Review Article

与生物活性配体偶联以提高铂化合物抗癌活性的最新进展

卷 29, 期 15, 2022

发表于: 06 August, 2021

页: [2566 - 2601] 页: 36

弟呕挨: 10.2174/0929867328666210806110857

价格: $65

摘要

铂(Pt)药物,包括顺铂,广泛用于治疗实体瘤。尽管临床上取得了成功,但副作用和耐药性的发生代表了使用临床上可用的Pt药物的主要局限性。为了克服这些问题,已经设计和合成了各种衍生物。本文综述了Pt(II)和Pt(IV)配合物与生物活性配体的开发进展.Pt(II)和Pt(IV)复合物与靶向分子,临床上可用的药物和其他生物活性分子的开发是一个活跃的研究领域。即使没有一种报道的Pt衍生物被批准用于临床,许多这些化合物也表现出有希望的抗癌活性,并具有改进的药理学特征。因此,规划杂化化合物可以被认为是一种有前途的方法,可以改进可用的基于Pt的抗癌剂,并获得新的分子工具,以加深对癌症进展和耐药机制的了解。

关键词: 铂化合物,偶联物,杂化抗癌剂,肿瘤靶向,耐药性,顺铂。

[1]
Rottenberg, S.; Disler, C.; Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer, 2021, 21(1), 37-50.
[http://dx.doi.org/10.1038/s41568-020-00308-y] [PMID: 33128031]
[2]
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88102925
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[3]
Murray, D.; Mirzayans, R. Cellular responses to platinum-based anticancer drugs and UVC: role of p53 and implications for cancer therapy. Int. J. Mol. Sci., 2020, 21(16), 5766.
[http://dx.doi.org/10.3390/ijms21165766] [PMID: 32796711]
[4]
Jung, Y.; Lippard, S.J. Direct cellular responses to platinum-induced DNA damage. Chem. Rev., 2007, 107(5), 1387-1407.
[http://dx.doi.org/10.1021/cr068207j] [PMID: 17455916]
[5]
Nguyen, T.H.; Rossetti, G.; Arnesano, F.; Ippoliti, E.; Natile, G.; Carloni, P. Molecular recognition of platinated DNA from chromosomal HMGB1. J. Chem. Theory Comput., 2014, 10(8), 3578-3584.
[http://dx.doi.org/10.1021/ct500402e] [PMID: 26588321]
[6]
Perego, P.; Robert, J. Oxaliplatin in the era of personalized medicine: from mechanistic studies to clinical efficacy. Cancer Chemother. Pharmacol., 2016, 77(1), 5-18.
[http://dx.doi.org/10.1007/s00280-015-2901-x] [PMID: 26589793]
[7]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[8]
Kenny, R.G.; Marmion, C.J. Toward multi-targeted platinum and ruthenium drugs–a new paradigm in cancer drug treatment regimens? Chem. Rev., 2019, 119(2), 1058-1137.
[http://dx.doi.org/10.1021/acs.chemrev.8b00271] [PMID: 30640441]
[9]
Petruzzella, E.; Sirota, R.; Solazzo, I.; Gandin, V.; Gibson, D. Triple action Pt(iv) derivatives of cisplatin: a new class of potent anticancer agents that overcome resistance. Chem. Sci. (Camb.), 2018, 9(18), 4299-4307.
[http://dx.doi.org/10.1039/C8SC00428E] [PMID: 29780561]
[10]
Lee, V.E.Y.; Lim, Z.C.; Chew, S.L.; Ang, W.H. strategy for traceless codrug delivery with platinum(IV) prodrugcomplexes using self-immolative linkers. Inorg. Chem., 2021, 60(3), 1823-1831.
[http://dx.doi.org/10.1021/acs.inorgchem.0c03299] [PMID: 33464875]
[11]
Cai, L.; Yu, C.; Ba, L.; Liu, Q.; Qian, Y.; Yang, B.; Gao, C. Anticancer platinum-based complexes with non-classical structures. Appl. Organomet. Chem., 2018, 32(4)e4228
[http://dx.doi.org/10.1002/aoc.4228]
[12]
Jordan, V.C. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 1. Receptor interactions. J. Med. Chem., 2003, 46(6), 883-908.
[http://dx.doi.org/10.1021/jm020449y] [PMID: 12620065]
[13]
Hartman, J.; Lindberg, K.; Morani, A.; Inzunza, J.; Ström, A.; Gustafsson, J-A. Estrogen receptor β inhibits angiogenesis and growth of T47D breast cancer xenografts. Cancer Res., 2006, 66(23), 11207-11213.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0017] [PMID: 17145865]
[14]
Jordan, V.C. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 2. Clinical considerations and new agents. J. Med. Chem., 2003, 46(7), 1081-1111.
[http://dx.doi.org/10.1021/jm020450x] [PMID: 12646017]
[15]
He, Q.; Liang, C.H.; Lippard, S.J. Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc. Natl. Acad. Sci. USA, 2000, 97(11), 5768-5772.
[http://dx.doi.org/10.1073/pnas.100108697] [PMID: 10811891]
[16]
Kim, E.; Rye, P.T.; Essigmann, J.M.; Croy, R.G. A bifunctional platinum(II) antitumor agent that forms DNA adducts with affinity for the estrogen receptor. J. Inorg. Biochem., 2009, 103(2), 256-261.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.10.013] [PMID: 19054566]
[17]
Gust, R.; Beck, W.; Jaouen, G.; Schönenberger, H. Optimization of cisplatin for the treatment of hormone dependent tumoral diseases: part 1: use of steroidal ligands. Coord. Chem. Rev., 2009, 253(21-22), 2742-2759.
[http://dx.doi.org/10.1016/j.ccr.2009.02.025]
[18]
Perron, V.; Rabouin, D.; Asselin, E.; Parent, S. C-Gaudreault, R.; Bérubé, G. Synthesis of 17β-estradiol-linked platinum(II) complexes and their cytocidal activity on estrogen-dependent and -independent breast tumor cells. Bioorg. Chem., 2005, 33(1), 1-15.
[http://dx.doi.org/10.1016/j.bioorg.2004.06.009] [PMID: 15668178]
[19]
Schobert, R.; Bernhardt, G.; Biersack, B.; Bollwein, S.; Fallahi, M.; Grotemeier, A.; Hammond, G.L. Steroid conjugates of dichloro(6-aminomethylnicotinate)platinum(II): effects on DNA, sex hormone binding globulin, the estrogen receptor, and various breast cancer cell lines. ChemMedChem, 2007, 2(3), 333-342.
[http://dx.doi.org/10.1002/cmdc.200600173] [PMID: 17266159]
[20]
Kvasnica, M.; Rarova, L.; Oklestkova, J.; Budesinsky, M.; Kohout, L. Synthesis and cytotoxic activities of estrone and estradiol cis-dichloroplatinum(II) complexes. Bioorg. Med. Chem., 2012, 20(24), 6969-6978.
[http://dx.doi.org/10.1016/j.bmc.2012.10.013] [PMID: 23142322]
[21]
Kitteringham, E.; Andriollo, E.; Gandin, V.; Montagner, D.; Griffith, D.M. Synthesis, characterisation and in vitro antitumour potential of novel Pt(II) estrogen linked complexes. Inorg. Chim. Acta, 2019, 495, 118944-118949.
[http://dx.doi.org/10.1016/j.ica.2019.05.043]
[22]
Gagnon, V.; St-Germain, M-È.; Descôteaux, C.; Provencher-Mandeville, J.; Parent, S.; Mandal, S.K.; Asselin, E.; Bérubé, G. Biological evaluation of novel estrogen-platinum(II) hybrid molecules on uterine and ovarian cancers-molecular modeling studies. Bioorg. Med. Chem. Lett., 2004, 14(23), 5919-5924.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.015] [PMID: 15501069]
[23]
Provencher-Mandeville, J.; Descôteaux, C.; Mandal, S.K.; Leblanc, V.; Asselin, E.; Bérubé, G. Synthesis of 17β-estradiol-platinum(II) hybrid molecules showing cytotoxic activity on breast cancer cell lines. Bioorg. Med. Chem. Lett., 2008, 18(7), 2282-2287.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.005] [PMID: 18356047]
[24]
Provencher-Mandeville, J.; Debnath, C.; Mandal, S.K.; Leblanc, V.; Parent, S.; Asselin, E.; Bérubé, G. Design, synthesis and biological evaluation of estradiol-PEG-linked platinum(II) hybrid molecules: comparative molecular modeling study of three distinct families of hybrids. Steroids, 2011, 76(1-2), 94-103.
[http://dx.doi.org/10.1016/j.steroids.2010.09.004] [PMID: 20869376]
[25]
Gust, R.; Beck, W.; Jaouen, G.; Schönenberger, H. Optimization of cisplatin for the treatment of hormone-dependent tumoral diseases Part 2: use of non-steroidal ligands. Coord. Chem. Rev., 2009, 253(21-22), 2760-2779.
[http://dx.doi.org/10.1016/j.ccr.2009.02.029]
[26]
Barnes, K.R.; Kutikov, A.; Lippard, S.J. Synthesis, characterization, and cytotoxicity of a series of estrogen-tethered platinum(IV) complexes. Chem. Biol., 2004, 11(4), 557-564.
[http://dx.doi.org/10.1016/j.chembiol.2004.03.024] [PMID: 15123250]
[27]
Hu, W.; Zhao, J.; Hua, W.; Gou, S. A study on platinum(iv) species containing an estrogen receptor modulator to reverse tamoxifen resistance of breast cancer. Metallomics, 2018, 10(2), 346-359.
[http://dx.doi.org/10.1039/C7MT00289K] [PMID: 29349448]
[28]
Ouellette, V.; Côté, M-F.; Gaudreault, R.C.; Tajmir-Riahi, H-A.; Bérubé, G. Second-generation testosterone-platinum(II) hybrids for site-specific treatment of androgen receptor positive prostate cancer: Design, synthesis and antiproliferative activity. Eur. J. Med. Chem., 2019, 179, 660-666.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.090] [PMID: 31279298]
[29]
Cato, A.C.; Peterziel, H. The androgen receptor as mediator of gene expression and signal transduction pathways. Trends Endocrinol. Metab., 1998, 9(4), 150-154.
[http://dx.doi.org/10.1016/S1043-2760(98)00039-3] [PMID: 18406259]
[30]
Taplin, M.E.; Balk, S.P. Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J. Cell. Biochem., 2004, 91(3), 483-490.
[http://dx.doi.org/10.1002/jcb.10653] [PMID: 14755679]
[31]
Scher, H.I.; Buchanan, G.; Gerald, W.; Butler, L.M.; Tilley, W.D. Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer. Endocr. Relat. Cancer, 2004, 11(3), 459-476.
[http://dx.doi.org/10.1677/erc.1.00525] [PMID: 15369448]
[32]
Ehrenstorfer-Schäfers, E-M.; Steiner, N.; Altman, J.; Beck, W. Metal complexes of biologically important ligands, LV binding of steroidal hormones through α-amino acid ligands to platinum(II) and palladium(II). Z. Naturforsch. B, 1990, 45(6), 817-827.
[http://dx.doi.org/10.1515/znb-1990-0613]
[33]
Fortin, S.; Brasseur, K.; Morin, N.; Asselin, É.; Bérubé, G. New platinum(II) complexes conjugated at position 7α of 17β-acetyl-testosterone as new combi-molecules against prostate cancer: design, synthesis, structure-activity relationships and biological evaluation. Eur. J. Med. Chem., 2013, 68, 433-443.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.011] [PMID: 23994871]
[34]
Chanphai, P.; Ouellette, V.; Mandal, S.K.; Bérubé, G.; Tajmir-Riahi, H.A. Testo and testo-Pt(II) bind DNA at different locations. Chem. Biol. Interact., 2018, 296, 179-184.
[http://dx.doi.org/10.1016/j.cbi.2018.09.008] [PMID: 30253125]
[35]
Sanchez-Cano, C.; Huxley, M.; Ducani, C.; Hamad, A.E.; Browning, M.J.; Navarro-Ranninger, C.; Quiroga, A.G.; Rodger, A.; Hannon, M.J. Conjugation of testosterone modifies the interaction of mono-functional cationic platinum(II) complexes with DNA, causing significant alterations to the DNA helix. Dalton Trans., 2010, 39(47), 11365-11374.
[http://dx.doi.org/10.1039/c0dt00839g] [PMID: 21031219]
[36]
Cui, S.; Wang, Y.; Chen, G. Disturbance of DNA conformation by the binding of testosterone-based platinum drugs via groove-face and intercalative interactions: a molecular dynamics simulation study. BMC Struct. Biol., 2013, 13(4), 4.
[http://dx.doi.org/10.1186/1472-6807-13-4] [PMID: 23517640]
[37]
Cogan, P.S.; Koch, T.H. Rational design and synthesis of androgen receptor-targeted nonsteroidal anti-androgen ligands for the tumor-specific delivery of a doxorubicin-formaldehyde conjugate. J. Med. Chem., 2003, 46(24), 5258-5270.
[http://dx.doi.org/10.1021/jm0303305] [PMID: 14613328]
[38]
Qin, X.; Fang, L.; Zhao, J.; Gou, S. Theranostic Pt(IV) conjugate with target selectivity for androgen receptor. Inorg. Chem., 2018, 57(9), 5019-5029.
[http://dx.doi.org/10.1021/acs.inorgchem.8b00083] [PMID: 29667815]
[39]
Trauner, M.; Boyer, J.L. Bile salt transporters: molecular characterization, function, and regulation. Physiol. Rev., 2003, 83(2), 633-671.
[http://dx.doi.org/10.1152/physrev.00027.2002] [PMID: 12663868]
[40]
Gabano, E.; Ravera, M.; Osella, D. The drug targeting and delivery approach applied to pt-antitumour complexes. A coordination point of view. Curr. Med. Chem., 2009, 16(34), 4544-4580.
[http://dx.doi.org/10.2174/092986709789760661] [PMID: 19903151]
[41]
Marin, J.J.G.; Romero, M.R.; Vallejo, M.; Monte, M.J. Targeting of cytostatic bile acid derivatives towards tumours of the enterohepatic circuit. Cancer Ther., 2005, 3, 57-64.
[42]
Marin, J.J.G.; Herrera, M.C.; Palomero, M.F.; Macias, R.I.R.; Monte, M.J.; El-Mir, M.Y.; Villanueva, G.R. Rat liver transport and biotransformation of a cytostatic complex of bis-cholylglycinate and platinum (II). J. Hepatol., 1998, 28(3), 417-425.
[http://dx.doi.org/10.1016/S0168-8278(98)80315-2] [PMID: 9551679]
[43]
Macias, R.I.; El-Mir, M.Y.; Monte, M.J.; Serrano, M.A.; Garcia, M.J.; Marin, J.J.G. Cholephilic characteristics of a new cytostatic complex of cisplatin with glycocholate (Bamet-R2). J. Control. Release, 1999, 57(2), 161-169.
[http://dx.doi.org/10.1016/S0168-3659(98)00114-X] [PMID: 9971896]
[44]
Briz, O.; Serrano, M.A.; Rebollo, N.; Hagenbuch, B.; Meier, P.J.; Koepsell, H.; Marin, J.J.G. Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol. Pharmacol., 2002, 61(4), 853-860.
[http://dx.doi.org/10.1124/mol.61.4.853] [PMID: 11901224]
[45]
Lozano, E.; Monte, M.J.; Briz, O.; Hernández-Hernández, A.; Banales, J.M.; Marin, J.J.G.; Macias, R.I. Enhanced antitumour drug delivery to cholangiocarcinoma through the apical sodium-dependent bile acid transporter (ASBT). J. Control. Release, 2015, 216, 93-102.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.022] [PMID: 26278512]
[46]
Seroka, B.; Łotowski, Z.; Hryniewicka, A.; Rárová, L.; Sicinski, R. R.; M Tomkiel, A.; W Morzycki, J. Morzycki1, J.W. Synthesis of new cisplatin derivatives from bile acids. Molecules, 2020, 25(3), 655.
[http://dx.doi.org/10.3390/molecules25030655] [PMID: 32033039]
[47]
Criado, J.J.; Fernández, E.R.; Manzano, J.L.; Alonso, A.; Barrena, S.; Medarde, M.; Pelaez, R.; Tabernero, M.D.; Orfao, A. Intrinsically fluorescent cytotoxic cisplatin analogues as DNA marker molecules. Bioconjug. Chem., 2005, 16(2), 275-282.
[http://dx.doi.org/10.1021/bc049788r] [PMID: 15769080]
[48]
Alonso, A.; Almendral, M.J.; Curto, Y.; Criado, J.J.; Rodríguez, E.; Manzano, J.L. New fluorescent antitumour cisplatin analogue complexes. Study of the characteristics of their binding to DNA by flow injection analysis. J. Fluoresc., 2007, 17(4), 390-400.
[http://dx.doi.org/10.1007/s10895-007-0211-3] [PMID: 17557196]
[49]
González, M.; Bartolomé, R.; Matarraz, S.; Rodríguez-Fernández, E.; Manzano, J.L.; Pérez-Andrés, M.; Orfao, A.; Fuentes, M.; Criado, J.J. Platinum complexes for multi-parametric assays using microarray systems. J. Inorg. Biochem., 2012, 106(1), 43-45.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.08.015] [PMID: 22112838]
[50]
Pérez-Andrés, M.; Benito, J.J.; Rodríguez-Fernández, E.; Corradetti, B.; Primo, D.; Manzano, J.L.; Orfao, A.; Criado, J.J. Bisursodeoxycholate(ethylenediamine)platinum(II): a new autofluorescent compound. Cytotoxic activity and cell cycle analysis in ovarian and hematological cell lines. Dalton Trans., 2008, 2008(44), 6159-6164.
