Review Article

克雷布斯周期重新布线:动脉粥样硬化进展的驱动因素?

卷 29, 期 13, 2022

发表于: 06 August, 2021

页: [2322 - 2333] 页: 12

弟呕挨: 10.2174/0929867328666210806105246

价格: $65

摘要

三羧酸(TCA)循环是真核细胞中能量代谢的中心,并根据细胞的能量需求动态调整。巨噬细胞被炎症刺激激活,然后TCA循环中的两个断点导致中间体的积累。动脉粥样硬化是一种慢性炎症过程。本文讨论了炎症刺激下巨噬细胞中TCA循环中间体的“非代谢”信号传导功能以及中间体在动脉粥样硬化进展中的作用。

关键词: TCA循环,柠檬酸盐,琥珀酸盐,衣康酸盐,GPR91,动脉粥样硬化,富马酸盐。

[1]
Ryan, D.G.; O’Neill, L.A.J. Krebs cycle rewired for macrophage and dendritic cell effector functions. FEBS Lett., 2017, 591(19), 2992-3006.
[http://dx.doi.org/10.1002/1873-3468.12744] [PMID: 28685841]
[2]
Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med., 2013, 11, 117.
[http://dx.doi.org/10.1186/1741-7015-11-117] [PMID: 23635324]
[3]
Jinnouchi, H.; Guo, L.; Sakamoto, A.; Torii, S.; Sato, Y.; Cornelissen, A.; Kuntz, S.; Paek, K.H.; Fernandez, R.; Fuller, D.; Gadhoke, N.; Surve, D.; Romero, M.; Kolodgie, F.D.; Virmani, R.; Finn, A.V. Diversity of macrophage phenotypes and responses in atherosclerosis. Cell. Mol. Life Sci., 2020, 77(10), 1919-1932.
[http://dx.doi.org/10.1007/s00018-019-03371-3] [PMID: 31720740]
[4]
Lusis, A.J. Atherosclerosis. Nature, 2000, 407(6801), 233-241.
[http://dx.doi.org/10.1038/35025203] [PMID: 11001066]
[5]
Taleb, S. Inflammation in atherosclerosis. Arch. Cardiovasc. Dis., 2016, 109(12), 708-715.
[http://dx.doi.org/10.1016/j.acvd.2016.04.002] [PMID: 27595467]
[6]
Libby, P.; Aikawa, M.; Schönbeck, U. Cholesterol and atherosclerosis. Biochim. Biophys. Acta, 2000, 1529(1-3), 299-309.
[http://dx.doi.org/10.1016/S1388-1981(00)00161-X] [PMID: 11111097]
[7]
Yunna, C.; Mengru, H.; Lei, W.; Weidong, C. Macrophage M1/M2 polarization. Eur. J. Pharmacol., 2020, 877, 173090.
[http://dx.doi.org/10.1016/j.ejphar.2020.173090] [PMID: 32234529]
[8]
Mills, E.L.; O’Neill, L.A. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol., 2016, 46(1), 13-21.
[http://dx.doi.org/10.1002/eji.201445427] [PMID: 26643360]
[9]
Riksen, N.P.; Stienstra, R. Metabolism of innate immune cells: impact on atherosclerosis. Curr. Opin. Lipidol., 2018, 29(5), 359-367.
[http://dx.doi.org/10.1097/MOL.0000000000000539] [PMID: 30020200]
[10]
Kelly, B.; O’Neill, L.A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res., 2015, 25(7), 771-784.
[http://dx.doi.org/10.1038/cr.2015.68] [PMID: 26045163]
[11]
Krawczyk, C.M.; Holowka, T.; Sun, J.; Blagih, J.; Amiel, E.; DeBerardinis, R.J.; Cross, J.R.; Jung, E.; Thompson, C.B.; Jones, R.G.; Pearce, E.J. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood, 2010, 115(23), 4742-4749.
[http://dx.doi.org/10.1182/blood-2009-10-249540] [PMID: 20351312]
[12]
O’Neill, L.A. A broken krebs cycle in macrophages. Immunity, 2015, 42(3), 393-394.
[http://dx.doi.org/10.1016/j.immuni.2015.02.017] [PMID: 25786167]
[13]
Jha, A.K.; Huang, S.C.; Sergushichev, A.; Lampropoulou, V.; Ivanova, Y.; Loginicheva, E.; Chmielewski, K.; Stewart, K.M.; Ashall, J.; Everts, B.; Pearce, E.J.; Driggers, E.M.; Artyomov, M.N. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 2015, 42(3), 419-430.
[http://dx.doi.org/10.1016/j.immuni.2015.02.005] [PMID: 25786174]
[14]
Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; Zheng, L.; Gardet, A.; Tong, Z.; Jany, S.S.; Corr, S.C.; Haneklaus, M.; Caffrey, B.E.; Pierce, K.; Walmsley, S.; Beasley, F.C.; Cummins, E.; Nizet, V.; Whyte, M.; Taylor, C.T.; Lin, H.; Masters, S.L.; Gottlieb, E.; Kelly, V.P.; Clish, C.; Auron, P.E.; Xavier, R.J.; O’Neill, L.A. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444), 238-242.
[http://dx.doi.org/10.1038/nature11986] [PMID: 23535595]
[15]
Groh, L.; Keating, S.T.; Joosten, L.A.B.; Netea, M.G.; Riksen, N.P. Monocyte and macrophage immunometabolism in atherosclerosis. Semin. Immunopathol., 2018, 40(2), 203-214.
[http://dx.doi.org/10.1007/s00281-017-0656-7] [PMID: 28971272]
[16]
Infantino, V.; Convertini, P.; Cucci, L.; Panaro, M.A.; Di Noia, M.A.; Calvello, R.; Palmieri, F.; Iacobazzi, V. The mitochondrial citrate carrier: a new player in inflammation. Biochem. J., 2011, 438(3), 433-436.
[http://dx.doi.org/10.1042/BJ20111275] [PMID: 21787310]
[17]
Roy, A.; Saqib, U.; Wary, K.; Baig, M.S. Macrophage neuronal nitric oxide synthase (NOS1) controls the inflammatory response and foam cell formation in atherosclerosis. Int. Immunopharmacol., 2020, 83, 106382.
[http://dx.doi.org/10.1016/j.intimp.2020.106382] [PMID: 32193098]
[18]
Rendra, E.; Riabov, V.; Mossel, D.M.; Sevastyanova, T.; Harmsen, M.C.; Kzhyshkowska, J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology, 2019, 224(2), 242-253.
[http://dx.doi.org/10.1016/j.imbio.2018.11.010] [PMID: 30739804]
[19]
Wellen, K.E.; Hatzivassiliou, G.; Sachdeva, U.M.; Bui, T.V.; Cross, J.R.; Thompson, C.B. ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 2009, 324(5930), 1076-1080.
[http://dx.doi.org/10.1126/science.1164097] [PMID: 19461003]
[20]
Infantino, V.; Iacobazzi, V.; Palmieri, F.; Menga, A. ATP-citrate lyase is essential for macrophage inflammatory response. Biochem. Biophys. Res. Commun., 2013, 440(1), 105-111.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.037] [PMID: 24051091]
[21]
Feng, X.; Zhang, L.; Xu, S.; Shen, A.Z. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: An updated review. Prog. Lipid Res., 2020, 77, 101006.
[http://dx.doi.org/10.1016/j.plipres.2019.101006] [PMID: 31499095]
[22]
Infantino, V.; Iacobazzi, V.; Menga, A.; Avantaggiati, M.L.; Palmieri, F. A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation. Biochim. Biophys. Acta, 2014, 1839(11), 1217-1225.
[http://dx.doi.org/10.1016/j.bbagrm.2014.07.013] [PMID: 25072865]
[23]
Shen, Y.; Wei, W.; Zhou, D.X. Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci., 2015, 20(10), 614-621.
[http://dx.doi.org/10.1016/j.tplants.2015.07.005] [PMID: 26440431]
[24]
Trefely, S.; Doan, M.T.; Snyder, N.W. Crosstalk between cellular metabolism and histone acetylation. Methods Enzymol., 2019, 626, 1-21.
[http://dx.doi.org/10.1016/bs.mie.2019.07.013] [PMID: 31606071]
[25]
Daskalaki, M.G.; Tsatsanis, C.; Kampranis, S.C. Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses. J. Cell. Physiol., 2018, 233(9), 6495-6507.
[http://dx.doi.org/10.1002/jcp.26497] [PMID: 29574768]
[26]
Iacobazzi, V.; Infantino, V. Citrate--new functions for an old metabolite. Biol. Chem., 2014, 395(4), 387-399.
[http://dx.doi.org/10.1515/hsz-2013-0271] [PMID: 24445237]
[27]
Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; Watts, G.F.; Borén, J.; Fazio, S.; Horton, J.D.; Masana, L.; Nicholls, S.J.; Nordestgaard, B.G.; van de Sluis, B.; Taskinen, M.R.; Tokgözoglu, L.; Landmesser, U.; Laufs, U.; Wiklund, O.; Stock, J.K.; Chapman, M.J.; Catapano, A.L. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J., 2017, 38(32), 2459-2472.
[http://dx.doi.org/10.1093/eurheartj/ehx144] [PMID: 28444290]
[28]
Molusky, M.M.; Hsieh, J.; Lee, S.X.; Ramakrishnan, R.; Tascau, L.; Haeusler, R.A.; Accili, D.; Tall, A.R. Metformin and AMP kinase activation increase expression of the sterol transporters ABCG5/8 (ATP-binding cassette transporter G5/G8) with potential antiatherogenic consequences. Arterioscler. Thromb. Vasc. Biol., 2018, 38(7), 1493-1503.
[http://dx.doi.org/10.1161/ATVBAHA.118.311212] [PMID: 29853564]
[29]
Nikolic, D.; Mikhailidis, D.P.; Davidson, M.H.; Rizzo, M.; Banach, M. ETC-1002: a future option for lipid disorders? Atherosclerosis, 2014, 237(2), 705-710.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.10.099] [PMID: 25463109]
[30]
Burke, A.C.; Telford, D.E.; Huff, M.W. Bempedoic acid: effects on lipoprotein metabolism and atherosclerosis. Curr. Opin. Lipidol., 2019, 30(1), 1-9.
[http://dx.doi.org/10.1097/MOL.0000000000000565] [PMID: 30586346]
[31]
Zagelbaum, N.K.; Yandrapalli, S.; Nabors, C.; Frishman, W.H. Bempedoic Acid (ETC-1002): ATP Citrate Lyase Inhibitor: Review of a First-in-Class Medication with Potential Benefit in Statin-Refractory Cases. Cardiol. Rev., 2019, 27(1), 49-56.
[http://dx.doi.org/10.1097/CRD.0000000000000218] [PMID: 29939848]
[32]
Ryan, D.G.; Murphy, M.P.; Frezza, C.; Prag, H.A.; Chouchani, E.T.; O’Neill, L.A.; Mills, E.L. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat. Metab., 2019, 1, 16-33.
[http://dx.doi.org/10.1038/s42255-018-0014-7] [PMID: 31032474]
[33]
Yu, X.H.; Zhang, D.W.; Zheng, X.L.; Tang, C.K. Itaconate: an emerging determinant of inflammation in activated macrophages. Immunol. Cell Biol., 2019, 97(2), 134-141.
[PMID: 30428148]
[34]
Lampropoulou, V.; Sergushichev, A.; Bambouskova, M.; Nair, S.; Vincent, E.E.; Loginicheva, E.; Cervantes-Barragan, L.; Ma, X.; Huang, S.C.; Griss, T.; Weinheimer, C.J.; Khader, S.; Randolph, G.J.; Pearce, E.J.; Jones, R.G.; Diwan, A.; Diamond, M.S.; Artyomov, M.N. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab., 2016, 24(1), 158-166.
[http://dx.doi.org/10.1016/j.cmet.2016.06.004] [PMID: 27374498]
[35]
Bambouskova, M.; Gorvel, L.; Lampropoulou, V.; Sergushichev, A.; Loginicheva, E.; Johnson, K.; Korenfeld, D.; Mathyer, M.E.; Kim, H.; Huang, L.H.; Duncan, D.; Bregman, H.; Keskin, A.; Santeford, A.; Apte, R.S.; Sehgal, R.; Johnson, B.; Amarasinghe, G.K.; Soares, M.P.; Satoh, T.; Akira, S.; Hai, T.; de Guzman Strong, C.; Auclair, K.; Roddy, T.P.; Biller, S.A.; Jovanovic, M.; Klechevsky, E.; Stewart, K.M.; Randolph, G.J.; Artyomov, M.N. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis. Nature, 2018, 556(7702), 501-504.
[http://dx.doi.org/10.1038/s41586-018-0052-z] [PMID: 29670287]
[36]
Mills, E.L.; Ryan, D.G.; Prag, H.A.; Dikovskaya, D.; Menon, D.; Zaslona, Z.; Jedrychowski, M.P.; Costa, A.S.H.; Higgins, M.; Hams, E.; Szpyt, J.; Runtsch, M.C.; King, M.S.; McGouran, J.F.; Fischer, R.; Kessler, B.M.; McGettrick, A.F.; Hughes, M.M.; Carroll, R.G.; Booty, L.M.; Knatko, E.V.; Meakin, P.J.; Ashford, M.L.J.; Modis, L.K.; Brunori, G.; Sévin, D.C.; Fallon, P.G.; Caldwell, S.T.; Kunji, E.R.S.; Chouchani, E.T.; Frezza, C.; Dinkova-Kostova, A.T.; Hartley, R.C.; Murphy, M.P.; O’Neill, L.A. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature, 2018, 556(7699), 113-117.
[http://dx.doi.org/10.1038/nature25986] [PMID: 29590092]
[37]
Nair, S.; Huynh, J.P.; Lampropoulou, V.; Loginicheva, E.; Esaulova, E.; Gounder, A.P.; Boon, A.C.M.; Schwarzkopf, E.A.; Bradstreet, T.R.; Edelson, B.T.; Artyomov, M.N.; Stallings, C.L.; Diamond, M.S. Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection. J. Exp. Med., 2018, 215(4), 1035-1045.
[http://dx.doi.org/10.1084/jem.20180118] [PMID: 29511063]
[38]
O’Neill, L.A.J.; Artyomov, M.N. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol., 2019, 19(5), 273-281.
[http://dx.doi.org/10.1038/s41577-019-0128-5] [PMID: 30705422]
[39]
Cordes, T.; Wallace, M.; Michelucci, A.; Divakaruni, A.S.; Sapcariu, S.C.; Sousa, C.; Koseki, H.; Cabrales, P.; Murphy, A.N.; Hiller, K.; Metallo, C.M. Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels. J. Biol. Chem., 2016, 291(27), 14274-14284.
[http://dx.doi.org/10.1074/jbc.M115.685792] [PMID: 27189937]
[40]
Németh, B.; Doczi, J.; Csete, D.; Kacso, G.; Ravasz, D.; Adams, D.; Kiss, G.; Nagy, A.M.; Horvath, G.; Tretter, L.; Mócsai, A.; Csépányi-Kömi, R.; Iordanov, I.; Adam-Vizi, V.; Chinopoulos, C. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage. FASEB J., 2016, 30(1), 286-300.
[http://dx.doi.org/10.1096/fj.15-279398] [PMID: 26358042]
[41]
Mills, E.; O’Neill, L.A. Succinate: a metabolic signal in inflammation. Trends Cell Biol., 2014, 24(5), 313-320.
[http://dx.doi.org/10.1016/j.tcb.2013.11.008] [PMID: 24361092]
[42]
He, W.; Miao, F.J.; Lin, D.C.; Schwandner, R.T.; Wang, Z.; Gao, J.; Chen, J.L.; Tian, H.; Ling, L. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature, 2004, 429(6988), 188-193.
[http://dx.doi.org/10.1038/nature02488] [PMID: 15141213]
[43]
Littlewood-Evans, A.; Sarret, S.; Apfel, V.; Loesle, P.; Dawson, J.; Zhang, J.; Muller, A.; Tigani, B.; Kneuer, R.; Patel, S.; Valeaux, S.; Gommermann, N.; Rubic-Schneider, T.; Junt, T.; Carballido, J.M. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J. Exp. Med., 2016, 213(9), 1655-1662.
[http://dx.doi.org/10.1084/jem.20160061] [PMID: 27481132]
[44]
Rubic, T.; Lametschwandtner, G.; Jost, S.; Hinteregger, S.; Kund, J.; Carballido-Perrig, N.; Schwärzler, C.; Junt, T.; Voshol, H.; Meingassner, J.G.; Mao, X.; Werner, G.; Rot, A.; Carballido, J.M. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat. Immunol., 2008, 9(11), 1261-1269.
[http://dx.doi.org/10.1038/ni.1657] [PMID: 18820681]
[45]
Ariza, A.C.; Deen, P.M.; Robben, J.H. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front. Endocrinol. (Lausanne), 2012, 3, 22.
[http://dx.doi.org/10.3389/fendo.2012.00022] [PMID: 22649411]
[46]
Guzy, R.D.; Sharma, B.; Bell, E.; Chandel, N.S.; Schumacker, P.T. Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol. Cell. Biol., 2008, 28(2), 718-731.
[http://dx.doi.org/10.1128/MCB.01338-07] [PMID: 17967865]
[47]
Kietzmann, T.; Görlach, A. Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin. Cell Dev. Biol., 2005, 16(4-5), 474-486.
[http://dx.doi.org/10.1016/j.semcdb.2005.03.010] [PMID: 15905109]
[48]
Mills, E.L.; Kelly, B.; Logan, A.; Costa, A.S.H.; Varma, M.; Bryant, C.E.; Tourlomousis, P.; Däbritz, J.H.M.; Gottlieb, E.; Latorre, I.; Corr, S.C.; McManus, G.; Ryan, D.; Jacobs, H.T.; Szibor, M.; Xavier, R.J.; Braun, T.; Frezza, C.; Murphy, M.P.; O’Neill, L.A. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell, 2016, 167(2), 457-470.e13.
[http://dx.doi.org/10.1016/j.cell.2016.08.064] [PMID: 27667687]
[49]
Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; Eyassu, F.; Shirley, R.; Hu, C.H.; Dare, A.J.; James, A.M.; Rogatti, S.; Hartley, R.C.; Eaton, S.; Costa, A.S.H.; Brookes, P.S.; Davidson, S.M.; Duchen, M.R.; Saeb-Parsy, K.; Shattock, M.J.; Robinson, A.J.; Work, L.M.; Frezza, C.; Krieg, T.; Murphy, M.P. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 2014, 515(7527), 431-435.
[http://dx.doi.org/10.1038/nature13909] [PMID: 25383517]
[50]
Xiao, M.; Yang, H.; Xu, W.; Ma, S.; Lin, H.; Zhu, H.; Liu, L.; Liu, Y.; Yang, C.; Xu, Y.; Zhao, S.; Ye, D.; Xiong, Y.; Guan, K.L. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev., 2012, 26(12), 1326-1338.
[http://dx.doi.org/10.1101/gad.191056.112] [PMID: 22677546]
[51]
Bénit, P.; Letouzé, E.; Rak, M.; Aubry, L.; Burnichon, N.; Favier, J.; Gimenez-Roqueplo, A.P.; Rustin, P. Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling. Biochim. Biophys. Acta, 2014, 1837(8), 1330-1337.
[http://dx.doi.org/10.1016/j.bbabio.2014.03.013] [PMID: 24699309]
[52]
Brigati, C.; Banelli, B.; di Vinci, A.; Casciano, I.; Allemanni, G.; Forlani, A.; Borzì, L.; Romani, M. Inflammation, HIF-1, and the epigenetics that follows. Mediators Inflamm., 2010, 2010, 263914.
[http://dx.doi.org/10.1155/2010/263914] [PMID: 21197398]
[53]
Selak, M.A.; Armour, S.M.; MacKenzie, E.D.; Boulahbel, H.; Watson, D.G.; Mansfield, K.D.; Pan, Y.; Simon, M.C.; Thompson, C.B.; Gottlieb, E. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 2005, 7(1), 77-85.
[http://dx.doi.org/10.1016/j.ccr.2004.11.022] [PMID: 15652751]
[54]
Brière, J.J.; Favier, J.; Bénit, P.; El Ghouzzi, V.; Lorenzato, A.; Rabier, D.; Di Renzo, M.F.; Gimenez-Roqueplo, A.P.; Rustin, P. Mitochondrial succinate is instrumental for HIF1alpha nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum. Mol. Genet., 2005, 14(21), 3263-3269.
[http://dx.doi.org/10.1093/hmg/ddi359] [PMID: 16195397]
[55]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[56]
Feng, S.; Jiao, K.; Guo, H.; Jiang, M.; Hao, J.; Wang, H.; Shen, C. Succinyl-proteome profiling of Dendrobium officinale, an important traditional Chinese orchid herb, revealed involvement of succinylation in the glycolysis pathway. BMC Genomics, 2017, 18(1), 598.
[http://dx.doi.org/10.1186/s12864-017-3978-x] [PMID: 28797234]
[57]
Gibson, G.E.; Xu, H.; Chen, H.L.; Chen, W.; Denton, T.T.; Zhang, S. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines. J. Neurochem., 2015, 134(1), 86-96.
[http://dx.doi.org/10.1111/jnc.13096] [PMID: 25772995]
[58]
Du, J.; Zhou, Y.; Su, X.; Yu, J.J.; Khan, S.; Jiang, H.; Kim, J.; Woo, J.; Kim, J.H.; Choi, B.H.; He, B.; Chen, W.; Zhang, S.; Cerione, R.A.; Auwerx, J.; Hao, Q.; Lin, H. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science, 2011, 334(6057), 806-809.
[http://dx.doi.org/10.1126/science.1207861] [PMID: 22076378]
[59]
Wang, F.; Wang, K.; Xu, W.; Zhao, S.; Ye, D.; Wang, Y.; Xu, Y.; Zhou, L.; Chu, Y.; Zhang, C.; Qin, X.; Yang, P.; Yu, H. SIRT5 Desuccinylates and Activates Pyruvate Kinase M2 to Block Macrophage IL-1β Production and to Prevent DSS-Induced Colitis in Mice. Cell Rep., 2017, 19(11), 2331-2344.
[http://dx.doi.org/10.1016/j.celrep.2017.05.065] [PMID: 28614718]
[60]
Frezza, C. Mitochondrial metabolites: undercover signalling molecules. Interface Focus, 2017, 7(2), 20160100.
[http://dx.doi.org/10.1098/rsfs.2016.0100] [PMID: 28382199]
[61]
Cheng, S.C.; Quintin, J.; Cramer, R.A.; Shepardson, K.M.; Saeed, S.; Kumar, V.; Giamarellos-Bourboulis, E.J.; Martens, J.H.; Rao, N.A.; Aghajanirefah, A.; Manjeri, G.R.; Li, Y.; Ifrim, D.C.; Arts, R.J.; van der Veer, B.M.; Deen, P.M.; Logie, C.; O’Neill, L.A.; Willems, P.; van de Veerdonk, F.L.; van der Meer, J.W.; Ng, A.; Joosten, L.A.; Wijmenga, C.; Stunnenberg, H.G.; Xavier, R.J.; Netea, M.G. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345(6204), 1250684.
[http://dx.doi.org/10.1126/science.1250684] [PMID: 25258083]
[62]
Arts, R.J.; Novakovic, B.; Ter Horst, R.; Carvalho, A.; Bekkering, S.; Lachmandas, E.; Rodrigues, F.; Silvestre, R.; Cheng, S.C.; Wang, S.Y.; Habibi, E.; Gonçalves, L.G.; Mesquita, I.; Cunha, C.; van Laarhoven, A.; van de Veerdonk, F.L.; Williams, D.L.; van der Meer, J.W.; Logie, C.; O’Neill, L.A.; Dinarello, C.A.; Riksen, N.P.; van Crevel, R.; Clish, C.; Notebaart, R.A.; Joosten, L.A.; Stunnenberg, H.G.; Xavier, R.J.; Netea, M.G. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab., 2016, 24(6), 807-819.
[http://dx.doi.org/10.1016/j.cmet.2016.10.008] [PMID: 27866838]
[63]
Mills, E.L.; Kelly, B.; O’Neill, L.A.J. Mitochondria are the powerhouses of immunity. Nat. Immunol., 2017, 18(5), 488-498.
[http://dx.doi.org/10.1038/ni.3704] [PMID: 28418387]
[64]
Riksen, N.P.; Netea, M.G. Immunometabolic control of trained immunity. Mol. Aspects Med., 2021, 77, 100897.
[http://dx.doi.org/10.1016/j.mam.2020.100897] [PMID: 32891423]
[65]
Kobayashi, E.H.; Suzuki, T.; Funayama, R.; Nagashima, T.; Hayashi, M.; Sekine, H.; Tanaka, N.; Moriguchi, T.; Motohashi, H.; Nakayama, K.; Yamamoto, M. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun., 2016, 7, 11624.
[http://dx.doi.org/10.1038/ncomms11624] [PMID: 27211851]
[66]
Ashrafian, H.; Czibik, G.; Bellahcene, M.; Aksentijević, D.; Smith, A.C.; Mitchell, S.J.; Dodd, M.S.; Kirwan, J.; Byrne, J.J.; Ludwig, C.; Isackson, H.; Yavari, A.; Støttrup, N.B.; Contractor, H.; Cahill, T.J.; Sahgal, N.; Ball, D.R.; Birkler, R.I.; Hargreaves, I.; Tennant, D.A.; Land, J.; Lygate, C.A.; Johannsen, M.; Kharbanda, R.K.; Neubauer, S.; Redwood, C.; de Cabo, R.; Ahmet, I.; Talan, M.; Günther, U.L.; Robinson, A.J.; Viant, M. [R.; Pollard, P.J.; Tyler, D.J.; Watkins, H. Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metab., 2012, 15(3), 361-371.
[http://dx.doi.org/10.1016/j.cmet.2012.01.017] [PMID: 22405071]
[67]
Sciacovelli, M.; Gonçalves, E.; Johnson, T.I.; Zecchini, V.R.; da Costa, A.S.; Gaude, E.; Drubbel, A.V.; Theobald, S.J.; Abbo, S.R.; Tran, M.G.; Rajeeve, V.; Cardaci, S.; Foster, S.; Yun, H.; Cutillas, P.; Warren, A.; Gnanapragasam, V.; Gottlieb, E.; Franze, K.; Huntly, B.; Maher, E.R.; Maxwell, P.H.; Saez-Rodriguez, J.; Frezza, C. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature, 2016, 537(7621), 544-547.
[http://dx.doi.org/10.1038/nature19353] [PMID: 27580029]
[68]
Liu, R.; Chen, L.; Wang, Y.; Zhang, G.; Cheng, Y.; Feng, Z.; Bai, X.; Liu, J. High ratio of ω-3/ω-6 polyunsaturated fatty acids targets mTORC1 to prevent high-fat diet-induced metabolic syndrome and mitochondrial dysfunction in mice. J. Nutr. Biochem., 2020, 79, 108330.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108330] [PMID: 32179408]
[69]
Tomas, L.; Edsfeldt, A.; Mollet, I.G.; Perisic Matic, L.; Prehn, C.; Adamski, J.; Paulsson-Berne, G.; Hedin, U.; Nilsson, J.; Bengtsson, E.; Gonçalves, I.; Björkbacka, H. Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques. Eur. Heart J., 2018, 39(24), 2301-2310.
[http://dx.doi.org/10.1093/eurheartj/ehy124] [PMID: 29562241]
[70]
Yamashita, A.; Zhao, Y.; Matsuura, Y.; Yamasaki, K.; Moriguchi-Goto, S.; Sugita, C.; Iwakiri, T.; Okuyama, N.; Koshimoto, C.; Kawai, K.; Tamaki, N.; Zhao, S.; Kuge, Y.; Asada, Y. Increased metabolite levels of glycolysis and pentose phosphate pathway in rabbit atherosclerotic arteries and hypoxic macrophage. PLoS One, 2014, 9(1), e86426.
[http://dx.doi.org/10.1371/journal.pone.0086426] [PMID: 24466087]
[71]
Matsui, R.; Xu, S.; Maitland, K.A.; Mastroianni, R.; Leopold, J.A.; Handy, D.E.; Loscalzo, J.; Cohen, R.A. Glucose-6-phosphate dehydrogenase deficiency decreases vascular superoxide and atherosclerotic lesions in apolipoprotein E(-/-) mice. Arterioscler. Thromb. Vasc. Biol., 2006, 26(4), 910-916.
[http://dx.doi.org/10.1161/01.ATV.0000205850.49390.3b] [PMID: 16439706]
[72]
Baardman, J.; Verberk, S.G.S.; Prange, K.H.M.; van Weeghel, M.; van der Velden, S.; Ryan, D.G.; Wüst, R.C.I.; Neele, A.E.; Speijer, D.; Denis, S.W.; Witte, M.E.; Houtkooper, R.H.; O’neill, L.A.; Knatko, E.V.; Dinkova-Kostova, A.T.; Lutgens, E.; de Winther, M.P.J.; Van den Bossche, J. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Cell Rep., 2018, 25(8), 2044-2052.e5.
[http://dx.doi.org/10.1016/j.celrep.2018.10.092] [PMID: 30463003]
[73]
Patil, N.K.; Bohannon, J.K.; Hernandez, A.; Patil, T.K.; Sherwood, E.R. Regulation of leukocyte function by citric acid cycle intermediates. J. Leukoc. Biol., 2019, 106(1), 105-117.
[http://dx.doi.org/10.1002/JLB.3MIR1118-415R] [PMID: 30791134]
[74]
Valls-Lacalle, L.; Barba, I.; Miró-Casas, E.; Alburquerque-Béjar, J.J.; Ruiz-Meana, M.; Fuertes-Agudo, M.; Rodríguez-Sinovas, A.; García-Dorado, D. Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovasc. Res., 2016, 109(3), 374-384.
[http://dx.doi.org/10.1093/cvr/cvv279] [PMID: 26705364]
[75]
Murphy, M.P.; O’Neill, L.A.J. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell, 2018, 174(4), 780-784.
[http://dx.doi.org/10.1016/j.cell.2018.07.030] [PMID: 30096309]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy