMID: 14627490]
[21]
Schmieder RE, Erdmann J, Delles C, et al. Effect of the angiotensin II type 2-receptor gene (+1675 G/A) on left ventricular structure in humans. J Am Coll Cardiol 2001; 37(1): 175-82.
[http://dx.doi.org/10.1016/S0735-1097(00)01063-9] [PMID: 11153734]
[22]
Katsuya T, Horiuchi M, Minami S, et al. Genomic organization and polymorphism of human angiotensin II type 2 receptor: no evidence for its gene mutation in two families of human premature ovarian failure syndrome. Mol Cell Endocrinol 1997; 127(2): 221-8.
[http://dx.doi.org/10.1016/S0303-7207(97)04011-2] [PMID: 9099917]
[23]
Jin JJ, Nakura J, Wu Z, et al. Association of angiotensin II type 2 receptor gene variant with hypertension. Hypertens Res 2003; 26(7): 547-52.
[http://dx.doi.org/10.1291/hypres.26.547] [PMID: 12924622]
[24]
Li C, Peng W, Zhang H, Yan W. Association of angiotensin receptor 2 gene polymorphisms with pregnancy induced hypertension risk. Hypertens Pregnancy 2018; 37(2): 87-92.
[http://dx.doi.org/10.1080/10641955.2018.1460666] [PMID: 29714512]
[25]
Akbar SA, Khawaja NP, Brown PR, Tayyeb R, Bamfo J, Nicolaides KH. Angiotensin II type 1 and 2 receptors gene polymorphisms in pre-eclampsia and normal pregnancy in three different populations. Acta Obstet Gynecol Scand 2009; 88(5): 606-11.
[http://dx.doi.org/10.1080/00016340902859307] [PMID: 19308748]
[26]
Rahimi Z, Rahimi Z, Aghaei A, Vaisi-Raygani A. AT2R -1332 G:A polymorphism and its interaction with AT1R 1166 A:C, ACE I/D and MMP-9 -1562 C:T polymorphisms: risk factors for susceptibility to preeclampsia. Gene 2014; 538(1): 176-81.
[http://dx.doi.org/10.1016/j.gene.2013.12.013] [PMID: 24440243]
[27]
Brown MA, Lindheimer MD, de Swiet M, Assche AV, Moutquin JM. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP) 2001; 20
[28]
Sibai BM. Diagnosis and management of gestational hypertension and preeclampsia. Obstet Gynecol 2003; 102(1): 181-92.
[PMID: 12850627]
[29]
Shennan AH, Redman C, Cooper C, Milne F. Are most maternal deaths from pre-eclampsia avoidable? Lancet 2012; 379(9827): 1686-7.
[http://dx.doi.org/10.1016/S0140-6736(11)60785-X] [PMID: 22177535]
[30]
Liang J, Zhu J, Dai L, Li X, Li M, Wang Y. Maternal mortality in China, 1996-2005. Int J Gynaecol Obstet 2010; 110(2): 93-6.
[http://dx.doi.org/10.1016/j.ijgo.2010.03.013] [PMID: 20471015]
[31]
Salonen Ros H, Lichtenstein P, Lipworth L, Cnattingius S. Genetic effects on the liability of developing pre-eclampsia and gestational hypertension. Am J Med Genet 2000; 91(4): 256-60.
[http://dx.doi.org/10.1002/(SICI)1096-8628(20000410)91:4<256::AID-AJMG3>3.0.CO;2-T] [PMID: 10766979]
[32]
Wallis AB, Saftlas AF, Hsia J, Atrash HK. Secular trends in the rates of preeclampsia, eclampsia, and gestational hypertension, United States, 1987-2004. Am J Hypertens 2008; 21(5): 521-6.
[http://dx.doi.org/10.1038/ajh.2008.20] [PMID: 18437143]
[33]
Soltani-Zangbar MS, Pahlavani B, Zolghadri J, Gharesi-Fard B. Angiotensin type 2 receptor gene polymorphisms and susceptibility to preeclampsia. J Reprod Infertil 2018; 19(2): 95-9.