[http://dx.doi.org/10.1039/b807965j] [PMID: 18985248]
[51]
Monte, M.J.; Ballestero, M.R.; Briz, O.; Perez, M.J.; Marin, J.J.G. Proapoptotic effect on normal and tumor intestinal cells of cytostatic drugs with enterohepatic organotropism. J. Pharmacol. Exp. Ther., 2005, 315(1), 24-35.
[http://dx.doi.org/10.1124/jpet.105.086165] [PMID: 15985617]
[52]
Ballestero, M.R.; Monte, M.J.; Briz, O.; Jimenez, F.; Gonzalez-San Martin, F.; Marin, J.J.G. Expression of transporters potentially involved in the targeting of cytostatic bile acid derivatives to colon cancer and polyps. Biochem. Pharmacol., 2006, 72(6), 729-738.
[http://dx.doi.org/10.1016/j.bcp.2006.06.007] [PMID: 16844096]
[53]
Paschke, R.; Kalbitz, J.; Paetz, C.; Luckner, M.; Mueller, T.; Schmoll, H-J.; Mueller, H.; Sorkau, E.; Sinn, E. Cholic acid-carboplatin compounds (CarboChAPt) as models for specific drug delivery: synthesis of novel carboplatin analogous derivatives and comparison of the cytotoxic properties with corresponding cisplatin compounds. J. Inorg. Biochem., 2003, 94(4), 335-342.
[http://dx.doi.org/10.1016/S0162-0134(03)00024-2] [PMID: 12667704]
[54]
Fang, L.; Wang, M.; Gou, S.; Liu, X.; Zhang, H.; Cao, F. Combination of amino acid/dipeptide with nitric oxide donating oleanolic acid derivatives as PepT1 targeting antitumor prodrugs. J. Med. Chem., 2014, 57(3), 1116-1120.
[http://dx.doi.org/10.1021/jm401634d] [PMID: 24422538]
[55]
Fang, L.; Feng, M.; Chen, F.; Liu, X.; Shen, H.; Zhao, J.; Gou, S. Oleanolic acid-NO donor-platinum(II) trihybrid molecules: Targeting cytotoxicity on hepatoma cells with combined action mode and good safety. Bioorg. Med. Chem., 2016, 24(19), 4611-4619.
[http://dx.doi.org/10.1016/j.bmc.2016.07.066] [PMID: 27501909]
[56]
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
[57]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[58]
Wang, J.; Ye, C.; Chen, C.; Xiong, H.; Xie, B.; Zhou, J.; Chen, Y.; Zheng, S.; Wang, L. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: a systematic review and meta-analysis. Oncotarget, 2017, 8(10), 16875-16886.
[http://dx.doi.org/10.18632/oncotarget.15171] [PMID: 28187435]
[59]
Calvaresi, E.C.; Hergenrother, P.J. Glucose conjugation for the specific targeting and treatment of cancer. Chem. Sci. (Camb.), 2013, 4(6), 2319-2333.
[http://dx.doi.org/10.1039/c3sc22205e] [PMID: 24077675]
[60]
De Almeida, M.V.; Cesar, E.T.; Fontes, A.P.S.; Felício, E.C.A. Synthesis of platinum complexes from sugar derivatives. J. Carbohydr. Chem., 2000, 19(3), 323-329.
[http://dx.doi.org/10.1080/07328300008544081]
[61]
Chen, Y.; Heeg, M.J.; Braunschweiger, P.G.; Xie, W.; Wang, P.G. A carbohydrate-linked cisplatin analogue having antitumor activity. Angew. Chem. Int. Ed. Engl., 1999, 38(12), 1768-1769.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1768:AID-ANIE1768>3.0.CO;2-6] [PMID: 29711184]
[62]
Cucciolito, M.E.; Del Litto, R.; Fanizzi, F.P.; Migoni, D.; Roviello, G.; Ruffo, F. Hydrophilic ligands derived from glucose: synthesis, characterization and in vitro cytotoxic activity on cancer cells of Pt(II) complexes. Inorg. Chim. Acta, 2010, 363(4), 741-747.
[http://dx.doi.org/10.1016/j.ica.2009.11.031]
[63]
Yano, S.; Ohi, H.; Ashizaki, M.; Obata, M.; Mikata, Y.; Tanaka, R.; Nishioka, T.; Kinoshita, I.; Sugai, Y.; Okura, I.; Ogura, S.; Czaplewska, J.A.; Gottschaldt, M.; Schubert, U.S.; Funabiki, T.; Morimoto, K.; Nakai, M. Syntheses, characterization, and antitumor activities of platinum(II) and palladium(II) complexes with sugar-conjugated triazole ligands. Chem. Biodivers., 2012, 9(9), 1903-1915.
[http://dx.doi.org/10.1002/cbdv.201100426] [PMID: 22976979]
[64]
Möker, J.; Thiem, J. Synthesis of novel gluco- and galacto-functionalized platinum complexes. Eur. J. Org. Chem., 2009, 2009(28), 4842-4847.
[http://dx.doi.org/10.1002/ejoc.200900691]
[65]
Tsubomura, T.; Ogawa, M.; Yano, S.; Kobayashi, K.; Sakurai, T.; Yoshikawa, S. Highly active antitumor platinum(II) complexes of amino sugars. Inorg. Chem., 1990, 29(14), 2622-2626.
[http://dx.doi.org/10.1021/ic00339a019]
[66]
Hartinger, C.G.; Nazarov, A.A.; Ashraf, S.M.; Dyson, P.J.; Keppler, B.K. Carbohydrate-metal complexes and their potential as anticancer agents. Curr. Med. Chem., 2008, 15(25), 2574-2591.
[http://dx.doi.org/10.2174/092986708785908978] [PMID: 18855680]
[67]
Liu, P.; Lu, Y.; Gao, X.; Liu, R.; Zhang-Negrerie, D.; Shi, Y.; Wang, Y.; Wang, S.; Gao, Q. Highly water-soluble platinum(II) complexes as GLUT substrates for targeted therapy: improved anticancer efficacy and transporter-mediated cytotoxic properties. Chem. Commun. (Camb.), 2013, 49(24), 2421-2423.
[http://dx.doi.org/10.1039/c3cc38589b] [PMID: 23420130]
[68]
Li, H.; Gao, X.; Liu, R.; Wang, Y.; Zhang, M.; Fu, Z.; Mi, Y.; Wang, Y.; Yao, Z.; Gao, Q. Glucose conjugated platinum(II) complex: antitumor superiority to oxaliplatin, combination effect and mechanism of action. Eur. J. Med. Chem., 2015, 101, 400-408.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.006] [PMID: 26177447]
[69]
Patra, M.; Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. A potent glucose–platinum conjugate exploits glucose transporters and preferentially accumulates in cancer cells. Angew. Chem. Int. Ed. Engl., 2016, 55(7), 2550-2554.
[http://dx.doi.org/10.1002/anie.201510551] [PMID: 26749149]
[70]
Patra, M.; Awuah, S.G.; Lippard, S.J. Chemical approach to positional isomers of glucose-platinum conjugates reveals specific cancer targeting through glucose-transporter-mediated uptake in vitro and in vivo. J. Am. Chem. Soc., 2016, 138(38), 12541-12551.
[http://dx.doi.org/10.1021/jacs.6b06937] [PMID: 27570149]
[71]
Khoury, A.; Deo, K.M.; Aldrich-Wright, J.R. Recent advances in platinum-based chemotherapeutics that exhibit inhibitory and targeted mechanisms of action. J. Inorg. Biochem., 2020, 207111070
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111070] [PMID: 32299045]
[72]
Chan, Y-M.; Bailey, R.; O’Connor, D.L. Folate. Adv. Nutr., 2013, 4(1), 123-125.
[http://dx.doi.org/10.3945/an.112.003392] [PMID: 23319130]
[73]
Leamon, C.P.; Reddy, J.A. Folate-targeted chemotherapy. Adv. Drug Deliv. Rev., 2004, 56(8), 1127-1141.
[http://dx.doi.org/10.1016/j.addr.2004.01.008] [PMID: 15094211]
[74]
Lu, Y.; Low, P.S. Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. J. Control. Release, 2003, 91(1-2), 17-29.
[http://dx.doi.org/10.1016/S0168-3659(03)00215-3] [PMID: 12932634]
[75]
Xia, W.; Low, P.S. Folate-targeted therapies for cancer. J. Med. Chem., 2010, 53(19), 6811-6824.
[http://dx.doi.org/10.1021/jm100509v] [PMID: 20666486]
[76]
Vitols, K.S.; Montejano, Y.; Duffy, T.; Pope, L.; Grundler, G.; Huennekens, F.M. Platinum-folate compounds: synthesis, properties and biological activity. Adv. Enzyme Regul., 1987, 26, 17-27.
[http://dx.doi.org/10.1016/0065-2571(87)90004-5] [PMID: 3673704]
[77]
Gabano, E.; Ravera, M.; Cassino, C.; Bonetti, S.; Palmisano, G.; Osella, D. Stepwise assembly of platinum-folic acid conjugates. Inorg. Chim. Acta, 2008, 361, 1447-1455.
[http://dx.doi.org/10.1016/j.ica.2007.09.020]
[78]
Aronov, O.; Horowitz, A.T.; Gabizon, A.; Gibson, D. Folate-targeted PEG as a potential carrier for carboplatin analogs. Synthesis and in vitro studies. Bioconjug. Chem., 2003, 14(3), 563-574.
[http://dx.doi.org/10.1021/bc025642l] [PMID: 12757380]
[79]
Ren, W.X.; Han, J.; Uhm, S.; Jang, Y.J.; Kang, C.; Kim, J-H.; Kim, J.S. Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chem. Commun. (Camb.), 2015, 51(52), 10403-10418.
[http://dx.doi.org/10.1039/C5CC03075G] [PMID: 26021457]
[80]
Tripodo, G.; Mandracchia, D.; Collina, S.; Rui, M.; Rossi, D. New perspectives in cancer therapy: the biotin-antitumor molecule conjugates. Med. Chem., 2014, 8, 1.
[81]
Zhang, J.Z.; Wexselblatt, E.; Hambley, T.W.; Gibson, D. Pt(IV) analogs of oxaliplatin that do not follow the expected correlation between electrochemical reduction potential and rate of reduction by ascorbate. Chem. Commun. (Camb.), 2012, 48(6), 847-849.
[http://dx.doi.org/10.1039/C1CC16647F] [PMID: 22124352]
[82]
Muhammad, N.; Sadia, N.; Zhu, C.; Luo, C.; Guo, Z.; Wang, X. Biotin-tagged platinum(iv) complexes as targeted cytostatic agents against breast cancer cells. Chem. Commun. (Camb.), 2017, 53(72), 9971-9974.
[http://dx.doi.org/10.1039/C7CC05311H] [PMID: 28831477]
[83]
Zajac, J.; Kostrhunova, H.; Novohradsky, V.; Vrana, O.; Raveendran, R.; Gibson, D.; Kasparkova, J.; Brabec, V. Potentiation of mitochondrial dysfunction in tumor cells by conjugates of metabolic modulator dichloroacetate with a Pt(IV) derivative of oxaliplatin. J. Inorg. Biochem., 2016, 156, 89-97.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.12.003] [PMID: 26780576]
[84]
Jin, S.; Guo, Y.; Song, D.; Zhu, Z.; Zhang, Z.; Sun, Y.; Yang, T.; Guo, Z.; Wang, X. Targeting energy metabolism by a platinum(IV) prodrug as an alternative pathway for cancer suppression. Inorg. Chem., 2019, 58(9), 6507-6516.
[http://dx.doi.org/10.1021/acs.inorgchem.9b00708] [PMID: 31013065]
[85]
Zhao, J.; Hua, W.; Xu, G.; Gou, S. Biotinylated platinum(IV) complexes designed to target cancer cells. J. Inorg. Biochem., 2017, 176, 175-180.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.08.017] [PMID: 28917640]
[86]
Bhargava, A.; Vaishampayan, U.N. Satraplatin: leading the new generation of oral platinum agents. Expert Opin. Investig. Drugs, 2009, 18(11), 1787-1797.
[http://dx.doi.org/10.1517/13543780903362437] [PMID: 19888874]
[87]
Zhong, Y.; Jia, C.; Zhang, X.; Liao, X.; Yang, B.; Cong, Y.; Pu, S.; Gao, C. Synthesis, characterization, and antitumor activity of novel tumor-targeted platinum(IV) complexes. Appl. Organomet. Chem., 2020, 34(5)e5577
[http://dx.doi.org/10.1002/aoc.5577]
[88]
Russell, R.G.; Watts, N.B.; Ebetino, F.H.; Rogers, M.J. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos. Int., 2008, 19(6), 733-759.
[http://dx.doi.org/10.1007/s00198-007-0540-8] [PMID: 18214569]
[89]
Xue, Z.; Lin, M.; Zhu, J.; Zhang, J.; Li, Y.; Guo, Z. Platinum(II) compounds bearing bone-targeting group: synthesis, crystal structure and antitumor activity. Chem. Commun. (Camb.), 2010, 46(8), 1212-1214.
[http://dx.doi.org/10.1039/b922222g] [PMID: 20449253]
[90]
Sun, Y.; Chen, L.; Wu, X.; Ding, Q. Bifunctional bisphosphonate derivatives and platinum complexes with high affinity for bone hydroxyapatite. Bioorg. Med. Chem. Lett., 2017, 27(4), 1070-1075.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.050] [PMID: 28082035]
[91]
Sun, Y.; Zhao, J.; Ji, Z. Bifunctional platinum(II) complexes with bisphosphonates substituted diamine derivatives: synthesis and in vitro cytotoxicity. Chem. Biodivers., 2017, 14(12)e700348
[http://dx.doi.org/10.1002/cbdv.201700348] [PMID: 28975737]
[92]
Sun, Y.; Wu, X.; Chen, L.; Luo, L. Synthesis and cytotoxicity of N,N¢-dibisphosphonate ethylenediamine derivatives and platinum(II) complexes with high binding property to hydroxyapatite. Inorg. Chim. Acta, 2017, 457, 46-52.
[http://dx.doi.org/10.1016/j.ica.2016.12.006]
[93]
Zekri, J.; Mansour, M.; Karim, S.M. The anti-tumour effects of zoledronic acid. J. Bone Oncol., 2014, 3(1), 25-35.
[http://dx.doi.org/10.1016/j.jbo.2013.12.001] [PMID: 26909294]
[94]
Alvarez-Valdes, A.; Matesanz, A.I.; Perles, J.; Fernandes, C.; Correia, J.D.G.; Mendes, F.; Quiroga, A.G. Novel structures of platinum complexes bearing N bisphosphonates and study of their biological properties. J. Inorg. Biochem., 2019, 191, 112-118.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.11.010] [PMID: 30496946]
[95]
Nadar, R.A.; Farbod, K.; der Schilden, K.C.; Schlatt, L.; Crone, B.; Asokan, N.; Curci, A.; Brand, M.; Bornhaeuser, M.; Iafisco, M.; Margiotta, N.; Karst, U.; Heskamp, S.; Boerman, O.C.; van den Beucken, J.J.J.P.; Leeuwenburgh, S.C.G. Targeting of radioactive platinum-bisphosphonate anticancer drugs to bone of high metabolic activity. Sci. Rep., 2020, 10(1), 5889.
[http://dx.doi.org/10.1038/s41598-020-62039-2] [PMID: 32246003]
[96]
Nadar, R.A.; Franssen, G.M.; Van Dijk, N.W.M.; Codee-van der Schilden, K.; de Weijert, M.; Oosterwijk, E.; Iafisco, M.; Margiotta, N.; Heskamp, S.; van den Beucken, J.J.J.P.; Leeuwenburgh, S.C.G. Bone tumor-targeted delivery of theranostic 195mPt-bisphosphonate complexes promotes killing of metastatic tumor cells. Mater. Today Bio, 2020, 9100088
[http://dx.doi.org/10.1016/j.mtbio.2020.100088] [PMID: 33490949]
[97]
Vettore, L.; Westbrook, R.L.; Tennant, D.A. New aspects of amino acid metabolism in cancer. Br. J. Cancer, 2020, 122(2), 150-156.
[http://dx.doi.org/10.1038/s41416-019-0620-5] [PMID: 31819187]
[98]
Worm, D.J.; Els-Heindl, S.; Beck-Sickinger, A.G. Targeting of peptide-binding receptors on cancer cells with peptide-drug conjugates. Pept. Sci. (Hoboken), 2020, 112(3)e24171
[http://dx.doi.org/10.1002/pep2.24171]
[99]
Foged, C.; Nielsen, H.M. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin. Drug Deliv., 2008, 5(1), 105-117.
[http://dx.doi.org/10.1517/17425247.5.1.105] [PMID: 18095931]
[100]
Zhang, X.X.; Eden, H.S.; Chen, X. Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J. Control. Release, 2012, 159(1), 2-13.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.023] [PMID: 22056916]
[101]
Singh, A.V. Commentary on “Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer” by Shaker A. Mousa, Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States - Peptide-Conjugated Nanoparticles for Multimodal Nanomedicine. Curr. Med. Chem., 2020, 27(17), 2927-2928.
[http://dx.doi.org/10.2174/092986732717200604120627] [PMID: 32515306]
[102]
Robillard, M.S.; Valentijn, A.R.P.M.; Meeuwenoord, N.J.; Reedijk, J.; van Boom, J.H.; Reedijk, J. The first solid-phase synthesis of a peptide-tethered platinum(II) complex. Angew. Chem. Int. Ed. Engl., 2000, 39(17), 3096-3099.
[http://dx.doi.org/10.1002/1521-3773(20000901)39:17<3096:AID-ANIE3096>3.0.CO;2-D] [PMID: 11028044]
[103]
Robillard, M.S.; van Alphen, S.; Meeuwenoord, N.J.; Jansen, B.A.J.; van der Marel, G.A.; van Boom, J.H.; Reedijk, J. Solid-phase synthesis of peptide-platinum complexes using platinum-chelating building blocks derived from amino acids. New J. Chem., 2005, 29(1), 220-225.
[http://dx.doi.org/10.1039/b411219a]
[104]
Damian, M.S.; Hedman, H.K.; Elmroth, S.K.C.; Diederichsen, U. Synthesis and DNA interaction of platinum complex/peptide chimera as potential drug candidates. Eur. J. Org. Chem., 2010, 99(32), 6161-6170.
[http://dx.doi.org/10.1002/ejoc.201000677]
[105]
Robillard, M.S.; Bacac, M.; van den Elst, H.; Flamigni, A.; van der Marel, G.A.; van Boom, J.H.; Reedijk, J. Automated parallel solid-phase synthesis and anticancer screening of a library of peptide-tethered platinum(II) complexes. J. Comb. Chem., 2003, 5(6), 821-825.
[http://dx.doi.org/10.1021/cc030011z] [PMID: 14606811]
[106]
Barragán, F.; Moreno, V.; Marchán, V. Solid-phase synthesis and DNA binding studies of dichloroplatinum(ii) conjugates of dicarba analogues of octreotide as new anticancer drugs. Chem. Commun. (Camb.), 2009, 31(31), 4705-4707.
[http://dx.doi.org/10.1039/b909698a] [PMID: 19641816]
[107]
Colombo, G.; Curnis, F.; De Mori, G.M.S.; Gasparri, A.; Longoni, C.; Sacchi, A.; Longhi, R.; Corti, A. Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif. J. Biol. Chem., 2002, 277(49), 47891-47897.
[http://dx.doi.org/10.1074/jbc.M207500200] [PMID: 12372830]
[108]
Ndinguri, M.W.; Solipuram, R.; Gambrell, R.P.; Aggarwal, S.; Hammer, R.P. Peptide targeting of platinum anti-cancer drugs. Bioconjug. Chem., 2009, 20(10), 1869-1878.
[http://dx.doi.org/10.1021/bc900065r] [PMID: 19775102]
[109]
Kakar, S.S.; Jin, H.; Hong, B.; Eaton, J.W.; Kang, K.A. LHRH Receptor Targeted Therapy for Breast Cancer. In: Oxygen Transport to Tissue XXIX. Advances In Experimental Medicine And Biology; Kang, K.A.; Harrison, D.K.; Bruley, D.F., Eds.; Springer: Boston, 2008, Vol. 614, pp. 285-296.
[http://dx.doi.org/10.1007/978-0-387-74911-2_32]
[110]
Calderon, L.E.; Keeling, J.K.; Rollins, J.; Black, C.A.; Collins, K.; Arnold, N.; Vance, D.E.; Ndinguri, M.W. Pt-Mal-LHRH, a newly synthesized compound attenuating breast cancer tumor growth and metastasis by targeting overexpression of the LHRH receptor. Bioconjug. Chem., 2017, 28(2), 461-470.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00610] [PMID: 27997127]
[111]
Aroui, S.; Dardevet, L.; Ben Ajmia, W.; de Boisvilliers, M.; Perrin, F.; Laajimi, A.; Boumendjel, A.; Kenani, A.; Muller, J.M.; De Waard, M. A novel platinum−maurocalcine conjugate induces apoptosis of human glioblastoma cells by acting through the ROS-ERK/AKT-p53 pathway. Mol. Pharm., 2015, 12(12), 4336-4348.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00531] [PMID: 26465677]
[112]
Yamazaki, C.M.; Nakase, I.; Endo, H.; Kishimoto, S.; Mashiyama, Y.; Masuda, R.; Futaki, S.; Koide, T. Collagen-like cell-penetrating peptides. Angew. Chem. Int. Ed. Engl., 2013, 52(21), 5497-5500.
[http://dx.doi.org/10.1002/anie.201301266] [PMID: 23592529]
[113]
Masuda, R.; Hayashi, R.; Nose, H.; Taguchi, A.; Hayashi, Y.; Yasui, H.; Koide, T. Development of a carboplatin derivative conjugated with a collagen-like triple-helical peptide. Future Med. Chem., 2018, 10(6), 619-629.
[http://dx.doi.org/10.4155/fmc-2017-0183] [PMID: 29412009]
[114]
Fonseca, S.B.; Pereira, M.P.; Mourtada, R.; Gronda, M.; Horton, K.L.; Hurren, R.; Minden, M.D.; Schimmer, A.D.; Kelley, S.O. Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem. Biol., 2011, 18(4), 445-453.
[http://dx.doi.org/10.1016/j.chembiol.2011.02.010] [PMID: 21513881]
[115]
Horton, K.L.; Pereira, M.P.; Stewart, K.M.; Fonseca, S.B.; Kelley, S.O. Tuning the activity of mitochondria-penetrating peptides for delivery or disruption. ChemBioChem, 2012, 13(3), 476-485.
[http://dx.doi.org/10.1002/cbic.201100415] [PMID: 22238158]
[116]
Wisnovsky, S.P.; Wilson, J.J.; Radford, R.J.; Pereira, M.P.; Chan, M.R.; Laposa, R.R.; Lippard, S.J.; Kelley, S.O. Targeting mitochondrial DNA with a platinum-based anticancer agent. Chem. Biol., 2013, 20(11), 1323-1328.
[http://dx.doi.org/10.1016/j.chembiol.2013.08.010] [PMID: 24183971]
[117]
Cartier, R.; Reszka, R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Ther., 2002, 9(3), 157-167.
[http://dx.doi.org/10.1038/sj.gt.3301635] [PMID: 11859418]
[118]
Costantini, D.L.; Hu, M.; Reilly, R.M. Peptide motifs for insertion of radiolabeled biomolecules into cells and routing to the nucleus for cancer imaging or radiotherapeutic applications. Cancer Biother. Radiopharm., 2008, 23(1), 3-24.
[http://dx.doi.org/10.1089/cbr.2007.0430] [PMID: 18298325]
[119]
Wlodarczyk, M.T.; Dragulska, S.A.; Camacho-Vanegas, O.; Dottino, P.R.; Jarzęcki, A.A.; Martignetti, J.A.; Mieszawska, A.J. Platinum (II) complex-nuclear localization sequence peptide hybrid for overcoming platinum resistance in cancer therapy. ACS Biomater. Sci. Eng., 2018, 4(2), 463-467.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00921] [PMID: 32042890]
[120]
Abramkin, S.; Valiahdi, S.M.; Jakupec, M.A.; Galanski, M.; Metzler-Nolte, N.; Keppler, B.K. Solid-phase synthesis of oxaliplatin-TAT peptide bioconjugates. Dalton Trans., 2012, 41(10), 3001-3005.
[http://dx.doi.org/10.1039/c2dt12024k] [PMID: 22281694]
[121]
McKeon, A.M.; Noonan, J.; Devocelle, M.; Murphy, B.M.; Griffith, D.M. Platinum(iv) oxaliplatin-peptide conjugates targeting memHsp70+ phenotype in colorectal cancer cells. Chem. Commun. (Camb.), 2017, 53(82), 11318-11321.
[http://dx.doi.org/10.1039/C7CC04764A] [PMID: 28967013]
[122]
Kitteringham, E.; McKeon, A.M.; O’Dowd, P.; Devocelle, M.; Murphy, B.M.; Griffith, D.M. Synthesis and characterisation of a novel mono functionalisable Pt(IV) oxaliplatin-type complex and its peptide conjugate. Inorg. Chim. Acta, 2020, 505119492
[http://dx.doi.org/10.1016/j.ica.2020.119492]
[123]
Mukhopadhyay, S.; Barnés, C.M.; Haskel, A.; Short, S.M.; Barnes, K.R.; Lippard, S.J. Conjugated platinum(IV)-peptide complexes for targeting angiogenic tumor vasculature. Bioconjug. Chem., 2008, 19(1), 39-49.
[http://dx.doi.org/10.1021/bc070031k] [PMID: 17845003]
[124]
Massaguer, A.; González-Cantó, A.; Escribano, E.; Barrabés, S.; Artigas, G.; Moreno, V.; Marchán, V. Integrin-targeted delivery into cancer cells of a Pt(IV) pro-drug through conjugation to RGD-containing peptides. Dalton Trans., 2015, 44(1), 202-212.
[http://dx.doi.org/10.1039/C4DT02710H] [PMID: 25369773]
[125]
Wong, D.Y.; Yeo, C.H.; Ang, W.H. Immuno-chemotherapeutic platinum(IV) prodrugs of cisplatin as multimodal anticancer agents. Angew. Chem. Int. Ed. Engl., 2014, 53(26), 6752-6756.
[http://dx.doi.org/10.1002/anie.201402879] [PMID: 24844571]
[126]
Wong, D.Y.Q.; Lim, J.H.; Ang, W.H. Induction of targeted necrosis with HER2-targeted platinum(iv) anticancer prodrugs. Chem. Sci. (Camb.), 2015, 6(5), 3051-3056.
[http://dx.doi.org/10.1039/C5SC00015G] [PMID: 28706680]
[127]
Mayr, J.; Hager, S.; Koblmüller, B.; Klose, M.H.M.; Holste, K.; Fischer, B.; Pelivan, K.; Berger, W.; Heffeter, P.; Kowol, C.R.; Keppler, B.K. EGFR-targeting peptide-coupled platinum(IV) complexes. Eur. J. Biochem., 2017, 22(4), 591-603.
[http://dx.doi.org/10.1007/s00775-017-1450-7] [PMID: 28405842]
[128]
Yuan, Y.; Kwok, R.T.; Tang, B.Z.; Liu, B. Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. J. Am. Chem. Soc., 2014, 136(6), 2546-2554.
[http://dx.doi.org/10.1021/ja411811w] [PMID: 24437551]
[129]
Yuan, Y.; Chen, Y.; Tang, B.Z.; Liu, B. A targeted theranostic platinum(IV) prodrug containing a luminogen with aggregation-induced emission (AIE) characteristics for in situ monitoring of drug activation. Chem. Commun. (Camb.), 2014, 50(29), 3868-3870.
[http://dx.doi.org/10.1039/c3cc49516g] [PMID: 24589580]
[130]
Conibear, A.C.; Hager, S.; Mayr, J.; Klose, M.H.M.; Keppler, B.K.; Kowol, C.R.; Heffeter, P.; Becker, C.F.W. Targeting, multifunctional αvβ6 integrin-specific peptide−Pt(IV) conjugates for cancer cell. Bioconjug. Chem., 2017, 28(9), 2429-2439.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00421] [PMID: 28796473]
[131]
Korotchkina, L.G.; Patel, M.S. Site specificity of four pyruvate dehydrogenase kinase isoenzymes toward the three phosphorylation sites of human pyruvate dehydrogenase. J. Biol. Chem., 2001, 276(40), 37223-37229.
[http://dx.doi.org/10.1074/jbc.M103069200] [PMID: 11486000]
[132]
Tataranni, T.; Piccoli, C. Dichloroacetate (DCA) and cancer: an overview towards clinical applications. Oxid. Med. Cell. Longev., 2019, 20198201079
[http://dx.doi.org/10.1155/2019/8201079] [PMID: 31827705]
[133]
Zhang, Y.; Guo, G.; Ma, B.; Du, R.; Xiao, H.; Yang, X.; Li, W.; Gao, Y.; Li, Y.; Jing, X. A hybrid platinum drug dichloroacetate-platinum(II) overcomes cisplatin drug resistance through dual organelle targeting. Anticancer Drugs, 2015, 26(7), 698-705.
[http://dx.doi.org/10.1097/CAD.0000000000000234] [PMID: 25811961]
[134]
Ferretti, V.; Bergamini, P.; Marvelli, L.; Hushcha, Y.; Gemmo, C.; Gambari, R.; Lampronti, I. Synthesis and characterization of Pt complexes containing dichloroacetate (DCA), designed for dual anticancer action. Inorg. Chim. Acta, 2018, 470, 119-127.
[http://dx.doi.org/10.1016/j.ica.2017.04.048]
[135]
Liu, W.; Su, J.; Jiang, J.; Li, X.; Ye, Q.; Zhou, H.; Chen, J.; Li, Y. Two mixed-NH3/amine platinum (II) anticancer complexes featuring a dichloroacetate moiety in the leaving group. Sci. Rep., 2013, 3, 2464-2470.
[http://dx.doi.org/10.1038/srep02464] [PMID: 23955304]
[136]
Liu, W.; Jiang, J.; Xu, Y.; Hou, S.; Sun, L.; Ye, Q.; Lou, L. Design, synthesis and anticancer activity of diam(m)ine platinum(II) complexes bearing a small-molecular cell apoptosis inducer dichloroacetate. J. Inorg. Biochem., 2015, 146, 14-18.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.02.002] [PMID: 25706321]
[137]
Dhar, S.; Lippard, S.J. Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc. Natl. Acad. Sci. USA, 2009, 106(52), 22199-22204.
[http://dx.doi.org/10.1073/pnas.0912276106] [PMID: 20007777]
[138]
Xue, X.; You, S.; Zhang, Q.; Wu, Y.; Zou, G-Z.; Wang, P.C.; Zhao, Y-L.; Xu, Y.; Jia, L.; Zhang, X.; Liang, X-J. Mitaplatin increases sensitivity of tumor cells to cisplatin by inducing mitochondrial dysfunction. Mol. Pharm., 2012, 9(3), 634-644.
[http://dx.doi.org/10.1021/mp200571k] [PMID: 22289032]
[139]
Wexselblatt, E.; Yavin, E.; Gibson, D. Platinum(IV) prodrugs with haloacetato ligands in the axial positions can undergo hydrolysis under biologically relevant conditions. Angew. Chem. Int. Ed. Engl., 2013, 52(23), 6059-6062.
[http://dx.doi.org/10.1002/anie.201300640] [PMID: 23686723]
[140]
Margiotta, N.; Marzano, C.; Gandin, V.; Osella, D.; Ravera, M.; Gabano, E.; Platts, J.A.; Petruzzella, E.; Hoeschele, J.D.; Natile, G. Revisiting [PtCl2(cis-1,4-DACH)]: an underestimated antitumor drug with potential application to the treatment of oxaliplatin-refractory colorectal cancer. J. Med. Chem., 2012, 55(16), 7182-7192.
[http://dx.doi.org/10.1021/jm3006838] [PMID: 22788918]
[141]
Kasparkova, J.; Suchankova, T.; Halamikova, A.; Zerzankova, L.; Vrana, O.; Margiotta, N.; Natile, G.; Brabec, V. Cytotoxicity, cellular uptake, glutathione and DNA interactions of an antitumor large-ring Pt II chelate complex incorporating the cis-1,4-diaminocyclohexane carrier ligand. Biochem. Pharmacol., 2010, 79(4), 552-564.
[http://dx.doi.org/10.1016/j.bcp.2009.09.019] [PMID: 19782655]
[142]
Savino, S.; Gandin, V.; Hoeschele, J.D.; Marzano, C.; Natile, G.; Margiotta, N. Dual-acting antitumor Pt(iv) prodrugs of kiteplatin with dichloroacetate axial ligands. Dalton Trans., 2018, 47(21), 7144-7158.
[http://dx.doi.org/10.1039/C8DT00686E] [PMID: 29766157]
[143]
Liu, F.; Dong, X.; Shi, Q.; Chen, J.; Su, W. Improving the anticancer activity of platinum(IV) prodrugs using a dual-targeting strategy with a dichloroacetate axial ligand. RSC Advances, 2019, 9(39), 22240-22247.
[http://dx.doi.org/10.1039/C9RA03690C]
[144]
Liu, B.; Qu, L.; Yan, S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int., 2015, 15, 106.
[http://dx.doi.org/10.1186/s12935-015-0260-7] [PMID: 26549987]
[145]
Intini, F.P.; Zajac, J.; Novohradsky, V.; Saltarella, T.; Pacifico, C.; Brabec, V.; Natile, G.; Kasparkova, J. Novel antitumor platinum (II) conjugates containing the nonsteroidal anti-inflammatory agent diclofenac: synthesis and dual mechanisms of antiproliferative effects. Inorg. Chem., 2017, 56(3), 1483-1497.
[http://dx.doi.org/10.1021/acs.inorgchem.6b02553] [PMID: 28102676]
[146]
Ravera, M.; Gabano, E.; McGlinchey, M.J.; Osella, D. A view on multi-action Pt(IV) antitumor prodrugs. Inorg. Chim. Acta, 2019, 492, 32-47.
[http://dx.doi.org/10.1016/j.ica.2019.04.025]
[147]
Li, X.; Liu, Y.; Tian, H. Current developments in Pt(IV) prodrugs conjugated with bioactive ligands. Bioinorg. Chem. Appl., 2018, 20188276139
[http://dx.doi.org/10.1155/2018/8276139] [PMID: 30402082]
[148]
Chen, Y.; Wang, Q.; Li, Z.; Liu, Z.; Zhao, Y.; Zhang, J.; Liu, M.; Wang, Z.; Li, D.; Han, J. Naproxen platinum(iv) hybrids inhibiting cycloxygenases and matrix metalloproteinases and causing DNA damage: synthesis and biological evaluation as antitumor agents in vitro and in vivo. Dalton Trans., 2020, 49(16), 5192-5204.
[http://dx.doi.org/10.1039/D0DT00424C] [PMID: 32236281]
[149]
Jin, S.; Muhammad, N.; Sun, Y.; Tan, Y.; Yuan, H.; Song, D.; Guo, Z.; Wang, X. Multispecific platinum(IV) complex deters breast cancer via interposing inflammation and immunosuppression as an inhibitor of COX-2 and PD-L1. Angew. Chem. Int. Ed. Engl., 2020, 59(51), 23313-23321.
[http://dx.doi.org/10.1002/anie.202011273] [PMID: 32897000]
[150]
Tan, J.; Li, C.; Wang, Q.; Li, S.; Chen, S.; Zhang, J.; Wang, P.C.; Ren, L.; Liang, X-J. A carrier-free nanostructure based on platinum(IV) prodrug enhances cellular uptake and cytotoxicity. Mol. Pharm., 2018, 15(4), 1724-1728.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00070] [PMID: 29522683]
[151]
Peklak-Scott, C.; Smitherman, P.K.; Townsend, A.J.; Morrow, C.S. Role of glutathione S-transferase P1-1 in the cellular detoxification of cisplatin. Mol. Cancer Ther., 2008, 7(10), 3247-3255.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0250] [PMID: 18852128]
[152]
Parker, L.J.; Italiano, L.C.; Morton, C.J.; Hancock, N.C.; Ascher, D.B.; Aitken, J.B.; Harris, H.H.; Campomanes, P.; Rothlisberger, U.; De Luca, A.; Lo Bello, M.; Ang, W.H.; Dyson, P.J.; Parker, M.W. Studies of glutathione transferase P1-1 bound to a platinum(IV)-based anticancer compound reveal the molecular basis of its activation. Chemistry, 2011, 17(28), 7806-7816.
[http://dx.doi.org/10.1002/chem.201100586] [PMID: 21681839]
[153]
Gibson, D. Multi-action Pt(IV) anticancer agents; do we understand how they work? J. Inorg. Biochem., 2019, 191, 77-84.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.11.008] [PMID: 30471522]
[154]
Ding, S.; Qiao, X.; Kucera, G.L.; Bierbach, U. Design of a platinum-acridine-endoxifen conjugate targeted at hormone-dependent breast cancer. Chem. Commun. (Camb.), 2013, 49(24), 2415-2417.
[http://dx.doi.org/10.1039/c3cc38957j] [PMID: 23416453]
[155]
Grossniklaus, H.E. Retinoblastoma. Fifty years of progress. The LXXI Edward Jackson Memorial Lecture. Am. J. Ophthalmol., 2014, 158(5), 875-891.
[http://dx.doi.org/10.1016/j.ajo.2014.07.025] [PMID: 25065496]
[156]
Biancalana, L.; Batchelor, L.K.; Pereira, S.A.P.; Tseng, P-J.; Zacchini, S.; Pampaloni, G.; Saraiva, L.M.F.S.; Dyson, P.J.; Marchetti, F. Bis-conjugation of bioactive molecules to cisplatin-like complexes through (2,2¢-bipyridine)-4,4¢-dicarboxylic acid with optimal cytotoxicity profile provided by the combination ethacrynic acid/flurbiprofen. Chemistry, 2020, 26(72), 17525-17535.
[http://dx.doi.org/10.1002/chem.202003199] [PMID: 33252170]
[157]
McClure, J.J.; Li, X.; Chou, C.J. Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv. Cancer Res., 2018, 138, 183-211.
[http://dx.doi.org/10.1016/bs.acr.2018.02.006] [PMID: 29551127]
[158]
Boulet, M.H.C.; Marsh, L.K.; Howarth, A.; Woolman, A.; Farrer, N.J. Oxaliplatin and [Pt(R,R-DACH)(panobinostat-2H)] show nanomolar cytotoxicity towards diffuse intrinsic pontine glioma (DIPG). Dalton Trans., 2020, 49(17), 5703-5710.
[http://dx.doi.org/10.1039/C9DT04862F] [PMID: 32297619]
[159]
Almotairy, A.R.Z.; Gandin, V.; Morrison, L.; Marzano, C.; Montagner, D.; Erxleben, A. Antitumor platinum(IV) derivatives of carboplatin and the histone deacetylase inhibitor 4-phenylbutyric acid. J. Inorg. Biochem., 2017, 177, 1-7.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.09.009] [PMID: 28918353]
[160]
Almotairy, A.R.Z.; Montagner, D.; Morrison, L.; Devereux, M.; Howe, O.; Erxleben, A. Pt(IV) pro-drugs with an axial HDAC inhibitor demonstrate multimodal mechanisms involving DNA damage and apoptosis independent of cisplatin resistance in A2780/A2780cis cells. J. Inorg. Biochem., 2020, 210111125
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111125] [PMID: 32521289]
[161]
Fang, L.; Qin, X.; Zhao, J.; Gou, S. Resistance, construction of dual stimuli-responsive platinum(IV) hybrids with NQO1 targeting ability and overcoming cisplatin. Inorg. Chem., 2019, 58(3), 2191-2200.
[http://dx.doi.org/10.1021/acs.inorgchem.8b03386] [PMID: 30657321]
[162]
Li, X-Y.; Zhang, T-J.; Kamara, M.O.; Lu, G-Q.; Xu, H-L.; Wang, D-P.; Meng, F-H. Discovery of N-phenyl-(2,4-dihydroxypyrimidine-5-sulfonamido) phenylurea-based thymidylate synthase (TS) inhibitor as a novel multi-effects antitumor drugs with minimal toxicity. Cell Death Dis., 2019, 10(7), 532.
[http://dx.doi.org/10.1038/s41419-019-1773-0] [PMID: 31296849]
[163]
Muhammad, N.; Tan, C-P.; Nawaz, U.; Wang, J.; Wang, F-X.; Nasreen, S.; Ji, L-N.; Mao, Z-W. Multiaction platinum(IV) prodrug containing thymidylate synthase inhibitor and metabolic modifier against triple-negative breast cancer. Inorg. Chem., 2020, 59(17), 12632-12642.
[http://dx.doi.org/10.1021/acs.inorgchem.0c01736] [PMID: 32838518]
[164]
Chen, H.; Chen, F.; Hu, W.; Gou, S. Effective platinum(IV) prodrugs conjugated with lonidamine as a functional group working on the mitochondria. J. Inorg. Biochem., 2018, 180, 119-128.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.11.017] [PMID: 29253663]
[165]
Nosova, Y.N.; Foteeva, L.S.; Zenin, I.V.; Fetisov, T.I.; Kirsanov, K.I.; Yakubovskaya, M.G.; Antonenko, T.A.; Tafeenko, V.A.; Aslanov, L.A.; Lobas, A.A.; Gorshkov, M.V.; Galanski, M.; Keppler, B.K.; Timerbaev, A.R.; Milaeva, E.R.; Nazarov, A.A. Enhancing the cytotoxic activity of anticancer PtIV complexes by introduction of lonidamine as an axial ligand. Eur. J. Inorg. Chem., 2017, 2017(12), 1785-1791.
[http://dx.doi.org/10.1002/ejic.201600857]
[166]
Okulova, Y.N.; Zenin, I.V.; Shutkov, I.A.; Kirsanov, K.I.; Kovalevad, O.N.; Lesovaya, E.A.; Fetisov, T.I.; Milaeva, E.R.; Nazarov, A.A. Antiproliferative activity of Pt(IV) complexes with lonidamine and bexarotene ligands attached via succinate-ethylenediamine linker. Inorg. Chim. Acta, 2019, 495119010
[http://dx.doi.org/10.1016/j.ica.2019.119010]
[167]
Babak, M.V.; Zhi, Y.; Czarny, B.; Toh, T.B.; Hooi, L.; Chow, E.K.H.; Ang, W.H.; Gibson, D.; Pastorin, G. Dual-targeting dual-action platinum (IV) platform for enhanced anticancer activity and reduced nephrotoxicity. Angew. Chem. Int. Ed. Engl., 2019, 58(24), 8109-8114.
[http://dx.doi.org/10.1002/anie.201903112] [PMID: 30945417]
[168]
Chen, F.; Huang, X.; Wu, M.; Gou, S.; Hu, W.A. CK2-targeted Pt(IV) prodrug to disrupt DNA damage response. Cancer Lett., 2017, 385, 168-178.
[http://dx.doi.org/10.1016/j.canlet.2016.10.026] [PMID: 27793693]
[169]
Parker, A.L.; Kavallaris, M.; McCarroll, J.A. Microtubules and their role in cellular stress in cancer. Front. Oncol., 2014, 4, 153.
[http://dx.doi.org/10.3389/fonc.2014.00153] [PMID: 24995158]
[170]
Arnst, K.E.; Banerjee, S.; Chen, H.; Deng, S.; Hwang, D-J.; Li, W.; Miller, D.D. Current advances of tubulin inhibitors as dual acting small molecules for cancer therapy. Med. Res. Rev., 2019, 39(4), 1398-1426.
[http://dx.doi.org/10.1002/med.21568] [PMID: 30746734]
[171]
Rehm, T.; Rothemund, M.; Muenzner, J.K.; Noor, A.; Kempe, R.; Schobert, R. Novel cis-[(NHC)1(NHC)2(L)Cl]platinum(ii) complexes - synthesis, structures, and anticancer activities. Dalton Trans., 2016, 45(39), 15390-15398.
[http://dx.doi.org/10.1039/C6DT02350A] [PMID: 27603959]
[172]
Huang, X.; Huang, R.; Gou, S.; Wang, Z.; Liao, Z.; Wang, H. Combretastatin A-4 analogue: a dual-targeting and tubulin inhibitor containing antitumor Pt(IV) moiety with a unique mode of action. Bioconjug. Chem., 2016, 27(9), 2132-2148.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00353] [PMID: 27494235]
[173]
Huang, X.; Wang, M.; Wang, C.; Hu, W.; You, Q.; Yang, Y.; Yu, C.; Liao, Z.; Gou, S.; Wang, H. Dual-targeting antitumor conjugates derived from platinum(IV) prodrugs and microtubule inhibitor CA-4 significantly exhibited potent ability to overcome cisplatin resistance. Bioorg. Chem., 2019, 92103236
[http://dx.doi.org/10.1016/j.bioorg.2019.103236] [PMID: 31494328]
[174]
Karmakar, S.; Kostrhunova, H.; Ctvrtlikova, T.; Novohradsky, V.; Gibson, D.; Brabec, V. Platinum(IV)-estramustine multiaction prodrugs are effective antiproliferative agents against prostate cancer cells. J. Med. Chem., 2020, 63(22), 13861-13877.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01400] [PMID: 33175515]
[175]
Kostrhunova, H.; Zajac, J.; Markova, L.; Brabec, V.; Kasparkova, J. A Multi-action PtIV conjugate with oleate and cinnamate ligands targets human epithelial growth factor receptor HER2 in aggressive breast cancer cells. Angew. Chem. Int. Ed. Engl., 2020, 59(47), 21157-21162.
[http://dx.doi.org/10.1002/anie.202009491] [PMID: 32750194]
[176]
Werner, M.H.; Gronenborn, A.M.; Clore, G.M. Intercalation, DNA kinking, and the control of transcription. Science, 1996, 271(5250), 778-784.
[http://dx.doi.org/10.1126/science.271.5250.778] [PMID: 8628992]
[177]
Lincoln, P.; Nordén, B. DNA binding geometries of ruthenium(II) complexes with 1,10-phenanthroline and 2,2¢-bipyridine ligands studied with linear dichroism spectroscopy. Borderline cases of intercalation. J. Phys. Chem. B, 1998, 102(47), 9583-9594.
[http://dx.doi.org/10.1021/jp9824914]
[178]
Wheate, N.J.; Brodie, C.R.; Collins, J.G.; Kemp, S.; Aldrich-Wright, J.R. DNA intercalators in cancer therapy: organic and inorganic drugs and their spectroscopic tools of analysis. Mini Rev. Med. Chem., 2007, 7(6), 627-648.
[http://dx.doi.org/10.2174/138955707780859413] [PMID: 17584161]
[179]
Perrin, L.C.; Prenzler, P.D.; Cullinane, C.; Phillips, D.R.; Denny, W.A.; McFadyen, W.D. DNA targeted platinum complexes: synthesis, cytotoxicity and DNA interactions of cis-dichloroplatinum(II) complexes tethered to phenazine-1-carboxamides. J. Inorg. Biochem., 2000, 81(1-2), 111-117.
[http://dx.doi.org/10.1016/S0162-0134(00)00092-1] [PMID: 11001439]
[180]
Butour, J.L.; Macquet, J-P. Differentiation of DNA-platinum complexes by fluorescence. The use of an intercalating dye as a probe. Eur. J. Biochem., 1977, 78(2), 455-463.
[http://dx.doi.org/10.1111/j.1432-1033.1977.tb11758.x] [PMID: 913408]
[181]
Neplechová, K.; Kaspárková, J.; Vrána, O.; Nováková, O.; Habtemariam, A.; Watchman, B.; Sadler, P.J.; Brabec, V. DNA interactions of new antitumor aminophosphine platinum(II) complexes. Mol. Pharmacol., 1999, 56(1), 20-30.
[http://dx.doi.org/10.1124/mol.56.1.20] [PMID: 10385680]
[182]
Baruah, H.; Barry, C.G.; Bierbach, U. Platinum-intercalator conjugates: from DNA-targeted cisplatin derivatives to adenine binding complexes as potential modulators of gene regulation. Curr. Top. Med. Chem., 2004, 4(15), 1537-1549.
[http://dx.doi.org/10.2174/1568026043387313] [PMID: 15579095]
[183]
Suryadi, J.; Bierbach, U. DNA metalating-intercalating hybrid agents for the treatment of chemoresistant cancers. Chemistry, 2012, 18(41), 12926-12934.
[http://dx.doi.org/10.1002/chem.201202050] [PMID: 22987397]
[184]
Pages, B.J.; Garbutcheon-Singh, K.B.; Aldrich-Wright, J.R. Platinum intercalators of DNA as anticancer agents. Eur. J. Inorg. Chem., 2017, 2017(12), 1613-1624.
[http://dx.doi.org/10.1002/ejic.201601204]
[185]
Bondi, R.; Biver, T.; Dalla Via, L.; Guarra, F.; Hyeraci, M.; Sissi, C.; Labella, L.; Marchetti, F.; Samaritani, S. DNA interaction of a fluorescent, cytotoxic pyridinimino platinum(II) complex. J. Inorg. Biochem., 2020, 202, 110874-110881.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110874] [PMID: 31683086]
[186]
Wang, F-Y.; Liu, R.; Huang, K-B.; Feng, H-W.; Liu, Y-N.; Liang, H. New platinum(II)-based DNA intercalator: synthesis, characterization and anticancer activity. Inorg. Chem. Commun., 2019, 105, 182-187.
[http://dx.doi.org/10.1016/j.inoche.2019.04.039]
[187]
Censi, V.; Caballero, A.B.; Pérez-Hernández, M.; Soto-Cerrato, V.; Korrodi-Gregório, L.; Pérez-Tomás, R.; Dell’Anna, M.M.; Mastrorilli, P.; Gamez, P. DNA-binding and in vitro cytotoxic activity of platinum(II) complexes of curcumin and caffeine. J. Inorg. Biochem., 2019, 198, 110749-110762.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110749] [PMID: 31200320]
[188]
Wang, Q.; Tan, X.; Liu, Z.; Li, G.; Zhang, R.; Wei, J.; Wang, S.; Li, D.; Wang, B.; Han, J. Design and synthesis of a new series of low toxic naphthalimide platinum(IV) antitumor complexes with dual DNA damage mechanism. Eur. J. Pharm. Sci., 2018, 124, 127-136.
[http://dx.doi.org/10.1016/j.ejps.2018.08.032] [PMID: 30153524]
[189]
Wang, Q.; Chen, Y.; Li, G.; Zhao, Y.; Liu, Z.; Zhang, R.; Liu, M.; Li, D.; Han, J. A potent aminonaphthalimide platinum(IV) complex with effective antitumor activities in vitro and in vivo displaying dual DNA damage effects on tumor cells. Bioorg. Med. Chem. Lett., 2019, 29(20)126670
[http://dx.doi.org/10.1016/j.bmcl.2019.126670] [PMID: 31500997]
[190]
Weis, S.M.; Cheresh, D.A. αV integrins in angiogenesis and cancer. Cold Spring Harb. Perspect. Med., 2011, 1(1)a006478
[http://dx.doi.org/10.1101/cshperspect.a006478] [PMID: 22229119]
[191]
Mucaki, E.J.; Zhao, J.Z.L.; Lizotte, D.J.; Rogan, P.K. Predicting responses to platin chemotherapy agents with biochemically-inspired machine learning. Signal Transduct. Target. Ther., 2019, 4(1), 1.
[http://dx.doi.org/10.1038/s41392-018-0034-5] [PMID: 30652029]
[192]
Adam, G.; Rampášek, L.; Safikhani, Z.; Smirnov, P.; Haibe-Kains, B.; Goldenberg, A. Machine learning approaches to drug response prediction: challenges and recent progress. npj Precis. Onc., 2020, 4(1), 1-10.
[193]
Singh, A.V.; Rosenkranz, D.; Ansari, M.H.D.; Singh, R.; Kanase, A.; Singh, S.P.; Johnston, B.; Tentschert, J.; Laux, P.; Luch, A. Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction. Adv. Intell. Syst., 2020, 22000084
[http://dx.doi.org/10.1002/aisy.202000084]
[194]
Singh, A.V.; Maharjan, R.S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces, 2021, 13(1), 1943-1955.
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[195]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17)e1901862
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[196]
Singh, A.V.; Chandrasekar, V.; Janapareddy, P.; Mathews, D.E.; Laux, P.; Luch, A.; Yang, Y.; Garcia-Canibano, B.; Balakrishnan, S.; Abinahed, J.; Al Ansari, A.; Dakua, S.P. Emerging application of nanorobotics and artificial intelligence to cross the bbb: advances in design, controlled maneuvering, and targeting of the barriers. ACS Chem. Neurosci., 2021, 12(11), 1835-1853.
[http://dx.doi.org/10.1021/acschemneuro.1c00087] [PMID: 34008957]
[197]
Singh, A.V.; Batuwangala, M.; Mundra, R.; Mehta, K.; Patke, S.; Falletta, E.; Patil, R.; Gade, W.N. Biomineralized anisotropic gold microplate-macrophage interactions reveal frustrated phagocytosis-like phenomenon: a novel paclitaxel drug delivery vehicle. ACS Appl. Mater. Interfaces, 2014, 6(16), 14679-14689.
[http://dx.doi.org/10.1021/am504051b] [PMID: 25046687]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy