Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

General Review Article

Interplay between Heat Shock Proteins, Inflammation and Pain: A Promising Therapeutic Approach

Author(s): Ahmad Reza aminian and Fatemeh Forouzanfar*

Volume 15, Issue 1, 2022

Published on: 19 July, 2021

Article ID: e190721194904 Pages: 9

DOI: 10.2174/1874467214666210719143150

Price: $65

Abstract

Heat Shock Proteins (HSPs) are important molecular chaperones that facilitate many functions of the cells. They also play a pivotal role in cell survival, especially in the presence of stressors, including nutritional deprivation, lack of oxygen, fever, alcohol, inflammation, oxidative stress, heavy metals, as well as conditions that cause injury and necrosis. In the face of a painful stimulus encounter, many factors could be associated with pain that may include nitric oxide, excitatory amino acids, reactive oxygen species (ROS) formation, prostaglandins, and inflammatory cytokines. One influential factor affecting pain reduction is the expression of HSPs that act as a ROS scavenger, regulate the inflammatory cytokines, and reduce pain responses subsequently. Hence, we assembled information on the painkilling attributes of HSPs. In this field of research, new painkillers could be developed by targetting HSPs to alleviate pain and widen our grasp of pain in pathological conditions and neurological diseases.

Keywords: Heat shock proteins, stressor, pain, inflammation, cytokine, therapeutic approach

Graphical Abstract

[1]
De Maio, A. Heat shock proteins: Facts, thoughts, and dreams. Shock, 1999, 11(1), 1-12.
[http://dx.doi.org/10.1097/00024382-199901000-00001] [PMID: 9921710]
[2]
Becker, J.; Craig, E.A. Heat-shock proteins as molecular chaperones. Eur. J. Biochem., 1994, 219(1-2), 11-23.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb19910.x] [PMID: 8306977]
[3]
Welch, N. Heat shock proteins functioning as molecular chaperones: their roles in normal and stressed cells. Philos. Trans. R Soc. Lond. B. Biol. Sci., 1993, 339(1289), 327-333.
[http://dx.doi.org/10.1098/rstb.1993.0031] [PMID: 8098537]
[4]
Iwama, G.K.; Vijayan, M.M.; Forsyth, R.B.; Ackerman, P.A. Heat shock proteins and physiological stress in fish. Am. Zool., 1999, 39(6), 901-909.
[http://dx.doi.org/10.1093/icb/39.6.901]
[5]
Forouzanfar, F.; Barreto, G.; Majeed, M.; Sahebkar, A. Modulatory effects of curcumin on heat shock proteins in cancer: A promising therapeutic approach. Biofactors, 2019, 45(5), 631-640.
[http://dx.doi.org/10.1002/biof.1522] [PMID: 31136038]
[6]
de Pomerai, D. Heat-shock proteins as biomarkers of pollution. Hum. Exp. Toxicol., 1996, 15(4), 279-285.
[http://dx.doi.org/10.1177/096032719601500401] [PMID: 8845215]
[7]
Mariéthoz, E.; Jacquier-Sarlin, M.R.; Multhoff, G.; Healy, A.M.; Tacchini-Cottier, F.; Polla, B.S. Heat shock and proinflammatory stressors induce differential localization of heat shock proteins in human monocytes. Inflammation, 1997, 21(6), 629-642.
[http://dx.doi.org/10.1023/A:1027338323296] [PMID: 9429910]
[8]
Yun, C.W.; Kim, H.J.; Lim, J.H.; Lee, S.H. Heat shock proteins: Agents of cancer development and therapeutic targets in anti- cancer therapy. Cells, 2019, 9(1), 60.
[http://dx.doi.org/10.3390/cells9010060] [PMID: 31878360]
[9]
Hasdemir, B.; Shakran, D.; Paruthiyil, S.; Bhargava, A. Heat Shock Proteins (HSP) in stress-related inflammatory diseases. In: Heat Shock Proteins in Signaling Pathways; Asea, A.; Kaur, P., Eds.; Springer: Cham, 2019; 17, pp. 23-40.