[PMID: 30009143]
[34]
Alfakih K, Lawrance RA, Maqbool A, et al. The clinical significance of a common, functional, X-linked angiotensin II type 2-receptor gene polymorphism (-1332 G/A) in a cohort of 509 families with premature coronary artery disease. Eur Heart J 2005; 26(6): 584-9.
[http://dx.doi.org/10.1093/eurheartj/ehi013] [PMID: 15618059]
[35]
Zivković M, Djurić T, Stancić O, Alavantić D, Stanković A. X-linked angiotensin II type 2 receptor gene polymorphism -1332A/G in male patients with essential hypertension. Clin Chim Acta 2007; 386(1-2): 110-3.
[http://dx.doi.org/10.1016/j.cca.2007.07.014] [PMID: 17707359]
[36]
Woolf AS. A molecular and genetic view of human renal and urinary tract malformations. Kidney Int 2000; 58(2): 500-12.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00196.x] [PMID: 10916073]
[37]
Sequeira Lopez ML, Gomez RA. The role of angiotensin II in kidney embryogenesis and kidney abnormalities. Curr Opin Nephrol Hypertens 2004; 13(1): 117-22.
[http://dx.doi.org/10.1097/00041552-200401000-00016] [PMID: 15090868]
[38]
Nishimura H, Yerkes E, Hohenfellner K, et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 1999; 3(1): 1-10.
[http://dx.doi.org/10.1016/S1097-2765(00)80169-0] [PMID: 10024874]
[39]
Pope JC, Brock JW, Adams MC, Stephens FD, Ichikawa I. How they begin and how they end: Classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol 1999; 10: 2018-28.
[http://dx.doi.org/10.1681/ASN.V1092018] [PMID: 10477156]
[40]
Stanković A, Zivković M, Kostić M, Atanacković J, Krstić Z, Alavantić D. Expression profiling of the AT2R mRNA in affected tissue from children with CAKUT. Clin Biochem 2010; 43(1-2): 71-5.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.09.009] [PMID: 19781541]
[41]
Siomou E, Bouba I, Kollios KD, et al. Angiotensin II type 2 receptor gene polymorphism in Caucasian children with a wide spectrum of congenital anomalies of the kidney and urinary tract. Pediatr Res 2007; 62(1): 83-7.
[http://dx.doi.org/10.1203/PDR.0b013e3180679101] [PMID: 17515833]
[42]
Rigoli L, Chimenz R, di Bella C, et al. Angiotensin-converting enzyme and angiotensin type 2 receptor gene genotype distributions in Italian children with congenital uropathies. Pediatr Res 2004; 56(6): 988-93.
[http://dx.doi.org/10.1203/01.PDR.0000145252.89427.9E] [PMID: 15470205]
[43]
Wharton J, Morgan K, Rutherford RA, et al. Differential distribution of angiotensin AT2 receptors in the normal and failing human heart. J Pharmacol Exp Ther 1998; 284(1): 323-36.
[PMID: 9435195]
[44]
Erdmann J, Guse M, Kallisch H, Fleck E, Regitz-Zagrosek V. Novel intronic polymorphism (+1675G/A) in the human angiotensin II subtype 2 receptor gene. Hum Mutat 2000; 15(5): 487.
[http://dx.doi.org/10.1002/(SICI)1098-1004(200005)15:5<487::AID-HUMU29>3.0.CO;2-D] [PMID: 10790229]
[45]
Warnecke C, Mugrauer P, Sürder D, Erdmann J, Schubert C, Regitz-Zagrosek V. Intronic ANG II type 2 receptor gene polymorphism 1675 G/A modulates receptor protein expression but not mRNA splicing. Am J Physiol Regul Integr Comp Physiol 2005; 289(6): R1729-35.
[http://dx.doi.org/10.1152/ajpregu.00385.2005] [PMID: 16109806]
[46]
Kunkel LM, Smith KD, Boyer SH, et al. Analysis of human Y-chromosome-specific reiterated DNA in chromosome variants. Proc Natl Acad Sci USA 1977; 74(3): 1245-9.
[http://dx.doi.org/10.1073/pnas.74.3.1245] [PMID: 265567]
[47]
Warnecke C, Sürder D, Curth R, Fleck E, Regitz-Zagrosek V. Analysis and functional characterization of alternatively spliced angiotensin II type 1 and 2 receptor transcripts in the human heart. J Mol Med (Berl) 1999; 77(10): 718-27.
[http://dx.doi.org/10.1007/s001099900049] [PMID: 10606207]
[48]
Yoneda A, Cascio S, Green A, Barton D, Puri P. Angiotensin II type 2 receptor gene is not responsible for familial vesicoureteral reflux. J Urol 2002; 168(3): 1138-41.
[http://dx.doi.org/10.1016/S0022-5347(05)64611-3] [PMID: 12187255]
[49]
Yim HE, Jung MJ, Choi BM, et al. Genetic polymorphism of the renin-angiotensin system on the development of primary vesicoureteral reflux. Am J Nephrol 2004; 24(2): 178-87.
[http://dx.doi.org/10.1159/000076620] [PMID: 14764974]
[50]
Laksmi NK, Khullar M, Kaur B, et al. Association of angiotensin converting enzyme and angiotensin type 2 receptor gene polymorphisms with renal damage in posterior urethral valves. J Pediatr Urol 2010; 6(6): 560-6.
[http://dx.doi.org/10.1016/j.jpurol.2010.01.002] [PMID: 20149750]
[51]
Barratt TM, Dillon MJ, Duffy PG, Fay J, Ransley PG, Woodhouse DI. Long-term outcome of boys with posterior urethral valves. Br J Urol 1988; 62: 59-62.
[52]
Leung KK, Liang J, Ma MT, Leung PS, Angiotensin II. Angiotensin II type 2 receptor is critical for the development of human fetal pancreatic progenitor cells into islet-like cell clusters and their potential for transplantation. Stem Cells 2012; 30(3): 525-36.
[http://dx.doi.org/10.1002/stem.1008] [PMID: 22162314]
[53]
Hiraoka M, Taniguchi T, Nakai H, et al. No evidence for AT2R gene derangement in human urinary tract anomalies. Kidney Int 2001; 59(4): 1244-9.
[http://dx.doi.org/10.1046/j.1523-1755.2001.0590041244.x] [PMID: 11260384]
[54]
Hahn H, Ku SE, Kim KS, Park YS, Yoon CH, Cheong HI. Implication of genetic variations in congenital obstructive nephropathy. Pediatr Nephrol 2005; 20(11): 1541-4.
[http://dx.doi.org/10.1007/s00467-005-1999-1] [PMID: 16133060]
[55]
Crews DE, Cruickshank JK, Jeffery S. Angiotensin converting enzyme insertion/deletion polymorphism: association with ethnic origin. J Hypertens 1994; 12955: 12957.
[56]
Unger T. The role of the renin-angiotensin system in the development of cardiovascular disease. Am J Cardiol 2002; 89(2A): 3A-9A.
[http://dx.doi.org/10.1016/S0002-9149(01)02321-9] [PMID: 11835903]
[57]
Ohkubo N, Matsubara H, Nozawa Y, et al. Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation 1997; 96(11): 3954-62.
[http://dx.doi.org/10.1161/01.CIR.96.11.3954] [PMID: 9403620]
[58]
Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 1995; 95(1): 46-54.
[http://dx.doi.org/10.1172/JCI117675] [PMID: 7814645]
[59]
Janiak P, Pillon A, Prost JF, Vilaine JP. Role of angiotensin subtype 2 receptor in neointima formation after vascular injury. Hypertension 1992; 20(6): 737-45.
[http://dx.doi.org/10.1161/01.HYP.20.6.737] [PMID: 1452289]
[60]
Jones A, Dhamrait SS, Payne JR, et al. Genetic variants of angiotensin II receptors and cardiovascular risk in hypertension. Hypertension 2003; 42(4): 500-6.
[http://dx.doi.org/10.1161/01.HYP.0000088853.27673.D0] [PMID: 12925562]
[61]
Tousoulis D, Koumallos N, Antoniades C, et al. Genetic polymorphism on type 2 receptor of angiotensin II, modifies cardiovascular risk and systemic inflammation in hypertensive males. Am J Hypertens 2010; 23(3): 237-42.
[http://dx.doi.org/10.1038/ajh.2009.233] [PMID: 19959996]
[62]
Herrmann SM, Nicaud V, Schmidt-Petersen K, et al. Angiotensin II type 2 receptor gene polymorphism and cardiovascular phenotypes: the GLAECO and GLAOLD studies. Eur J Heart Fail 2002; 4(6): 707-12.
[http://dx.doi.org/10.1016/S1388-9842(02)00168-X] [PMID: 12453540]
[63]
Kolaković A, Stanković A, Djurić T, et al. Gender-specific association between angiotensin ii type 2 receptor -1332 a/g gene polymorphism and advanced carotid atherosclerosis. J Stroke Cerebrovasc Dis 2016; 25(7): 1622-30.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2016.03.011] [PMID: 27062416]
[64]
Ott C, Titze SI, Schwarz TK, et al. High sodium intake modulates left ventricular mass in patients with G expression of +1675 G/A angiotensin II receptor type 2 gene. J Hypertens 2007; 25(8): 1627-32.
[http://dx.doi.org/10.1097/HJH.0b013e3281cd40f5] [PMID: 17620959]
[65]
Regitz-Zagrosek V, Fielitz J, Fleck E. Myocardial angiotensin receptors in human hearts. Basic Res Cardiol 1998; 93(Suppl. 2): 37-42.
[http://dx.doi.org/10.1007/s003950050207] [PMID: 9833160]
[66]
Tousoulis D, Antoniades C, Koumallos N, Stefanadis C. Pro-inflammatory cytokines in acute coronary syndromes: from bench to bedside. Cytokine Growth Factor Rev 2006; 17(4): 225-33.
[http://dx.doi.org/10.1016/j.cytogfr.2006.04.003] [PMID: 16750416]
[67]
Kuznetsova T, Staessen JA, Thijs L, et al. Left ventricular mass in relation to genetic variation in angiotensin II receptors, renin system genes, and sodium excretion. Circulation 2004; 110(17): 2644-50.
[http://dx.doi.org/10.1161/01.CIR.0000145541.63406.BA] [PMID: 15492316]
[68]
Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA. Analysis of enzymatically amplified β-globin and HLA-DQ α DNA with allele-specific oligonucleotide probes. Nature 1986; 324(6093): 163-6.
[http://dx.doi.org/10.1038/324163a0] [PMID: 3785382]
[69]
Ross R. Atherosclerosis is an inflammatory disease. Am Heart J 1999; 138(5 Pt 2): S419-20.
[http://dx.doi.org/10.1016/S0002-8703(99)70266-8] [PMID: 10539839]
[70]
Rundek T, Arif H, Boden-Albala B, Elkind MS, Paik MC, Sacco RL. Carotid plaque, a subclinical precursor of vascular events: the Northern Manhattan Study. Neurology 2008; 70(14): 1200-7.
[http://dx.doi.org/10.1212/01.wnl.0000303969.63165.34] [PMID: 18354078]
[71]
van Thiel BS, van der Pluijm I, te Riet L, Essers J, Danser AH. The renin-angiotensin system and its involvement in vascular disease. Eur J Pharmacol 2015; 763(Pt A): 3-14.
[http://dx.doi.org/10.1016/j.ejphar.2015.03.090] [PMID: 25987425]
[72]
Zivković M, Stanković A, Alavantić D. AT1 receptor A1166C and AT2 receptor -1332A/G gene polymorphisms: efficient genotyping by single-tube PCR. J Clin Lab Anal 2005; 19(2): 84-6.
[http://dx.doi.org/10.1002/jcla.20058] [PMID: 15756705]
[73]
Johansson ME, Fagerberg B, Bergström G. Angiotensin type 2 receptor is expressed in human atherosclerotic lesions. J Renin Angiotensin Aldosterone Syst 2008; 9(1): 17-21.
[http://dx.doi.org/10.3317/jraas.2008.005] [PMID: 18404604]
[74]
Lieb W, Graf J, Götz A, et al. Association of angiotensin-converting enzyme 2 (ACE2) gene polymorphisms with parameters of left ventricular hypertrophy in men. Results of the MONICA Augsburg echocardiographic substudy. J Mol Med (Berl) 2006; 84(1): 88-96.
[http://dx.doi.org/10.1007/s00109-005-0718-5] [PMID: 16283142]
[75]
Schunkert H, Hense HW, Holmer SR, et al. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med 1994; 330(23): 1634-8.
[http://dx.doi.org/10.1056/NEJM199406093302302] [PMID: 8177269]
[76]
Yap RWK, Shidoji Y, Yap WS, Masaki M. Association and interaction effect of AGTR1 and AT2R gene polymorphisms with dietary pattern on metabolic risk factors of cardiovascular disease in Malaysian adults. Nutrients 2017; 9(8): 853.
[http://dx.doi.org/10.3390/nu9080853] [PMID: 28792482]
[77]
Barsha G, Walton SL, Kwok E, Denton KM. Sex Differences in the Role of the Angiotensin Type 2 Receptor in the Regulation of Blood Pressure. Sex Differences in Cardiovascular Physiology and Pathophysiology 2019; 73-103.
[http://dx.doi.org/10.1016/B978-0-12-813197-8.00006-3]
[78]
White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ 2019; 10(1): 31.
[http://dx.doi.org/10.1186/s13293-019-0247-5] [PMID: 31262355]
[79]
Molina Wolgien MdelC, Guerreiro da Silva ID, Pinto Nazário AC, et al. Genetic association study of angiotensin II receptor types 1 (A168G) and 2 (T1247G and A5235G) polymorphisms in breast carcinoma among Brazilian women. Breast Care (Basel) 2014; 9(3): 176-81.
[http://dx.doi.org/10.1159/000363429] [PMID: 25177259]
[80]
Kotani K, Sakane N, Taniguchi N. Association between angiotensin II Type 2 receptor gene A/C3123 polymorphism and high-density lipoprotein cholesterol with hypertension in asymptomatic women. Med Princ Pract 2013; 22(1): 65-9.
[http://dx.doi.org/10.1159/000339892] [PMID: 22869520]
[81]
Rahimi Z, Mansouri Zaveleh O, Rahimi Z, Abbasi A. AT2R -1332 G:A polymorphism and diabetic nephropathy in type 2 diabetes mellitus patients. J Renal Inj Prev 2013; 2(3): 97-101.
[PMID: 25340140]
[82]
Yoon HJ, Chin HJ, Na KY, et al. Association of angiotensin II type 2 receptor gene A1818T polymorphism with progression of immunoglobulin A nephropathy in Korean patients. Journal of Korean medical science 2009; 24: 38-43.
[83]
Mustafina LJ, Naumov VA, Cieszczyk P, et al. AGTR2 gene polymorphism is associated with muscle fibre composition, athletic status and aerobic performance. Exp Physiol 2014; 99(8): 1042-52.
[http://dx.doi.org/10.1113/expphysiol.2014.079335] [PMID: 24887114]
[84]
Staron RS, Hagerman FC, Hikida RS, et al. Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem 2000; 48(5): 623-9.
[http://dx.doi.org/10.1177/002215540004800506] [PMID: 10769046]
[85]
Zawadowska B, Majerczak J, Semik D, et al. Characteristics of myosin profile in human vastus lateralis muscle in relation to training background. Folia Histochem Cytobiol 2004; 42(3): 181-90.
[PMID: 15493580]
[86]
Andersen JL, Klitgaard H, Saltin B. Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: influence of training. Acta Physiol Scand 1994; 151(2): 135-42.
[http://dx.doi.org/10.1111/j.1748-1716.1994.tb09730.x] [PMID: 7942047]
[87]
Tanner CJ, Barakat HA, Dohm GL, et al. Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab 2002; 282(6): E1191-6.
[http://dx.doi.org/10.1152/ajpendo.00416.2001] [PMID: 12006347]
[88]
Frisk-Holmberg M, Essén B, Fredrikson M, Ström G, Wibell L. Muscle fibre composition in relation to blood pressure response to isometric exercise in normotensive and hypertensive subjects. Acta Med Scand 1983; 213(1): 21-6.
[http://dx.doi.org/10.1111/j.0954-6820.1983.tb03683.x] [PMID: 6829315]
[89]
Yvan-Charvet L, Even P, Bloch-Faure M, et al. Deletion of the angiotensin type 2 receptor (AT2R) reduces adipose cell size and protects from diet-induced obesity and insulin resistance. Diabetes 2005; 54(4): 991-9.
[http://dx.doi.org/10.2337/diabetes.54.4.991] [PMID: 15793237]
[90]
Yvan-Charvet L, Bobard A, Bossard P, et al. in vivo evidence for a role of adipose tissue SR-BI in the nutritional and hormonal regulation of adiposity and cholesterol homeostasis. Arterioscler Thromb Vasc Biol 2007; 27(6): 1340-5.
[http://dx.doi.org/10.1161/ATVBAHA.106.136382] [PMID: 17363694]
[91]
Koyama A, Igarashi M, Kobayashi M. Natural history and risk factors for immunoglobulin A nephropathy in Japan. Am J Kidney Dis 1997; 29(4): 526-32.
[http://dx.doi.org/10.1016/S0272-6386(97)90333-4] [PMID: 9100040]
[92]
Vleming LJ, de Fijter JW, Westendorp RG, Daha MR, Bruijn JA, van Es LA. Histomorphometric correlates of renal failure in IgA nephropathy. Clin Nephrol 1998; 49(6): 337-44.
[PMID: 9696428]
[93]
Barratt J, Feehally J, Smith AC. Pathogenesis of IgA nephropathy. InSeminars in nephrology 2004; 24: 197-217.
[http://dx.doi.org/10.1016/j.semnephrol.2004.01.002]
[94]
Chawla T, Sharma D, Singh A. Role of the renin angiotensin system in diabetic nephropathy. World J Diabetes 2010; 1(5): 141-5.
[http://dx.doi.org/10.4239/wjd.v1.i5.141] [PMID: 21537441]
[95]
Rahimi Z. ACE insertion/deletion (I/D) polymorphism and diabetic nephropathy. J Nephropathol 2012; 1(3): 143-51.
[http://dx.doi.org/10.5812/nephropathol.8109] [PMID: 24475405]
[96]
Fallo F, Pistorello M, Pedini F, D’Agostino D, Mantero F, Boscaro M. in vitro evidence for local generation of renin and angiotensin II/III immunoreactivity by the human adrenal gland. Acta Endocrinol (Copenh) 1991; 125(3): 319-30.
[http://dx.doi.org/10.1530/acta.0.1250319] [PMID: 1950344]
[97]
Ouyang J, Wu Z, Xing J, et al. Association of polymorphisms in angiotensin II receptor genes with aldosterone-producing adenoma. J Huazhong Univ Sci Technolog Med Sci 2011; 31(3): 301. [Medical Sciences].
[http://dx.doi.org/10.1007/s11596-011-0371-x] [PMID: 21671168]
[98]
Alves Corrêa SA, Ribeiro de Noronha SM, Nogueira-de-Souza NC, et al. Association between the angiotensin-converting enzyme (insertion/deletion) and angiotensin II type 1 receptor (A1166C) polymorphisms and breast cancer among Brazilian women. J Renin Angiotensin Aldosterone Syst 2009; 10(1): 51-8.
[http://dx.doi.org/10.1177/1470320309102317] [PMID: 19286759]
[99]
Gao M, Wang Y, Shi Y, et al. The relationship between three well-characterized polymorphisms of the angiotensin converting enzyme gene and lung cancer risk: a case-control study and a meta-analysis. J Renin Angiotensin Aldosterone Syst 2012; 13(4): 455-60.
[http://dx.doi.org/10.1177/1470320312443912] [PMID: 22538550]
[100]
Živković M, Kolaković A, Stojković L, et al. Renin-angiotensin system gene polymorphisms as risk factors for multiple sclerosis. J Neurol Sci 2016; 363: 29-32.
[http://dx.doi.org/10.1016/j.jns.2016.02.026] [PMID: 27000216]
[101]
Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the brain: the renin angiotensin system. Int J Mol Sci 2018; 19(3): 876.
[http://dx.doi.org/10.3390/ijms19030876] [PMID: 29543776]
[102]
Ahmed HA, Ishrat T. The Brain AT2R-a Potential Target for Therapy in Alzheimer’s Disease and Vascular Cognitive Impairment: a Comprehensive Review of Clinical and Experimental Therapeutics. Mol Neurobiol 2020; 57(8): 3458-84.
[http://dx.doi.org/10.1007/s12035-020-01964-9] [PMID: 32533467]
[103]
Connolly A, Leblanc S, Baillargeon JP. Role of Lipotoxicity and Contribution of the Renin-Angiotensin System in the Development of Polycystic Ovary Syndrome. Int J Endocrinol 2018; 2018: 4315413.
[http://dx.doi.org/10.1155/2018/4315413] [PMID: 29971102]
[104]
Mishra JS, More AS, Gopalakrishnan K, Kumar S. Testosterone plays a permissive role in angiotensin II-induced hypertension and cardiac hypertrophy in male rats. Biol Reprod 2019; 100(1): 139-48.
[http://dx.doi.org/10.1093/biolre/ioy179] [PMID: 30102356]
[105]
Yoshimura Y, Karube M, Aoki H, et al. Angiotensin II induces ovulation and oocyte maturation in rabbit ovaries via the AT2 receptor subtype. Endocrinology 1996; 137(4): 1204-11.
[http://dx.doi.org/10.1210/endo.137.4.8625890] [PMID: 8625890]
[106]
Nag S, Khan MA, Samuel P, Ali Q, Hussain T. Chronic angiotensin AT2R activation prevents high-fat diet-induced adiposity and obesity in female mice independent of estrogen. Metabolism 2015; 64(7): 814-25.
[http://dx.doi.org/10.1016/j.metabol.2015.01.019] [PMID: 25869303]
[107]
Kumar S, Banks TW, Cloutier S. SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics 2012; 2012: 831460.
[http://dx.doi.org/10.1155/2012/831460] [PMID: 23227038]
[108]
Hao Y, Chen D, Zhang Z, et al. Successful preimplantation genetic diagnosis by targeted next-generation sequencing on an ion torrent personal genome machine platform. Oncol Lett 2018; 15(4): 4296-302.
[http://dx.doi.org/10.3892/ol.2018.7876] [PMID: 29541197]
[109]
Miyao A, Kiyomiya JS, Iida K, Doi K, Yasue H. Polymorphic edge detection (PED): two efficient methods of polymorphism detection from next-generation sequencing data. BMC Bioinformatics 2019; 20(1): 362.
[http://dx.doi.org/10.1186/s12859-019-2955-6] [PMID: 31253084]
[110]
Kubikova N, Babariya D, Sarasa J, Spath K, Alfarawati S, Wells D. Clinical application of a protocol based on universal next-generation sequencing for the diagnosis of beta-thalassaemia and sickle cell anaemia in preimplantation embryos. Reprod Biomed Online 2018; 37(2): 136-44.
[http://dx.doi.org/10.1016/j.rbmo.2018.05.005] [PMID: 29853423]
[111]
Fernandez-Marmiesse A, Gouveia S, Couce ML. NGS technologies as a turning point in rare disease research, diagnosis and treatment. Curr Med Chem 2018; 25(3): 404-32.
[http://dx.doi.org/10.2174/0929867324666170718101946] [PMID: 28721829]
[112]
Hsu CN, Wu KL, Lee WC, Leu S, Chan JY, Tain YL. Aliskiren administration during early postnatal life sex-specifically alleviates hypertension programmed by maternal high fructose consumption. Front Physiol 2016; 7: 299.
[http://dx.doi.org/10.3389/fphys.2016.00299] [PMID: 27462279]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy