Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Mini-Review Article

COVID-19 Vaccines: Fabrication Techniques and Current Status

Author(s): Ayushi Mahajan, Lakhvir Kaur*, Gurjeet Singh, Ravi Kumar Dhawan, Lovepreet Singh and Anureet Kaur

Volume 3, Issue 1, 2022

Published on: 28 July, 2021

Article ID: e221221195086 Pages: 7

DOI: 10.2174/2666796702666210728150704

Price: $65

Abstract

The year 2020 was the most challenging period due to the havoc caused by the outbreak of novel coronavirus SARS-CoV-2. Scientists and researchers all around the world have endeavored every possible approach to find solutions in context to therapeutics and vaccines to control the spread of this life-threatening virus. The acceleration instigated by the outbreak of SARS-CoV-2 and its mutated strains has leveraged the use of numerous platform technologies for the development of vaccines against this unfathomable disease. Vaccines could play an important role in mitigating the effects of COVID-19 and reducing the ongoing health crisis. Various innovative platforms like proteins, nucleic acids, viruses, and viral vectors have been exploited to fabricate vaccines depicting almost 90% of efficacy like BNT162b2, AZD1222, Ad5-nCoV, etc. Some of these vaccines are multipotent and have shown potent activity against newly emerged malicious strains of SARS-CoV-2 like B.1.351 and B.1.1.7. In this review article, we have gathered key findings from various sources of recently popularized vaccine candidates, which will provide an overview of potential vaccine candidates against this virus and will help the researchers to investigate possible ways to annihilate this menace and design new moieties.

Keywords: COVID-19, SARS-CoV-2, vaccines, clinical trials, m-RNA vaccine, adenovirus, immune response.

Graphical Abstract

[1]
Bogoch II, Watts A, Thomas-Bachli A, Huber C, Kraemer MUG, Khan K. Pneumonia of unknown aetiology in wuhan, china: potential for international spread via commercial air travel. J Travel Med 2020; 27(2): taaa008.
[http://dx.doi.org/10.1093/jtm/taaa008] [PMID: 31943059]
[2]
Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol 2020; 92(4): 401-2.
[http://dx.doi.org/10.1002/jmv.25678] [PMID: 31950516]
[3]
Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med 2020; 27(2): taaa021.
[PMID: 32052846]
[4]
Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens 2020; 9(3): 231.
[http://dx.doi.org/10.3390/pathogens9030231] [PMID: 32245083]
[5]
Singh J, Ehtesham NZ, Rahman SA, Hasnain SE. Structure-function investigation of a new VUI-202012/01 SARS-CoV-2 variant. bioRxiv 2021. [E-Pub Ahead of Print]
[http://dx.doi.org/10.1101/2021.01.01.425028]
[6]
Dubert M, Visseaux B, Isernia V, et al. Case report study of the first five COVID-19 patients treated with remdesivir in France. Int J Infect Dis 2020; 98: 290-3.
[http://dx.doi.org/10.1016/j.ijid.2020.06.093] [PMID: 32619764]
[7]
Cai Q, Yang M, Liu D, et al. Experimental treatment with Favipiravir for COVID-19: an open-label control study. Engineering (Beijing) 2020; 6(10): 1192-8.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[8]
Kaur SP, Gupta V. COVID-19 Vaccine: A comprehensive status report. Virus Res 2020; 288: 198114.
[http://dx.doi.org/10.1016/j.virusres.2020.198114] [PMID: 32800805]
[9]
He Y, Zhou Y, Liu S, et al. Receptor-binding domain of SARS- CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun 2004; 324(2): 773-81.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.106] [PMID: 15474494]
[10]
Mulligan MJ, Lyke KE, Kitchin N, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020; 586(7830): 589-93.
[http://dx.doi.org/10.1038/s41586-020-2639-4] [PMID: 32785213]
[11]
Vogel AB, Kanevsky I, Che Y, et al. A prefusion SARS-CoV-2 spike RNA vaccine is highly immunogenic and prevents lung infection in non-human primates. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.09.08.280818]
[12]
Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020; 383(27): 2603-15.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[13]
COVID-19 Response Team; Food and Drug Administration. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine - United States, December 14-23, 2020. MMWR Morb Mortal Wkly Rep 2021; 70(2): 46-51.
[http://dx.doi.org/10.15585/mmwr.mm7002e1] [PMID: 33444297]
[14]
Padda IS, Parmar M. M. COVID (SARS-COV-2) Vaccine. In: stat pearls. 2021. https://www.ncbi.nlm.nih.gov/books/NBK567793/
[15]
Keyue X. Deaths after Pfizer vaccination at Spanish nursing home aggravate concerns. Global times 2021. https://www.globaltimes.cn/page/202102/1214761.shtml
[16]
FDA briefing document Moderna COVID-19 vaccine. Food and drug administration 2020. https://www.fda.gov/media/144434/download
[17]
Hassett KJ, Benenato KE, Jacquinet E, et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol Ther Nucleic Acids 2019; 15: 1-11.
[http://dx.doi.org/10.1016/j.omtn.2019.01.013] [PMID: 30785039]
[18]
Moderna announces positive interim phase 1 data for its mRNA vaccine (mRNA-1273) against novel coronavirus. Moderna 2020. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-positive-interim-phase-1-data-its-mrna-vaccine
[19]
Corbett KS, Flynn B, Foulds KE, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in non human primates. N Engl J Med 2020; 383(16): 1544-55.
[http://dx.doi.org/10.1056/NEJMoa2024671] [PMID: 32722908]
[20]
Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. Eur Rev Med Pharmacol Sci 2021; 25(3): 1663-9.
[PMID: 33629336]
[21]
Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384(5): 403-16.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[22]
Corum J, Zimmer C. How the oxford-astrazeneca vaccine works. The New York Times 2021. https://www.nytimes.com/interactive/2020/health/oxford-astrazeneca-covid-19-vaccine.html
[23]
Graham SP, McLean RK, Spencer AJ, et al. Evaluation of immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19. npj. Vaccines (Basel) 2020. [E-Pub Ahead of Print]
[http://dx.doi.org/10.1038/s41541-020-00221-3]
[24]
Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020; 396(10249): 467-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31604-4] [PMID: 32702298]
[25]
Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021; 397(10269): 99-111.
[http://dx.doi.org/10.1016/S0140-6736(20)32661-1] [PMID: 33306989]
[26]
van Doremalen N, Lambe T, Spencer A, et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 2020; 586(7830): 578-82.
[http://dx.doi.org/10.1038/s41586-020-2608-y] [PMID: 32731258]
[27]
Phillips N, Cyranoski D, Mallapaty S. A leading coronavirus vaccine trial is on hold: scientists react. Nature 2020. [E-Pub Ahead of Print]
[http://dx.doi.org/10.1038/d41586-020-02594-w] [PMID: 32908295]
[28]
Rai NK, Ashok A, Akond BR. Journey from Coronavirus pandemic to vaccines. Asian J Pharm Res Health Care 2021; 13(1): 1-3.
[http://dx.doi.org/10.18311/ajprhc/2021/27078]
[29]
Corum J, Zimmer C. How the Johnson & Johnson vaccine works. The New York Times 2021. https://www.nytimes.com/interactive/2020/health/johnson-johnson-covid-19-vaccine.html
[30]
Roozendaal R, Solforosi L, Stieh D, et al. SARS-CoV-2 binding and neutralizing antibody levels after vaccination with Ad26.COV2.S predict durable protection in rhesus macaques. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.01.30.428921]
[31]
He X, Chandrashekar A, Zahn R, et al. Low-dose Ad26.COV2.S protection against SARS-CoV-2 challenge in rhesus macaques. bioRxiv 2021; 2021.01.27.428380.
[http://dx.doi.org/10.1101/2021.01.27.428380] [PMID: 33532782]
[32]
Johnson & Johnson (Janssen Pharmaceutical Cos.)- Janssen COVID-19 vaccine candidate. 2020. https://www.genengnews.com/covid-19-candidates/janssen-pharmaceutical-cos-jj-and-barda/
[33]
Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 2020; 395(10240): 1845-54.
[http://dx.doi.org/10.1016/S0140-6736(20)31208-3] [PMID: 32450106]
[34]
Prüβ BM. Current state of the first COVID-19 vaccines. Vaccines (Basel) 2021; 9(1): 30.
[http://dx.doi.org/10.3390/vaccines9010030] [PMID: 33429880]
[36]
Magnusson SE, Altenburg AF, Bengtsson KL, et al. Matrix-M™ adjuvant enhances immunogenicity of both protein- and modified vaccinia virus Ankara-based influenza vaccines in mice. Immunol Res 2018; 66(2): 224-33.
[http://dx.doi.org/10.1007/s12026-018-8991-x] [PMID: 29594879]
[37]
Corum J, Zimmer C. How the novavax vaccine works. The new york times 2021. https://www.nytimes.com/interactive/2020/health/novavax-covid-19-vaccine.html
[38]
Tian JH, Patel N, Haupt R, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun 2021; 12(1): 372.
[http://dx.doi.org/10.1038/s41467-020-20653-8] [PMID: 33446655]
[39]
Keech C, Albert G, Cho I, et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med 2020; 383(24): 2320-32.
[http://dx.doi.org/10.1056/NEJMoa2026920] [PMID: 32877576]
[40]
Shinde V, Bhikha S, Hoosain S, et al. Preliminary efficacy of the NVX-CoV2373 Covid-19 vaccine against the B1351 variant. MedRxiv 2021. [E-Pub Ahead of Print]
[41]
Shen X, Tang H, McDanal C, et al. SARS-CoV-2 variant B.1.1.7. is susceptible to neutralizing antibodies elicited by ancestral Spike vaccines. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.01.27.428516] [PMID: 33532764]
[42]
Smith TRF, Patel A, Ramos S, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 2020; 11(1): 2601.
[http://dx.doi.org/10.1038/s41467-020-16505-0] [PMID: 32433465]
[43]
Tebas P, Yang S, Boyer JD, et al. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine 2021; 31: 100689.
[http://dx.doi.org/10.1016/j.eclinm.2020.100689] [PMID: 33392485]
[44]
Rawat K, Kumari P, Saha L. COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies. Eur J Pharmacol 2021; 892: 173751.
[http://dx.doi.org/10.1016/j.ejphar.2020.173751] [PMID: 33245898]
[45]
Ganneru B, Jogdand H, Dharam VK, et al. Evaluation of safety and immunogenicity of an adjuvanted th-1 skewed, whole virion inactivated sars-cov-2 vaccine- BBV152. BioRxiv 2020.
[46]
Ella R, Vadrevu KM, Jogdand H, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. Lancet Infect Dis 2021; 21(5): 637-46.
[http://dx.doi.org/10.1016/S1473-3099(20)30942-7] [PMID: 33485468]
[47]
Yadav PD, Ella R, Kumar S, et al. Immunogenicity and protective efficacy of inactivated SARS-CoV-2 vaccine candidate, BBV152 in rhesus macaques. Nat Commun 2021; 12(1): 1386.
[http://dx.doi.org/10.1038/s41467-021-21639-w] [PMID: 33654090]
[48]
Koul R. Bharat biotech’s covaxin phase 3 results show interim clinical efficacy of 81%. BioVoice 2021. https://www.biovoicenews.com/bharat-biotechs-covaxin-phase-3-results-show-interim- clinical-efficacy-of-81/
[49]
Dobrovidova O. Russia’s Sputnik vaccine stunt could cast a long shadow. Science the wire 2020. https://science.thewire.in/health/russia-sputnik-covid-19-vaccine/
[50]
Jones I, Roy P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet 2021; 397(10275): 642-3.
[http://dx.doi.org/10.1016/S0140-6736(21)00191-4] [PMID: 33545098]
[51]
Terry M. Updated comparing covid-19 vaccines: Timelines, types and prices. Biospace 2021. https://www.biospace.com/article/comparing-covid-19-vaccines-pfizer-biontech-moderna-astrazeneca-oxford-j-and-j-russia-s-sputnik-v/
[52]
Branswell H. Comparing the covid-19 vaccines developed by pfizer, moderna, and johnson & Johnson. STAT 2021. https://www.statnews.com/2021/02/02/comparing-the-covid-19-vaccines-developed-by-pfizer-moderna-and-johnson-johnson/
[53]
Novavax COVID-19 vaccine. Precision vaccines 2021. https://www.precisionvaccinations.com/vaccines/novavax-covid-19- vaccine
[54]
Balakrishnan VS. The arrival of Sputnik V. Lancet Infect Dis 2020; 20(10): 1128.
[http://dx.doi.org/10.1016/S1473-3099(20)30709-X] [PMID: 32979327]
[55]
World Health Organization (WHO). COVAX https://www.who.int/initiatives/act-accelerator/covax
[56]
Berkley S. COVAX explained. Gavi the vaccine alliance https://www.gavi.org/vaccineswork/covax-explained

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy