Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Perspective

Current Perspective of COVID-19 on Neurology: A Mechanistic Insight

Author(s): Rajesh Kumar, Seetha Harilal, Sabitha M., Leena K. Pappachan, Roshni P.R. and Bijo Mathew*

Volume 25, Issue 5, 2022

Published on: 05 August, 2021

Page: [763 - 767] Pages: 5

DOI: 10.2174/1386207324666210805121828

conference banner
Abstract

SARS-CoV-2, the novel coronavirus and the causative organism of the Covid-19 pandemic wreaked havoc worldwide producing asymptomatic to symptomatic cases leading to significant morbidity and mortality even after infection. Most of the countries reported a mortality rate of 2-3 % majorly due to cardiorespiratory failures. Recent studies highlighted the neurological involvement playing a key role in cardiorespiratory failures and other symptoms such as headache, anosmia, and ageusia observed in Covid-19 patients. Studies suggest SARS-CoV-2 entry via Olfactory Epithelium (OE), and the expression of type 2 transmembrane serine protease (TMPRSS2) in addition to Angiotensin-Converting Enzyme 2 (ACE2) can facilitate SARS-CoV-2 neurotropism. The virus can either travel via peripheral blood vessel causing endothelial dysfunction, triggering coagulation cascade and multiple organ dysfunction or reach the systemic circulation and take a different route to the Blood-Brain Barrier (BBB), disrupting the BBB causing neuroinflammation or neuronal excitotoxicity resulting in the development of encephalitis, encephalopathy, seizures, and strokes. SARS-CoV-2 invasion on the brain stem is believed to be responsible for the cardiorespiratory failures observed in Covid-19 patients. Apart from viral invasion via hematogenous route, SARS-CoV-2 neural invasion via PNS nerve terminal, results in viral replication and retrograde transportation to soma leading to invasion of the CNS including the brain producing neurological manifestations of the disease either in the initial stages or during the course of the disease and even for a long period post-infection in many cases. The ACE2 receptors are expressed in the brain and glial cells and SARS-CoV-2 acts via neuronal as well as nonneuronal pathways. But the exact cell types involved and how they can trigger inflammatory pathways need further in-depth study for the development of targeted therapy.

Keywords: SARS-CoV-2, Covid-19, neurology, post Covid-19 syndrome, OE, BBB.

Next »
Graphical Abstract

[1]
Palasca, O.; Santos, A.; Stolte, C.; Gorodkin, J.; Jensen, L. J. Tissues 2.0: An integrative web resource on mammalian tissue expression. Database, 2018, 2018
[2]
Hassanzadeh, K.; Perez Pena, H.; Dragotto, J.; Buccarello, L.; Iorio, F.; Pieraccini, S.; Sancini, G.; Feligioni, M. Considerations around the SARS-CoV-2 spike protein with particular attention to COVID-19 Brain infection and neurological symptoms. ACS Chem. Neurosci., 2020, 11(15), 2361-2369.
[http://dx.doi.org/10.1021/acschemneuro.0c00373] [PMID: 32627524]
[3]
Kumar, R.; Harilal, S.; Al-Sehemi, A.G.; Mathew, G.E.; Carradori, S.; Mathew, B. The chronicle of Covid-19 and possible strategies to curb the pandemic. Curr. Med. Chem., 2020.
[PMID: 32614740]
[4]
Kumar, R.; Harilal, S.; Al-Sehemi, A.G.; Pannipara, M.; Behl, T.; Mathew, G.E.; Mathew, B. COVID-19 and domestic animals: exploring the species barrier crossing, zoonotic and reverse zoonotic transmission of SARS-CoV-2. Curr. Pharm. Des., 2021, 27(9), 1194-1201.
[http://dx.doi.org/10.2174/1381612826666201118112203] [PMID: 33213323]
[5]
Al-Sehemi, A.G.; Olotu, F.A.; Dev, S.; Pannipara, M.; Soliman, M.E.; Carradori, S.; Mathew, B. Natural products database screening for the discovery of naturally occurring sars-cov-2 spike glycoprotein blockers. ChemistrySelect, 2020, 5(42), 13309-13317.
[http://dx.doi.org/10.1002/slct.202003349] [PMID: 33363254]
[6]
Adithya, J.; Nair, B.; Aishwarya, T.S.; Nath, L.R. The plausible role of indian traditional medicine in combating corona virus (sars-cov 2): a mini-review. Curr. Pharm. Biotechnol., 2021, 22(7), 906-919.
[http://dx.doi.org/10.2174/1389201021666200807111359] [PMID: 32767920]
[7]
Baby, B.; Devan, A.R.; Nair, B.; Nath, L.R. The impetus of covid -19 in multiple organ affliction apart from res-piratory infection: pathogenesis, diagnostic measures and current treatment strategy. Infect. Disord. Drug Targets, 2020.
[http://dx.doi.org/10.2174/1871526520999200905115050] [PMID: 32888278]
[8]
Netland, J.; Meyerholz, D.K.; Moore, S.; Cassell, M.; Perlman, S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol., 2008, 82(15), 7264-7275.
[http://dx.doi.org/10.1128/JVI.00737-08] [PMID: 18495771]
[9]
Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the covid-19 virus targeting the cns: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci., 2020, 11(7), 995-998.
[http://dx.doi.org/10.1021/acschemneuro.0c00122] [PMID: 32167747]
[10]
Pezzini, A.; Padovani, A. Lifting the mask on neurological manifestations of COVID-19. Nat. Rev. Neurol., 2020, 16(11), 636-644.
[http://dx.doi.org/10.1038/s41582-020-0398-3] [PMID: 32839585]
[11]
Lahiri, D.; Ardila, A. COVID-19 pandemic: a neurological perspective. Cureus, 2020, 12(4)e7889
[PMID: 32489743]
[12]
Mao, L.; Wang, M.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Hu, Y. Neurological manifestations of hospitalized patients with covid-19 in wuhan, china: a retrospective case series study., 2020.
[13]
Bodro, M.; Compta, Y.; Sánchez-Valle, R. Presentations and mechanisms of CNS disorders related to COVID-19. Neurol. neuroimmunol. neuroinflammation, 2021, 8(1)
[14]
Meinhardt, J.; Radke, J.; Dittmayer, C.; Franz, J.; Thomas, C.; Mothes, R.; Laue, M.; Schneider, J.; Brünink, S.; Greuel, S. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci., 2020, 1-8.
[PMID: 33257876]
[15]
Butowt, R.; Bilinska, K. SARS-CoV-2: olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem. Neurosci., 2020, 11(9), 1200-1203.
[http://dx.doi.org/10.1021/acschemneuro.0c00172] [PMID: 32283006]
[16]
Wijeratne, T.; Crewther, S. Post-COVID 19 neurological syndrome (PCNS); a novel syndrome with challenges for the global neurology community. J. Neurol. Sci., 2020, 419117179
[http://dx.doi.org/10.1016/j.jns.2020.117179] [PMID: 33070003]
[17]
Aghagoli, G.; Marin, B.G.; Katchur, N.J.; Chaves-Sell, F.; Asaad, W.F.; Murphy, S.A. Neurological involvement in Covid-19 and potential mechanisms: a review. Neurocrit. Care, 2020, 1-10.
[PMID: 32661794]
[18]
Steardo, L.; Steardo, L., Jr; Zorec, R.; Verkhratsky, A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol. (Oxf.), 2020, 229(3)e13473
[http://dx.doi.org/10.1111/apha.13473] [PMID: 32223077]
[19]
Glowacka, I.; Bertram, S.; Herzog, P.; Pfefferle, S.; Steffen, I.; Muench, M.O.; Simmons, G.; Hofmann, H.; Kuri, T.; Weber, F.; Eichler, J.; Drosten, C.; Pöhlmann, S. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J. Virol., 2010, 84(2), 1198-1205.
[http://dx.doi.org/10.1128/JVI.01248-09] [PMID: 19864379]
[20]
What we know so far about how covid affects the nervous system -scientific American. Available from: https://www.scientificamerican.com/article/what-we-know-so-far-about-how-covid-affects-the-nervous-system/ [Accessed 2020 -12 -11].
[21]
Shiers, S.; Ray, P.R.; Wangzhou, A.; Sankaranarayanan, I.; Tatsui, C.E.; Rhines, L.D.; Li, Y.; Uhelski, M.L.; Dougherty, P.M.; Price, T.J. ACE2 and SCARF expression in human dorsal root ganglion nociceptors: implications for SARS-CoV-2 virus neurological effects. Pain, 2020, 161(11), 2494-2501.
[http://dx.doi.org/10.1097/j.pain.0000000000002051] [PMID: 32826754]
[22]
Li, Y.; Fu, L.; Gonzales, D.M.; Lavi, E. Coronavirus neurovirulence correlates with the ability of the virus to induce proinflammatory cytokine signals from astrocytes and microglia. J. Virol., 2004, 78(7), 3398-3406.
[http://dx.doi.org/10.1128/JVI.78.7.3398-3406.2004] [PMID: 15016862]
[23]
Bohmwald, K.; Gálvez, N.M.S.; Ríos, M.; Kalergis, A.M. Neurologic alterations due to respiratory virus infections. Front. Cell. Neurosci., 2018, 12, 386.
[http://dx.doi.org/10.3389/fncel.2018.00386] [PMID: 30416428]
[24]
Hess, D.C.; Eldahshan, W.; Rutkowski, E. COVID-19-related stroke. Transl. Stroke Res., 2020, 11(3), 322-325.
[http://dx.doi.org/10.1007/s12975-020-00818-9] [PMID: 32378030]

© 2024 Bentham Science Publishers | Privacy Policy