[http://dx.doi.org/10.1007/978-3-030-03952-3_2]
[10]
Osman, A.G.; Wuertz, S.; Mohammed-Geba, K. Lead-induced heat shock protein (HSP70) and metallothionein (MT) gene expression in the embryos of African catfish Clarias gariepinus (Burchell, 1822). Sci. Am., 2019, 3, e00056.
[11]
Burdon, R.H. Heat shock and the heat shock proteins. Biochem. J., 1986, 240(2), 313-324.
[http://dx.doi.org/10.1042/bj2400313] [PMID: 3545184]
[12]
Jäättelä, M. Heat shock proteins as cellular lifeguards. Ann. Med., 1999, 31(4), 261-271.
[http://dx.doi.org/10.3109/07853899908995889] [PMID: 10480757]
[13]
Pockley, A.G. Heat shock proteins as regulators of the immune response. Lancet, 2003, 362(9382), 469-476.
[http://dx.doi.org/10.1016/S0140-6736(03)14075-5] [PMID: 12927437]
[14]
Srivastava, P. Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol., 2002, 2(3), 185-194.
[http://dx.doi.org/10.1038/nri749] [PMID: 11913069]
[15]
Farcy, E.; Voiseux, C.; Lebel, J-M.; Fiévet, B. Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress. Cell Stress Chaperones, 2009, 14(4), 371-380.
[http://dx.doi.org/10.1007/s12192-008-0091-8] [PMID: 19002605]
[16]
Pockley, A.G.; Multhoff, G. Cell stress proteins in extracellular fluids: Friend or foe? Novartis Found Symp., 2008, 291, 86-95. discussion 96-100, 137-40.
[http://dx.doi.org/10.1002/9780470754030.ch7] [PMID: 18575268]
[17]
Ehrenfried, J.A.; Chen, J.; Li, J.; Evers, B.M. Glutamine-mediated regulation of heat shock protein expression in intestinal cells. Surgery, 1995, 118(2), 352-356.
[http://dx.doi.org/10.1016/S0039-6060(05)80344-7] [PMID: 7638752]
[18]
Wagstaff, M.; Shah, M.; McGrouther, D.; Latchman, D. The heat shock proteins and plastic surgery. J. Plast. Reconstr. Aesthet. Surg., 2007, 60(9), 974-982.
[http://dx.doi.org/10.1016/j.bjps.2006.03.065] [PMID: 17662462]
[19]
Cruzat, V.F.; Pantaleão, L.C.; Donato, J., Jr; de Bittencourt, P.I.H., Jr; Tirapegui, J. Oral supplementations with free and dipeptide forms of L-glutamine in endotoxemic mice: Effects on muscle glutamine-glutathione axis and heat shock proteins. J. Nutr. Biochem., 2014, 25(3), 345-352.
[http://dx.doi.org/10.1016/j.jnutbio.2013.11.009] [PMID: 24524905]
[20]
Coëffier, M.; Déchelotte, P. The role of glutamine in intensive care unit patients: Mechanisms of action and clinical outcome. Nutr. Rev., 2005, 63(2), 65-69.
[http://dx.doi.org/10.1111/j.1753-4887.2005.tb00123.x] [PMID: 15762090]
[21]
Hightower, L.E. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell, 1991, 66(2), 191-197.
[http://dx.doi.org/10.1016/0092-8674(91)90611-2] [PMID: 1855252]
[22]
Khan, A.U.; Khan, A.; Khan, A.; Shal, B.; Aziz, A.; Ahmed, M.N.; Islam, S.U.; Ali, H.; Shehzad, A.; Khan, S. Inhibition of NF-κB signaling and HSP70/HSP90 proteins by newly synthesized hydrazide derivatives in arthritis model. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(7), 1497-1519.
[http://dx.doi.org/10.1007/s00210-021-02075-5] [PMID: 33713158]
[23]
Horwich, A.L. Molecular chaperones in cellular protein folding: The birth of a field. Cell, 2014, 157(2), 285-288.
[http://dx.doi.org/10.1016/j.cell.2014.03.029] [PMID: 24725397]
[24]
Molecular chaperones.Science; Ellis, R.J.; Laskey, R.A.; Lorimer, G.H. Eds.; Springer Science & Business Media, 2012, p. 121.
[25]
Ellis, R.J. Assembly chaperones: A perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2013, 368(1617), 20110398.
[http://dx.doi.org/10.1098/rstb.2011.0398] [PMID: 23530255]
[26]
Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci., 2004, 9(5), 244-252.
[http://dx.doi.org/10.1016/j.tplants.2004.03.006] [PMID: 15130550]
[27]
Ritossa, F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 1962, 18(12), 571-573.
[http://dx.doi.org/10.1007/BF02172188]
[28]
Alamillo, J.; Almoguera, C.; Bartels, D.; Jordano, J. Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum. Plant Mol. Biol., 1995, 29(5), 1093-1099.
[http://dx.doi.org/10.1007/BF00014981] [PMID: 8555452]
[29]
Lv, L-H.; Wan, Y-L.; Lin, Y.; Zhang, W.; Yang, M.; Li, G-L.; Lin, H.M.; Shang, C.Z.; Chen, Y.J.; Min, J. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J. Biol. Chem., 2012, 287(19), 15874-15885.
[http://dx.doi.org/10.1074/jbc.M112.340588] [PMID: 22396543]
[30]
Frank, G.; Pressman, E.; Ophir, R.; Althan, L.; Shaked, R.; Freedman, M.; Shen, S.; Firon, N. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J. Exp. Bot., 2009, 60(13), 3891-3908.
[http://dx.doi.org/10.1093/jxb/erp234] [PMID: 19628571]
[31]
Joly, A-L.; Wettstein, G.; Mignot, G.; Ghiringhelli, F.; Garrido, C. Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J. Innate Immun., 2010, 2(3), 238-247.
[http://dx.doi.org/10.1159/000296508] [PMID: 20375559]
[32]
Baliki, M.N.; Apkarian, A.V. áVania Apkarian A. Nociception, pain, negative moods, and behavior selection. Neuron, 2015, 87(3), 474-491.
[http://dx.doi.org/10.1016/j.neuron.2015.06.005] [PMID: 26247858]
[33]
Todd, A.J.; Wang, F. Central nervous system pain pathways. In: The Oxford Handbook of the Neurobiology of Pain; Wood, J.N., Ed.; , 2018.
[http://dx.doi.org/10.1093/oxfordhb/9780190860509.013.5]
[34]
Forouzanfar, F.; Hosseinzadeh, H.; Khorrami, M.B.; Asgharzade, S.; Rakhshandeh, H. Attenuating effect of portulaca oleracea extract on chronic constriction injury induced neuropathic pain in rats: An evidence of anti-oxidative and anti-inflammatory effects. CNS Neurol. Disord Drug Targets., 2019, 18(4), 342-349.
[http://dx.doi.org/10.2174/1871527318666190314110528] [PMID: 30868971]
[35]
Sakhaee, M.H.; Sayyadi, S.A.H.; Sakhaee, N.; Sadeghnia, H.R.; Hosseinzadeh, H.; Nourbakhsh, F.; Forouzanfar, F. Cedrol protects against chronic constriction injury-induced neuropathic pain through inhibiting oxidative stress and inflammation. Metab. Brain Dis., 2020, 35(7), 1119-1126.
[http://dx.doi.org/10.1007/s11011-020-00581-8] [PMID: 32472224]
[36]
Urch, C. Normal pain transmission. Rev. Pain, 2007, 1(1), 2-6.
[http://dx.doi.org/10.1177/204946370700100102] [PMID: 26526819]
[37]
Yam, M.F.; Loh, Y.C.; Tan, C.S.; Khadijah Adam, S.; Abdul Manan, N.; Basir, R. General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int. J. Mol. Sci., 2018, 19(8), 2164.
[http://dx.doi.org/10.3390/ijms19082164] [PMID: 30042373]
[38]
Okuse, K. Pain signalling pathways: From cytokines to ion channels. Int. J. Biochem. Cell Biol., 2007, 39(3), 490-496.
[http://dx.doi.org/10.1016/j.biocel.2006.11.016] [PMID: 17194618]
[39]
Ader, R. Psychoneuroimmunology; , 2006, 1-2, . Two-Volume Set
[40]
Watkins, L.R.; Maier, S.F. Immune regulation of central nervous system functions: From sickness responses to pathological pain. J. Intern. Med., 2005, 257(2), 139-155.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01443.x] [PMID: 15656873]
[41]
Wieseler-Frank, J.; Maier, S.F.; Watkins, L.R. Glial activation and pathological pain. Neurochem. Int., 2004, 45(2-3), 389-395.
[http://dx.doi.org/10.1016/j.neuint.2003.09.009] [PMID: 15145553]
[42]
Cheng, J. Mechanisms of pathologic pain. In: Fundamentals of Pain Medicine; Cheng, J.; Rosenquist, R., Eds.; Springer: Cham, 2018; pp. 21-25.
[http://dx.doi.org/10.1007/978-3-319-64922-1_4]
[43]
Gálvez, I.; Torres-Piles, S.; Ortega-Rincón, E. Balneotherapy, immune system, and stress response: A hormetic strategy? Int. J. Mol. Sci., 2018, 19(6), 1687.
[http://dx.doi.org/10.3390/ijms19061687] [PMID: 29882782]
[44]
Bjarnason, I.; Hayllar, J.; MacPherson, A.J.; Russell, A.S. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology, 1993, 104(6), 1832-1847.
[http://dx.doi.org/10.1016/0016-5085(93)90667-2] [PMID: 8500743]
[45]
Maiti, P.; Manna, J. Activation of Heat Shock Proteins by Nanocurcumin to Prevent Neurodegenerative Diseases. Brain Disord. Ther., 2014, 3(5)
[46]
Deane, C.A.; Brown, I.R. Induction of heat shock proteins in differentiated human neuronal cells following co-application of celastrol and arimoclomol. Cell Stress Chaperones, 2016, 21(5), 837-848.
[http://dx.doi.org/10.1007/s12192-016-0708-2] [PMID: 27273088]
[47]
Hayward, J.H.; Lee, S.J. A decade of research on TLR2 discovering its pivotal role in glial activation and neuroinflammation in neurodegenerative diseases. Exp. Neurobiol., 2014, 23(2), 138-147.
[http://dx.doi.org/10.5607/en.2014.23.2.138] [PMID: 24963278]
[48]
Soo, E.T.; Yip, G.W.; Lwin, Z.M.; Kumar, S.D.; Bay, B-H. Heat shock proteins as novel therapeutic targets in cancer. In Vivo, 2008, 22(3), 311-315.
[PMID: 18610741]
[49]
Åkerfelt, M.; Morimoto, R.I.; Sistonen, L. Heat shock factors: Integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol., 2010, 11(8), 545-555.
[http://dx.doi.org/10.1038/nrm2938] [PMID: 20628411]
[50]
Dayalan Naidu, S.; Dinkova-Kostova, A.T. Regulation of the mammalian heat shock factor 1. FEBS J., 2017, 284(11), 1606-1627.
[http://dx.doi.org/10.1111/febs.13999] [PMID: 28052564]
[51]
Raynes, R.; Pombier, K.M.; Nguyen, K.; Brunquell, J.; Mendez, J.E.; Westerheide, S.D. The SIRT1 modulators AROS and DBC1 regulate HSF1 activity and the heat shock response. PLoS One, 2013, 8(1), e54364.
[http://dx.doi.org/10.1371/journal.pone.0054364] [PMID: 23349863]
[52]
Dai, C. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: From proteomic stability to oncogenesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2018, 373(1738), 20160525.
[http://dx.doi.org/10.1098/rstb.2016.0525] [PMID: 29203710]
[53]
Raynes, R.; Brunquell, J.; Westerheide, S.D. Stress inducibility of SIRT1 and its role in cytoprotection and cancer. Genes Cancer, 2013, 4(3-4), 172-182.
[http://dx.doi.org/10.1177/1947601913484497] [PMID: 24020008]
[54]
Richter, K.; Haslbeck, M.; Buchner, J. The heat shock response: Life on the verge of death. Mol. Cell, 2010, 40(2), 253-266.
[http://dx.doi.org/10.1016/j.molcel.2010.10.006] [PMID: 20965420]
[55]
Ikwegbue, P.C.; Masamba, P.; Oyinloye, B.E.; Kappo, A.P. Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals (Basel), 2017, 11(1), 2.
[http://dx.doi.org/10.3390/ph11010002] [PMID: 29295496]
[56]
Wang, X.; Chen, M.; Zhou, J.; Zhang, X. HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review). Int. J. Oncol., 2014, 45(1), 18-30.
[http://dx.doi.org/10.3892/ijo.2014.2399] [PMID: 24789222]
[57]
Sevin, M.; Girodon, F.; Garrido, C.; de Thonel, A. HSP90 and HSP70: Implication in inflammation processes and therapeutic approaches for myeloproliferative neoplasms. Mediators Inflamm., 2015, 2015, 970242.
[http://dx.doi.org/10.1155/2015/970242] [PMID: 26549943]
[58]
Wang, Y.; Lin, F.; Zhu, X.; Leone, V.A.; Dalal, S.; Tao, Y.; Messer, J.S.; Chang, E.B. Distinct roles of intracellular heat shock protein 70 in maintaining gastrointestinal homeostasis. Am. J. Physiol. Gastrointest. Liver Physiol., 2018, 314(2), G164-G178.
[http://dx.doi.org/10.1152/ajpgi.00208.2017] [PMID: 29051186]
[59]
Asea, A. Heat shock proteins and toll-like receptors. Handb. Exp. Pharmacol., 2008, (183), 111-127.
[http://dx.doi.org/10.1007/978-3-540-72167-3_6] [PMID: 18071657]
[60]
Tesfaye, S.; Selvarajah, D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab. Res. Rev., 2012, 28(Suppl. 1), 8-14.
[http://dx.doi.org/10.1002/dmrr.2239] [PMID: 22271716]
[61]
Boulton, A.J. Management of diabetic peripheral neuropathy. Clin. Diabetes, 2005, 23(1), 9-15.
[http://dx.doi.org/10.2337/diaclin.23.1.9]
[62]
Devaraj, S.; Dasu, M.R.; Park, S.H.; Jialal, I. Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes. Diabetologia, 2009, 52(8), 1665-1668.
[http://dx.doi.org/10.1007/s00125-009-1394-8] [PMID: 19455302]
[63]
Zininga, T.; Ramatsui, L.; Shonhai, A. Heat shock proteins as immunomodulants. Molecules, 2018, 23(11), 2846.
[http://dx.doi.org/10.3390/molecules23112846] [PMID: 30388847]
[64]
Zhang, J-M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin., 2007, 45(2), 27-37.
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[65]
Khandia, R.; Munjal, A.K.; Iqbal, H.M.N.; Dhama, K.; K Munjal, A.; MN Iqbal, H.; Dhama, K. Heat shock proteins: Therapeutic perspectives in inflammatory disorders. Recent Pat. Inflamm. Allergy Drug Discov., 2017, 10(2), 94-104.
[http://dx.doi.org/10.2174/1872213X10666161213163301] [PMID: 27978789]
[66]
Franck, E.; Madsen, O.; van Rheede, T.; Ricard, G.; Huynen, M.A.; de Jong, W.W. Evolutionary diversity of vertebrate small heat shock proteins. J. Mol. Evol., 2004, 59(6), 792-805.
[http://dx.doi.org/10.1007/s00239-004-0013-z] [PMID: 15599511]
[67]
Kriehuber, T.; Rattei, T.; Weinmaier, T.; Bepperling, A.; Haslbeck, M.; Buchner, J. Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J., 2010, 24(10), 3633-3642.
[http://dx.doi.org/10.1096/fj.10-156992] [PMID: 20501794]
[68]
Kappé, G.; Franck, E.; Verschuure, P.; Boelens, W.C.; Leunissen, J.A.; de Jong, W.W. The human genome encodes 10 α-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones, 2003, 8(1), 53-61.
[http://dx.doi.org/10.1379/1466-1268(2003)8<53:THGECS>2.0.CO;2] [PMID: 12820654]
[69]
Laha, B. Influence of thermal perturbation of the oligomeric size of α-crystallin on its chaperone function–a biophysical study. Department of Chemistry, 2010, 1-27.
[70]
Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. HSP roles as biomarkers and antigens in bacterial and viral infections. J. Med. Microbiol. Infec. Dis., 2016, 4(1-2), 1-7.
[71]
Ousman, S.S.; Tomooka, B.H.; van Noort, J.M.; Wawrousek, E.F.; O’Connor, K.C.; Hafler, D.A.; Sobel, R.A.; Robinson, W.H.; Steinman, L. Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature, 2007, 448(7152), 474-479.
[http://dx.doi.org/10.1038/nature05935] [PMID: 17568699]
[72]
Rothbard, J.B.; Kurnellas, M.P.; Brownell, S.; Adams, C.M.; Su, L.; Axtell, R.C.; Chen, R.; Fathman, C.G.; Robinson, W.H.; Steinman, L. Therapeutic effects of systemic administration of chaperone αB-crystallin associated with binding proinflammatory plasma proteins. J. Biol. Chem., 2012, 287(13), 9708-9721.
[http://dx.doi.org/10.1074/jbc.M111.337691] [PMID: 22308023]
[73]
Arac, A.; Brownell, S.E.; Rothbard, J.B.; Chen, C.; Ko, R.M.; Pereira, M.P.; Albers, G.W.; Steinman, L.; Steinberg, G.K. Systemic augmentation of alphaB-crystallin provides therapeutic benefit twelve hours post-stroke onset via immune modulation. Proc. Natl. Acad. Sci. USA, 2011, 108(32), 13287-13292.
[http://dx.doi.org/10.1073/pnas.1107368108] [PMID: 21828004]
[74]
Lin, R.; Karpa, K.; Kabbani, N.; Goldman-Rakic, P.; Levenson, R. Dopamine D2 and D3 receptors are linked to the actin cytoskeleton via interaction with filamin A. Proc. Natl. Acad. Sci. USA, 2001, 98(9), 5258-5263.
[http://dx.doi.org/10.1073/pnas.011538198] [PMID: 11320256]
[75]
Shao, W.; Zhang, S.Z.; Tang, M.; Zhang, X.H.; Zhou, Z.; Yin, Y.Q.; Zhou, Q.B.; Huang, Y.Y.; Liu, Y.J.; Wawrousek, E.; Chen, T.; Li, S.B.; Xu, M.; Zhou, J.N.; Hu, G.; Zhou, J.W. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin. Nature, 2013, 494(7435), 90-94.
[http://dx.doi.org/10.1038/nature11748] [PMID: 23242137]
[76]
De, A.; Miller-Graziano, C. Use of Hsp27 as an anti-inflammatory agent. US20010049357A1, 2001.
[77]
Kuang, H-J.; Zhao, G-J.; Chen, W-J.; Zhang, M.; Zeng, G-F.; Zheng, X-L.; Tang, C.K. Hsp27 promotes ABCA1 expression and cholesterol efflux through the PI3K/PKCζ/Sp1 pathway in THP-1 macrophages. Eur. J. Pharmacol., 2017, 810, 57-62.
[http://dx.doi.org/10.1016/j.ejphar.2017.06.015] [PMID: 28610841]
[78]
Henderson, B.; Henderson, S. Unfolding the relationship between secreted molecular chaperones and macrophage activation states. Cell Stress Chaperones, 2009, 14(4), 329-341.
[http://dx.doi.org/10.1007/s12192-008-0087-4] [PMID: 18958583]
[79]
De, A.K.; Kodys, K.M.; Yeh, B.S.; Miller-Graziano, C. Exaggerated human monocyte IL-10 concomitant to minimal TNF-α induction by heat-shock protein 27 (Hsp27) suggests Hsp27 is primarily an antiinflammatory stimulus. J. Immunol., 2000, 165(7), 3951-3958.
[http://dx.doi.org/10.4049/jimmunol.165.7.3951] [PMID: 11034403]
[80]
Salari, S.; Seibert, T.; Chen, Y-X.; Hu, T.; Shi, C.; Zhao, X.; Cuerrier, C.M.; Raizman, J.E.; O’Brien, E.R. Extracellular HSP27 acts as a signaling molecule to activate NF-κB in macrophages. Cell Stress Chaperones, 2013, 18(1), 53-63.
[http://dx.doi.org/10.1007/s12192-012-0356-0] [PMID: 22851137]
[81]
Chine, V.B.; Au, N.P.B.; Ma, C.H.E. Therapeutic benefits of maintaining mitochondrial integrity and calcium homeostasis by forced expression of Hsp27 in chemotherapy-induced peripheral neuropathy. Neurobiol. Dis., 2019, 130, 104492.
[http://dx.doi.org/10.1016/j.nbd.2019.104492] [PMID: 31176721]
[82]
Chine, V.B.; Au, N.P.B.; Kumar, G.; Ma, C.H.E. Targeting axon integrity to prevent chemotherapy-induced peripheral neuropathy. Mol. Neurobiol., 2019, 56(5), 3244-3259.
[http://dx.doi.org/10.1007/s12035-018-1301-8] [PMID: 30117103]
[83]
Korngut, L.; Ma, C.H.E.; Martinez, J.A.; Toth, C.C.; Guo, G.F.; Singh, V.; Woolf, C.J.; Zochodne, D.W. Overexpression of human HSP27 protects sensory neurons from diabetes. Neurobiol. Dis., 2012, 47(3), 436-443.
[http://dx.doi.org/10.1016/j.nbd.2012.04.017] [PMID: 22569359]
[84]
Quintana, F.J.; Cohen, I.R. The HSP60 immune system network. Trends Immunol., 2011, 32(2), 89-95.
[http://dx.doi.org/10.1016/j.it.2010.11.001] [PMID: 21145789]
[85]
Gupta, R.S. Sequence and structural homology between a mouse T-complex protein TCP-1 and the ‘chaperonin’ family of bacterial (GroEL, 60-65 kDa heat shock antigen) and eukaryotic proteins. Biochem. Int., 1990, 20(4), 833-841.
[PMID: 1972327]
[86]
Vilasi, S.; Bulone, D.; Caruso Bavisotto, C.; Campanella, C.; Marino Gammazza, A.; San Biagio, P.L.; Cappello, F.; Conway de Macario, E.; Macario, A.J.L. Chaperonin of group I: Oligomeric spectrum and biochemical and biological implications. Front. Mol. Biosci., 2018, 4, 99.
[http://dx.doi.org/10.3389/fmolb.2017.00099] [PMID: 29423396]
[87]
Vilasi, S.; Carrotta, R.; Mangione, M.R.; Campanella, C.; Librizzi, F.; Randazzo, L.; Martorana, V.; Marino Gammazza, A.; Ortore, M.G.; Vilasi, A.; Pocsfalvi, G.; Burgio, G.; Corona, D.; Palumbo Piccionello, A.; Zummo, G.; Bulone, D.; Conway de Macario, E.; Macario, A.J.; San Biagio, P.L.; Cappello, F. Human Hsp60 with its mitochondrial import signal occurs in solution as heptamers and tetradecamers remarkably stable over a wide range of concentrations. PLoS One, 2014, 9(5), e97657.
[http://dx.doi.org/10.1371/journal.pone.0097657] [PMID: 24830947]
[88]
Riffo-Vasquez, Y.; Spina, D.; Page, C.; Tormay, P.; Singh, M.; Henderson, B. Effect of chaperonins on bronchial eosinophilia and hyper-responsiveness in a murine model of allergic inflammation. Clin. Exp. Allergy, 2004, 34, 712-719.
[http://dx.doi.org/10.1111/j.1365-2222.2004.1931.x] [PMID: 15144461]
[89]
Henderson, B.; Pockley, A.G. Molecular chaperones and protein- folding catalysts as intercellular signaling regulators in immunity and inflammation. J. Leukoc. Biol., 2010, 88(3), 445-462.
[http://dx.doi.org/10.1189/jlb.1209779] [PMID: 20445014]
[90]
van Eden, W.; van der Zee, R.; Prakken, B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat. Rev. Immunol., 2005, 5(4), 318-330.
[http://dx.doi.org/10.1038/nri1593] [PMID: 15803151]
[91]
Wendling, U.; Paul, L.; van der Zee, R.; Prakken, B.; Singh, M.; van Eden, W. A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J. Immunol., 2000, 164(5), 2711-2717.
[http://dx.doi.org/10.4049/jimmunol.164.5.2711] [PMID: 10679112]
[92]
Chen, Y.; Ross, B.M.; Currie, R.W. Heat shock treatment protects against angiotensin II-induced hypertension and inflammation in aorta. Cell Stress Chaperones, 2004, 9(1), 99-107.
[http://dx.doi.org/10.1379/1466-1268(2004)009<0099:HSTPAA>2.0.CO;2] [PMID: 15270082]
[93]
Pons, H.; Ferrebuz, A.; Quiroz, Y.; Romero-Vasquez, F.; Parra, G.; Johnson, R.J.; Rodriguez-Iturbe, B. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt-sensitive hypertension. Am. J. Physiol. Renal Physiol., 2013, 304(3), F289-F299.
[http://dx.doi.org/10.1152/ajprenal.00517.2012] [PMID: 23097471]
[94]
Borges, T.J.; Wieten, L.; van Herwijnen, M.J.; Broere, F.; van der Zee, R.; Bonorino, C.; van Eden, W. The anti-inflammatory mechanisms of Hsp70. Front. Immunol., 2012, 3, 95.
[http://dx.doi.org/10.3389/fimmu.2012.00095] [PMID: 22566973]
[95]
Fan, Y-X.; Qian, C.; Liu, B.; Wang, C.; Liu, H.; Pan, X.; Teng, P.; Hu, L.; Zhang, G.; Han, Y.; Yang, M.; Wu, X.F.; Liu, W.T. Induction of suppressor of cytokine signaling 3 via HSF-1-HSP70-TLR4 axis attenuates neuroinflammation and ameliorates postoperative pain. Brain Behav. Immun., 2018, 68, 111-122.
[http://dx.doi.org/10.1016/j.bbi.2017.10.006] [PMID: 29017971]
[96]
Zou, W.; Lin, H.; Liu, W.; Yang, B.; Wu, L.; Duan, L.; Ling, P.; Zhu, L.; Dai, Q.; Zhao, L.; Zou, T.; Zhang, D. Moxibustion relieves visceral hyperalgesia via inhibition of transient receptor potential vanilloid 1 (TRPV1) and heat shock protein (HSP) 70 expression in rat bone marrow cells. Acupunct. Med., 2016, 34(2), 114-119.
[http://dx.doi.org/10.1136/acupmed-2015-010788] [PMID: 26338695]
[97]
Chen, Y-W.; Hsieh, P-L.; Chen, Y-C.; Hung, C-H.; Cheng, J-T. Physical exercise induces excess hsp72 expression and delays the development of hyperalgesia and allodynia in painful diabetic neuropathy rats. Anesth. Analg., 2013, 116(2), 482-490.
[http://dx.doi.org/10.1213/ANE.0b013e318274e4a0] [PMID: 23302966]
[98]
Grace, P.M.; Strand, K.A.; Galer, E.L.; Rice, K.C.; Maier, S.F.; Watkins, L.R. Protraction of neuropathic pain by morphine is mediated by spinal damage associated molecular patterns (DAMPs) in male rats. Brain Behav. Immun., 2018, 72, 45-50.
[http://dx.doi.org/10.1016/j.bbi.2017.08.018] [PMID: 28860068]
[99]
Nascimento, D.S.M.; Potes, C.S.; Soares, M.L.; Ferreira, A.C.; Malcangio, M.; Castro-Lopes, J.M.; Neto, F.L.M. Drug-induced HSP90 inhibition alleviates pain in monoarthritic rats and alters the expression of new putative pain players at the DRG. Mol. Neurobiol., 2018, 55(5), 3959-3975.
[PMID: 28550532]
[100]
Hutchinson, M.R.; Ramos, K.M.; Loram, L.C.; Wieseler, J.; Sholar, P.W.; Kearney, J.J.; Lewis, M.T.; Crysdale, N.Y.; Zhang, Y.; Harrison, J.A.; Maier, S.F.; Rice, K.C.; Watkins, L.R. Evidence for a role of heat shock protein-90 in toll like receptor 4 mediated pain enhancement in rats. Neuroscience, 2009, 164(4), 1821-1832.
[http://dx.doi.org/10.1016/j.neuroscience.2009.09.046] [PMID: 19788917]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy