Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Chemical Composition, Biological Activities and Toxicity Study of Carduncellus pinnatus Essential Oil from West Algeria

Author(s): Mohammed Semaoui, Mohammed El Amine Dib*, Nassim Djabou, Jean Costa and Alain Muselli

Volume 18, Issue 3, 2022

Published on: 02 August, 2021

Article ID: e020821195186 Pages: 7

DOI: 10.2174/1573407217666210802113423

Price: $65

Abstract

Background: Many species have already been examined regarding their biological activities, but there are nevertheless many more which merit examination, among them Carduncellus pinnatus (Desf), which is one of the less abundant and the less frequent aromatic plants of Asteraceae species, it is one of the species widely distributed in the Mediterranean region. In the present investigation, chemical composition of essential oils of Carduncellus pinnatus and their antioxidant, antimicrobial and antifungal activities were investigated for the first time.

Methods: The chemical composition of the essential oils of Carduncellus pinnatus was analyzed by gas chromatography (GC) and gas chromatography, mass spectroscopy (GC/MS) during its vegetative cycle. The antioxidant properties were evaluated by DPPH-radical scavenging and FRAP methods. The essential oil was tested on two-gram positive bacteria, three-gram negative bacteria, two filamentous fungi and one yeast. The toxicity of this essential oil was evaluated from several experiments on five mice tested in the laboratory.

Results: The chemical composition of essential oils studied by GC and GC-MS showed a total of twenty-seven compounds constituted mainly by Aplotaxene. Harvest time affected quantitatively but not qualitatively the chemical composition of essential oils. The results showed that Carduncellus pinnatus presented interesting antioxidant properties. In order to assess the biological activities of Carduncellus pinnatus, all essential oil samples were combined together to produce a collective essential oil (Coll EO). The Coll EO showed activity on all tested bacterial strains based on the inhibition diameters obtained. The most interesting antimicrobial activity has been observed against Salmonella typhi, Escherichia coli and Staphylococcus aureus with IC50s 0.4, 1.2 and 1.2 g/L, but which remains weak compared to the Gentamicin control, respectively). Regarding antifungal activity, the largest inhibition was observed against Fusarium solani (IC50= 0.8 g/L). On the other hand, the toxicity test of Coll EO showed no mortality rate to the concentration of 1g/kg injected into the mice

Conclusion: The results presented here constitute new findings in the field of the chemical characterization and biological potential of Carduncellus pinnatus.

Keywords: Carduncellus pinnatus, toxicity test, essential oils, biological activities, vegetative cycle, chemical composition.

Graphical Abstract

[1]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[2]
Kahl, R. Synthetic antioxidants: Biochemical actions and interference with radiation, toxic compounds, chemical mutagens and chemical carcinogens. Toxicology, 1984, 33(3-4), 185-228.
[http://dx.doi.org/10.1016/0300-483X(84)90038-6] [PMID: 6393452]
[3]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[4]
Introduction à la toxicologie nutritionnelle CHAVÉRON Henri, Librairie Lavoisier. 2020. Available from: https://www.lavoisier.fr/livre/sciences-de-la-vie/introduction-a-la- toxicologie-nutritionnelle/chaveron/descriptif-9782743003388 [Accessed Dec 10 2020].
[5]
Kaddour, F.; Aissaoui, N.; Dib, M.A.; Bensaid, O.; Muselli, A. Chemical composition and antimicrobial activity of essential oil and hydrosol extract from roots of plumbago europaea and in-vitro combinatory antimicrobial effect of hydrosol extract with gentamicin and amphotericin B. Nat. Prod. J., 2020.
[http://dx.doi.org/10.2174/2210315510666200110154053]
[6]
Quezel, P.; Santa, S.; Schotter, O. Nouvelle flore de l’Algérie et des régions desertiquesmeridionales-v.1-2. Editions du Centre National de la recherche scientifique, , 1962.
[7]
Cheriti, A.; Rouissat, A.; Sekkoum, K.; Balansard, G. Plantes de la pharmacopée traditionelle dans la région d’El-Bayadh (Algérie). Fitoterapia, 1995, 66(6), 525-538.
[8]
Adams, R.P. Identification of essential oil components by gas chromatography, quadrupole mass spectroscopy. Allured Pub Corp; , 2001, p. 804.
[9]
van Den Dool, H.; Dec. Kratz, P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A, 1963, 11, 463-471.
[http://dx.doi.org/10.1016/S0021-9673(01)80947-X]
[10]
König, W.A.; Hochmuth, D.H.; Joulain, D. Terpenoids and related constituents of essential oils, library of massfinder 2.1.University of Hamburg, Institute of Organic Chemistry: Hamburg, 2001.
[11]
Ouattara, Z.A.; Boti, J.B.; Ahibo, A.C.; Sutour, S.; Casanova, J.; Tomi, F.; Bighelli, A. The key role of 13C NMR analysis in the identification of individual components of Polyalthia longifolia leaf oil. Flavour Fragrance J., 2014, 29(6), 371-379.
[http://dx.doi.org/10.1002/ffj.3215]
[12]
Mami, I.R.; Merad-Boussalah, N.; El Amine Dib, M.; Tabti, B.; Costa, J.; Muselli, A. Chemical variability and antioxidant activities of the essential oils of the aerial parts of Ammoides verticillata and the roots of Carthamus caeruleus and their synergistic effect in combination. Comb. Chem. High Throughput Screen., 2021, 24(1), 71-78.
[http://dx.doi.org/10.2174/1386207323666200606213057] [PMID: 32504498]
[13]
Belabbes, R.; Dib, M.E.A.; Djabou, N.; Ilias, F.; Tabti, B.; Costa, J.; Muselli, A. Chemical variability, antioxidant and antifungal activities of essential oils and hydrosol extract of Calendula arvensis L. from western Algeria. Chem. Biodivers., 2017, 14(5), e1600482.
[http://dx.doi.org/10.1002/cbdv.201600482] [PMID: 28109063]
[14]
Aidi Wannes, W.; Mhamdi, B.; Sriti, J.; Ben Jemia, M.; Ouchikh, O.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem. Toxicol., 2010, 48(5), 1362-1370.
[http://dx.doi.org/10.1016/j.fct.2010.03.002] [PMID: 20211674]
[15]
Khadir, A.; Bendahou, M.; Benbelaid, F.; Abdoune, M.A.; Abdelouahid, D.E. Pouvoir antimicrobien de Thymus lanceolatus Desf., récolté en Algérie. Phytotherapie, 2013, 11(6), 353-358.
[http://dx.doi.org/10.1007/s10298-013-0820-8]
[16]
M100Ed30, performance standards for antimicrobial susceptibility testing.Clinical & Laboratory Standards Institute, 2020. Available from: https://clsi.org/standards/products/microbiology/documents/m100/ [Accessed Dec 10 2020].
[17]
Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : Approved standard, M27–A2. 2012.
[18]
Hilan, C.; Bouaoun, D.; Aoun, J.; Sfeir, R.; Garabeth, F. Antimicrobial properties and toxicity by determination of the DL50 of the essential oil of Prangos asperula Boissier. Phytotherapie, 2009, 7(1), 8-14.
[http://dx.doi.org/10.1007/s10298-008-0357-4]
[19]
Meratate, F.; Lalaoui, A.; Rebbas, K.; Belhadad, O.K.; Hammadou, N.I.; Meratate, H.; Demirtas, I.; Akkal, S.; Laouer, H. Chemical composition of the essential oil of carduncellus helenioides (desf.) hanelt from algeria. Orient. J. Chem., 2016, 32(3), 1305-1312.
[http://dx.doi.org/10.13005/ojc/320304]
[20]
Takano, S.; Kawaminami, S. Eight aliphatic aldehydes from Cirsium dipsacolepis and their stereoselective synthesis. Phytochemistry, 1987, 26(2), 435-438.
[http://dx.doi.org/10.1016/S0031-9422(00)81427-2]
[21]
Miyazawa, M.; Yamafuji, C.; Tabata, J.; Ishikawa, Y. Oviposition-stimulatory activity against Ostrinia zealis by essential oil of root part from Cirsium japonicum DC. Nat. Prod. Res., 2003, 17(5), 341-345.
[http://dx.doi.org/10.1080/1057563031000072596] [PMID: 14526913]
[22]
Naves, Y.R. Studies on volatile vegetable matter; presence of a mixture of ionones and dihydro-ionones (iso-irone from Haarmann and Reimer) in the essential oil of costus root. Helv. Chim. Acta, 1949, 32(3), 1064-1069.
[http://dx.doi.org/10.1002/hlca.19490320361] [PMID: 18129590]
[23]
Bokadia, M.M.; Macleod, A.J.; Mehta, S.C.; Mehta, B.K.; Patel, H. The essential oil of Inula racemosa. Phytochemistry, 1986, 25(12), 2887-2888.
[http://dx.doi.org/10.1016/S0031-9422(00)83760-7]
[24]
Havlik, J.; Budesinsky, M.; Kloucek, P.; Kokoska, L.; Valterova, I.; Vasickova, S.; Zeleny, V. Norsesquiterpene hydrocarbon, chemical composition and antimicrobial activity of Rhaponticum carthamoides root essential oil. Phytochemistry, 2009, 70(3), 414-418.
[http://dx.doi.org/10.1016/j.phytochem.2008.12.018] [PMID: 19195668]
[25]
Silva, F.M.L.; Donega, M.A.; Cerdeira, A.L.; Corniani, N.; Velini, E.D.; Cantrell, C.L.; Dayan, F.E.; Coelho, M.N.; Shea, K.; Duke, S.O. Roots of the invasive species Carduus nutans L. and C. acanthoides L. produce large amounts of aplotaxene, a possible allelochemical. J. Chem. Ecol., 2014, 40(3), 276-284.
[http://dx.doi.org/10.1007/s10886-014-0390-8] [PMID: 24557607]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy