Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

香料(藏红花、迷迭香、肉桂、姜黄和生姜)对阿尔茨海默病的影响

卷 18, 期 4, 2021

发表于: 23 September, 2021

页: [347 - 357] 页: 11

弟呕挨: 10.2174/1567205018666210716122034

价格: $65

摘要

阿尔茨海默病 (AD) 是老年人中最普遍的痴呆症,会对个人、他们的家人和照顾者造成残疾、身体、心理、社会和经济损害。研究表明,一些香料,如藏红花、迷迭香、肉桂、姜黄和生姜,具有抗氧化和抗炎特性,可抑制 AD 中乙酰胆碱酯酶和淀粉样蛋白的聚集。出于这个原因,香料已被研究作为对抗神经退行性疾病(包括 AD)的有益来源。从这个意义上说,本研究旨在回顾一些香料(藏红花、迷迭香、肉桂、姜黄和生姜)及其生物活性化合物,这些化合物在世界上最常被消费和研究的与 AD 相关。在这篇文章中,在成人、老年人、动物和体外的临床试验中收集了科学证据,证明这些特性被认为具有神经保护作用,对这些香料及其生物活性化合物的神经保护作用没有或有负面影响。这个问题的重要性是基于对 AD 的药物治疗仍然不是很有效。此外,这些香料的建议和处方仍然充斥着质疑和缺乏强有力的证据证明它们对神经变性的影响。文献搜索表明,本文中包含的所有香料都具有生物活性化合物,具有与神经保护相关的抗炎和抗氧化作用。迄今为止,人类摄入香料的量并不统一,对其适应症也没有达成共识,长期食用可以保证神经保护的安全性和有效性。因此,该主题的临床证据对于成为 AD 的正式辅助治疗是必要的。

关键词: 香料、生物活性化合物、藏红花、迷迭香、肉桂、姜黄、生姜、功能特性、阿尔茨海默病。

« Previous
[1]
Bartzokis G. Age-related myelin breakdown: A developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 2004; 25(1): 5-18.
[http://dx.doi.org/10.1016/j.neurobiolaging.2003.03.001] [PMID: 14675724]
[2]
Pfefferbaum A, Sullivan E. Frontal, parietal, and callosal degradation in aging: A quantitative DTI fiber tracking study. Neuropsychopharmacology 2005; S80-1.
[3]
Drag LL, Bieliauskas LA. Contemporary review 2009: Cognitive aging. J Geriatr Psychiatry Neurol 2010; 23(2): 75-93.
[http://dx.doi.org/10.1177/0891988709358590] [PMID: 20101069]
[4]
Persson J, Nyberg L, Lind J, et al. Structure-function correlates of cognitive decline in aging. Cereb Cortex 2006; 16(7): 907-15.
[http://dx.doi.org/10.1093/cercor/bhj036] [PMID: 16162855]
[5]
Dukart J, Schroeter ML, Mueller K. Age correction in dementia- matching to a healthy brain. PLoS One 2011; 6(7): e22193.
[http://dx.doi.org/10.1371/journal.pone.0022193] [PMID: 21829449]
[6]
Dorszewska J. Cell biology of normal brain aging: Synaptic plasticity-cell death. Aging Clin Exp Res 2013; 25(1): 25-34.
[http://dx.doi.org/10.1007/s40520-013-0004-2] [PMID: 23740630]
[7]
Sivera R, Delingette H, Lorenzi M, Pennec X, Ayache N. A model of brain morphological changes related to aging and Alzheimer’s disease from cross-sectional assessments. Neuroimage 2019; 198: 255-70.
[http://dx.doi.org/10.1016/j.neuroimage.2019.05.040] [PMID: 31121298]
[8]
Jack CR Jr, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12(2): 207-16.
[http://dx.doi.org/10.1016/S1474-4422(12)70291-0] [PMID: 23332364]
[9]
Knopman DS, Petersen RC, Jack CR Jr. A brief history of “Alzheimer disease”: Multiple meanings separated by a common name. Neurology 2019; 92(22): 1053-9.
[http://dx.doi.org/10.1212/WNL.0000000000007583] [PMID: 31028129]
[10]
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[11]
Veitch DP, Weiner MW, Aisen PS, et al. Understanding disease progression and improving Alzheimer’s disease clinical trials: Recent highlights from the Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement 2019; 15(1): 106-52.
[http://dx.doi.org/10.1016/j.jalz.2018.08.005] [PMID: 30321505]
[12]
Kumar K, Kumar A, Keegan RM, Deshmukh R. Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease. Biomed Pharmacother 2018; 98: 297-307.
[http://dx.doi.org/10.1016/j.biopha.2017.12.053] [PMID: 29274586]
[13]
Braak H, Del Tredici K. Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol 2012; 25(6): 708-14.
[http://dx.doi.org/10.1097/WCO.0b013e32835a3432] [PMID: 23160422]
[14]
WHO World Health Organization. Global Action Plan on the Public Health Response to Dementia 2017-2025. Geneva, Switzerland: WHO 2017.
[15]
Ramaroson H, Helmer C, Barberger-Gateau P, Letenneur L, Dartigues JF. Prevalence of dementia and Alzheimer’s disease among subjects aged 75 years or over: Updated results of the PAQUID cohort. Rev Neurol (Paris) 2003; 159(4): 405-11.
[PMID: 12773869]
[16]
Leuba G, Büla C, Schenk F. Du vieillissement cérébral à la maladie d'Alzheimer: Vulnérabilité et plasticité. 2013; p. 415.
[17]
Procaccini C, Santopaolo M, Faicchia D, et al. Role of metabolism in neurodegenerative disorders. Metabolism 2016; 65(9): 1376-90.
[http://dx.doi.org/10.1016/j.metabol.2016.05.018] [PMID: 27506744]
[18]
Fang EF. Mitophagy and NAD+ inhibit Alzheimer disease. Autophagy 2019; 15(6): 1112-4.
[http://dx.doi.org/10.1080/15548627.2019.1596497] [PMID: 30922179]
[19]
Ullah MF, Ahmad A, Bhat SH, Abu-Duhier FM, Barreto GE, Ashraf GM. Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders. Neurosci Biobehav Rev 2019; 102: 95-105.
[http://dx.doi.org/10.1016/j.neubiorev.2019.04.003] [PMID: 30959072]
[20]
Gottlieb MGV , Closs VE , Junges VM , Gunten Av , Lindoso ZCL , Rocha VJP . Alzheimer's disease: An approach for non-pharmacological therapies. In: Atta-ur-Rahman, Ed. Frontiers in Clinical Drug Research- Alzheimer Disorders. Sharjah, U.A.E: Bentham Publishers 2018; 158-213.
[21]
Savaskan E, Mueller H, Hoerr R, von Gunten A, Gauthier S. Treatment effects of Ginkgo biloba extract EGb 761® on the spectrum of behavioral and psychological symptoms of dementia: Meta-analysis of randomized controlled trials. Int Psychogeriatr 2018; 30(3): 285-93.
[http://dx.doi.org/10.1017/S1041610217001892] [PMID: 28931444]
[22]
Shah RS, Lee HG, Xiongwei Z, Perry G, Smith MA, Castellani RJ. Current approaches in the treatment of Alzheimer’s disease. Biomed Pharmacother 2008; 62(4): 199-207.
[http://dx.doi.org/10.1016/j.biopha.2008.02.005] [PMID: 18407457]
[23]
Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener 2011; 6: 39.
[http://dx.doi.org/10.1186/1750-1326-6-39]
[24]
Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 2014; 1842(8): 1240-7.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.015] [PMID: 24189435]
[25]
Cardoso S, Carvalho C, Correia SC, Seiça RM, Moreira PI. Alzheimer’s disease: From mitochondrial perturbations to mitochondrial medicine. Brain Pathol 2016; 26(5): 632-47.
[http://dx.doi.org/10.1111/bpa.12402] [PMID: 27327899]
[26]
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep 2016; 4(5): 519-22.
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[27]
Bevelacqua JJ, Mortazavi SMJ. Alzheimer 's disease: Possible mechanisms behind neurohormesis induced by exposure to low doses of ionizing radiation. J Biomed Phys Eng 2018; 8(2): 153-6.
[http://dx.doi.org/10.31661/jbpe.v8i2.919] [PMID: 29951441]
[28]
Bisht K, Sharma K, Tremblay ME. Chronic stress as a risk factor for Alzheimer’s disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol Stress 2018; 9: 9-21.
[http://dx.doi.org/10.1016/j.ynstr.2018.05.003] [PMID: 29992181]
[29]
Bukvicki D, Gottardi D, Prasad S, Novakovic M, Marin PD, Tyagi AK. The healing effects of spices in chronic diseases. Curr Med Chem 2020; 27(26): 4401-20.
[http://dx.doi.org/10.2174/0929867325666180831145800] [PMID: 30182845]
[30]
Reddy PH, Manczak M, Yin X, et al. Protective effects of indian spice curcumin against amyloid-β in Alzheimer’s disease. J Alzheimers Dis 2018; 61(3): 843-66.
[http://dx.doi.org/10.3233/JAD-170512] [PMID: 29332042]
[31]
Bian Y, Zhao C, Lee SM. Neuroprotective potency of saffron against neuropsychiatric diseases, neurodegenerative diseases, and other brain disorders: From bench to bedside. Front Pharmacol 2020; 11: 579052.
[http://dx.doi.org/10.3389/fphar.2020.579052] [PMID: 33117172]
[32]
José Bagur M, Alonso Salinas GL, Jiménez-Monreal AM, et al. Saffron: An old medicinal plant and a potential novel functional food. Molecules 2017; 23(1): 30.
[http://dx.doi.org/10.3390/molecules23010030] [PMID: 29295497]
[33]
Fernández-Albarral JA, de Hoz R, Ramírez AI, et al. Beneficial effects of saffron (Crocus sativus L.) in ocular pathologies, particularly neurodegenerative retinal diseases. Neural Regen Res 2020; 15(8): 1408-16.
[http://dx.doi.org/10.4103/1673-5374.274325] [PMID: 31997799]
[34]
Senanayake SPJN. Rosemary extract as a natural source of bioactive compounds. J Food Bioact 2018; 2(2): 51-7.
[http://dx.doi.org/10.31665/JFB.2018.2140]
[35]
Rao PV, Gan SH. Cinnamon: A multifaceted medicinal plant. Evid Based Complement Alternat Med 2014; 2014: 642942.
[http://dx.doi.org/10.1155/2014/642942] [PMID: 24817901]
[36]
Momtaz S, Hassani S, Khan F, Ziaee M, Abdollahi M. Cinnamon, a promising prospect towards Alzheimer’s disease. Pharmacol Res 2018; 130: 241-58.
[http://dx.doi.org/10.1016/j.phrs.2017.12.011] [PMID: 29258915]
[37]
Burapan S, Kim M, Paisooksantivatana Y, Eser BE, Han J. Thai curcuma species: Antioxidant and bioactive compounds. Foods 2020; 9(9): 1219.
[http://dx.doi.org/10.3390/foods9091219] [PMID: 32887356]
[38]
Flores G. Curcuma longa L. extract improves the cortical neural connectivity during the aging process. Neural Regen Res 2017; 12(6): 875-80.
[http://dx.doi.org/10.4103/1673-5374.208542] [PMID: 28761413]
[39]
Mao QQ, Xu XY, Cao SY, et al. Bioactive compounds and bioactivities of ginger (zingiber officinale roscoe). Foods 2019; 8(6): 185.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[40]
Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F. New pharmacological strategies for treatment of Alzheimer’s disease: Focus on disease modifying drugs. Br J Clin Pharmacol 2012; 73(4): 504-17.
[http://dx.doi.org/10.1111/j.1365-2125.2011.04134.x] [PMID: 22035455]
[41]
Modi KK, Roy A, Brahmachari S, Rangasamy SB, Pahan K. Cinnamon and its metabolite sodium benzoate attenuate the activation of p21rac and protect memory and learning in an animal model of alzheimer’s disease. PLoS One 2015; 10(6): e0130398.
[http://dx.doi.org/10.1371/journal.pone.0130398] [PMID: 26102198]
[42]
Pham HM, Xu A, Schriner SE, Sevrioukov EA, Jafari M. Cinnamaldehyde improves lifespan and healthspan in Drosophila melanogaster models for Alzheimer’s disease. BioMed Res Int 2018; 2018: 3570830.
[http://dx.doi.org/10.1155/2018/3570830] [PMID: 30228985]
[43]
Anderson RA, Qin B, Canini F, Poulet L, Roussel AM. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes. PLoS One 2013; 8(12): e83243.
[http://dx.doi.org/10.1371/journal.pone.0083243] [PMID: 24349472]
[44]
Zhang L, Fang Y, Xu Y, et al. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One 2015; 10(6): e0131525.
[http://dx.doi.org/10.1371/journal.pone.0131525] [PMID: 26114940]
[45]
Ahmed T, Enam SA, Gilani AH. Curcuminoids enhance memory in an amyloid-infused rat model of Alzheimer’s disease. Neuroscience 2010; 169(3): 1296-306.
[http://dx.doi.org/10.1016/j.neuroscience.2010.05.078] [PMID: 20538041]
[46]
Li L, Wu XH, Zhao XJ, Xu L, Pan CL, Zhang ZY. Zerumbone ameliorates behavioral impairments and neuropathology in transgenic APP/PS1 mice by suppressing MAPK signaling. J Neuroinflammation 2020; 17(1): 61.
[http://dx.doi.org/10.1186/s12974-020-01744-1] [PMID: 32066466]
[47]
Akhondzadeh S, Sabet MS, Harirchian MH, et al. Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: A 16-week, randomized and placebo-controlled trial. J Clin Pharm Ther 2010; 35(5): 581-8.
[http://dx.doi.org/10.1111/j.1365-2710.2009.01133.x] [PMID: 20831681]
[48]
Akhondzadeh S, Shafiee Sabet M, Harirchian MH, et al. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology (Berl) 2010; 207(4): 637-43.
[http://dx.doi.org/10.1007/s00213-009-1706-1] [PMID: 19838862]
[49]
Farokhnia M, Shafiee Sabet M, Iranpour N, et al. Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer’s disease: A double-blind randomized clinical trial. Hum Psychopharmacol 2014; 29(4): 351-9.
[http://dx.doi.org/10.1002/hup.2412] [PMID: 25163440]
[50]
Jimbo D, Kimura Y, Taniguchi M, Inoue M, Urakami K. Effect of aromatherapy on patients with Alzheimer’s disease. Psychogeriatrics 2009; 9(4): 173-9.
[http://dx.doi.org/10.1111/j.1479-8301.2009.00299.x] [PMID: 20377818]
[51]
Lee MS, Wahlqvist ML, Chou YC, et al. Turmeric improves post-prandial working memory in pre-diabetes independent of insulin. Asia Pac J Clin Nutr 2014; 23(4): 581-91.
[PMID: 25516316]
[52]
Baum L, Lam CW, Cheung SK, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 2008; 28(1): 110-3.
[http://dx.doi.org/10.1097/jcp.0b013e318160862c] [PMID: 18204357]
[53]
DiSilvestro RA, Joseph E, Zhao S, Bomser J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J 2012; 11: 79.
[http://dx.doi.org/10.1186/1475-2891-11-79] [PMID: 23013352]
[54]
Ringman JM, Frautschy SA, Teng E, et al. Oral curcumin for Alzheimer’s disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res Ther 2012; 4(5): 43.
[http://dx.doi.org/10.1186/alzrt146] [PMID: 23107780]
[55]
Rainey-Smith SR, Brown BM, Sohrabi HR, et al. Curcumin and cognition: A randomised, placebo-controlled, double-blind study of community-dwelling older adults. Br J Nutr 2016; 115(12): 2106-13.
[http://dx.doi.org/10.1017/S0007114516001203] [PMID: 27102361]
[56]
Saenghong N, Wattanathorn J, Muchimapura S, et al. Zingiber officinale improves cognitive function of the middle-aged healthy women. Evid Based Complement Alternat Med 2012; 2012: 383062.
[http://dx.doi.org/10.1155/2012/383062] [PMID: 22235230]
[57]
Pintão AM, Silva IF. A verdade sobre o açafrão.Workshop Plantas Medicinais e Fitoterapêuticas nos Trópicos. Portugal: IICT/CCCM 2008; pp. 1-19.
[58]
Ríos JL, Recio MC, Giner RM, Máñez S. An update review of saffron and its active constituents. Phytother Res 1996; 10(3): 189-93.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199605)10:3<189::AID-PTR754>3.0.CO;2-C]
[59]
Leone S, Recinella L, Chiavaroli A, et al. Phytotherapic use of the Crocus sativus L. (Saffron) and its potential applications: A brief overview. Phytother Res 2018; 32(12): 2364-75.
[http://dx.doi.org/10.1002/ptr.6181] [PMID: 30136324]
[60]
Wang Y, Han T, Zhu Y, et al. Antidepressant properties of bioactive fractions from the extract of Crocus sativus L. J Nat Med 2010; 64(1): 24-30.
[http://dx.doi.org/10.1007/s11418-009-0360-6] [PMID: 19787421]
[61]
Siddiqui MJ, Saleh MSM, Basharuddin SNBB, et al. Saffron (Crocus sativus L.): As an Antidepressant. J Pharm Bioallied Sci 2018; 10(4): 173-80.
[http://dx.doi.org/10.4103/JPBS.JPBS_83_18] [PMID: 30568374]
[62]
Strasburger E, Noll F, Schenck S, Schimper AFW. Tratado de Botánica. Barcelona: Ediciones Omega S A 1994.
[63]
Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ. Plant systematics: A phylogenetic approach. Sunderland: Sinauer Associates 1999.
[64]
Bhat JV, Broker R. Riboflavine and thiamine contents of saffron, Crocus sativus linn. Nature 1953; 172(4377): 544.
[http://dx.doi.org/10.1038/172544a0] [PMID: 13099260]
[65]
Norbaek R, Kondo T. Anthocyanins from flowers of Crocus (iridaceae). Phytochemistry 1998; 47(5): 861-4.
[http://dx.doi.org/10.1016/S0031-9422(97)00625-0]
[66]
Hosseini A, Razavi BM, Hosseinzadeh H. Pharmacokinetic properties of saffron and its active components. Eur J Drug Metab Pharmacokinet 2018; 43(4): 383-90.
[http://dx.doi.org/10.1007/s13318-017-0449-3] [PMID: 29134501]
[67]
Abe K, Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytother Res 2000; 14(3): 149-52.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200005)14:3<149::AID-PTR665>3.0.CO;2-5] [PMID: 10815004]
[68]
Bandegi AR, Rashidy-Pour A, Vafaei AA, Ghadrdoost B. Protective effects of crocus sativus l. extract and crocin against chronic-stress induced oxidative damage of brain, liver and kidneys in rats. Adv Pharm Bull 2014; 4(2): 493-9.
[PMID: 25671180]
[69]
Papandreou MA, Kanakis CD, Polissiou MG, et al. Inhibitory activity on amyloid-beta aggregation and antioxidant properties of Crocussativus stigmas extract and its crocin constituents. J Agric Food Chem 2006; 54(23): 8762-8.
[http://dx.doi.org/10.1021/jf061932a] [PMID: 17090119]
[70]
Schmidt M, Betti G, Hensel A. Saffron in phytotherapy: Pharmacology and clinical uses. Wien Med Wochenschr 2007; 157(13-14): 315-9.
[http://dx.doi.org/10.1007/s10354-007-0428-4] [PMID: 17704979]
[71]
Mohamadpour AH, Ayati Z, Parizadeh MR, Rajbai O, Hosseinzadeh H. Safety evaluation of crocin (a constituent of saffron) tablets in healthy volunteers. Iran J Basic Med Sci 2013; 16(1): 39-46.
[PMID: 23638291]
[72]
Habtemariam S. The therapeutic potential of rosemary (rosmarinus officinalis) Diterpenes for Alzheimer’s disease. Evid Based Complement Alternat Med 2016; 2016: 2680409.
[http://dx.doi.org/10.1155/2016/2680409] [PMID: 26941822]
[73]
Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Fut Sci OA 2018; 4(4): FSO283.
[http://dx.doi.org/10.4155/fsoa-2017-0124] [PMID: 29682318]
[74]
Braga JS, Unamano MD, Prevert J. Árvores e arbustos medicinais e aromáticos do sudoeste Europeu. Portugal: BeirAmbiente Centro Profissional de Desenvolvimento Sustentável e Eco-turismo 2005.
[75]
Alonso J. Tratado de fitofármacos y nutracéuticos. Rosario: Ed. Corpus 2004.
[76]
Stefanovits-Bányai É, Tulok MH, Hegedus A, Renner C, Varga IS. Antioxidant effect of various rosemary (Rosmarinus officinalis L.) clones. Acta Biol Szeged 2003; 47(1-4): 111-3.
[77]
Sayorwan W, Ruangrungsi N, Piriyapunyporn T, Hongratanaworakit T, Kotchabhakdi N, Siripornpanich V. Effects of inhaled rosemary oil on subjective feelings and activities of the nervous system. Sci Pharm 2013; 81(2): 531-42.
[http://dx.doi.org/10.3797/scipharm.1209-05] [PMID: 23833718]
[78]
Villareal MO, Ikeya A, Sasaki K, Arfa AB, Neffati M, Isoda H. Anti-stress and neuronal cell differentiation induction effects of Rosmarinus officinalis L. essential oil. BMC Complement Altern Med 2017; 17(1): 549.
[http://dx.doi.org/10.1186/s12906-017-2060-1] [PMID: 29273038]
[79]
Nieto G, Ros G, Castillo J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review. Medicines (Basel) 2018; 5(3): 98.
[http://dx.doi.org/10.3390/medicines5030098] [PMID: 30181448]
[80]
Pérez-Sánchez A, Barrajón-Catalán E, Ruiz-Torres V, et al. Rosemary (Rosmarinus officinalis) extract causes ROS-induced necrotic cell death and inhibits tumor growth in vivo. Sci Rep 2019; 9(1): 808.
[http://dx.doi.org/10.1038/s41598-018-37173-7] [PMID: 30692565]
[81]
Olmedo RH, Nepote V, Grosso NR. Preservation of sensory and chemical properties inflavoured cheese preparedwith cream cheese base using oregano and rosemary essential oils. LWT –. Food Sci Tech 2013; 53(2): 409-17.
[82]
Gao M, Feng L, Jiang T, et al. The use of rosemary extract in combination with nisin to extend the shelf life of pompano (Trachinotus ovatus) fillet during chilled storage. Food Control 2014; 37: 1-8.
[http://dx.doi.org/10.1016/j.foodcont.2013.09.010]
[83]
Orhan I, Aslan S, Kartal M, Şener B, Hüsnü Can Başer K. Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food Chem 2008; 108(2): 663-8.
[http://dx.doi.org/10.1016/j.foodchem.2007.11.023] [PMID: 26059146]
[84]
Herrero M, Plaza M, Cifuentes A, Ibáñez E. Green processes for the extraction of bioactives from Rosemary: Chemical and functional characterization via ultra-performance liquid chromatography-tandem mass spectrometry and in-vitro assays. J Chromatogr A 2010; 1217(16): 2512-20.
[http://dx.doi.org/10.1016/j.chroma.2009.11.032] [PMID: 19945706]
[85]
Ozarowski M, Mikolajczak PL, Bogacz A, et al. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia 2013; 91: 261-71.
[http://dx.doi.org/10.1016/j.fitote.2013.09.012] [PMID: 24080468]
[86]
Satou T, Hanashima Y, Mizutani I, Koike K. The effect of inhalation of essential oil from Rosmarinus officinalis on scopolamine-induced Alzheimer’s type dementia model mice. Flavour Fragrance J 2018; 33(3): 230-4.
[http://dx.doi.org/10.1002/ffj.3435]
[87]
Schwarz K, Ternes W. Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis. II. Isolation of carnosic acid and formation of other phenolic diterpenes. Z Lebensm Unters Forsch 1992; 195(2): 99-103.
[http://dx.doi.org/10.1007/BF01201766] [PMID: 1529648]
[88]
Wischik CM, Harrington CR, Storey JM. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem Pharmacol 2014; 88(4): 529-39.
[http://dx.doi.org/10.1016/j.bcp.2013.12.008] [PMID: 24361915]
[89]
Craig LA, Hong NS, McDonald RJ. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev 2011; 35(6): 1397-409.
[http://dx.doi.org/10.1016/j.neubiorev.2011.03.001] [PMID: 21392524]
[90]
El Omri A, Han J, Yamada P, Kawada K, Ben Abdrabbah M, Isoda H. Rosmarinus officinalis polyphenols activate cholinergic activities in PC12 cells through phosphorylation of ERK1/2. J Ethnopharmacol 2010; 131(2): 451-8.
[http://dx.doi.org/10.1016/j.jep.2010.07.006] [PMID: 20633629]
[91]
Cornejo A, Aguilar Sandoval F, Caballero L, et al. Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer’s disease. J Enzyme Inhib Med Chem 2017; 32(1): 945-53.
[http://dx.doi.org/10.1080/14756366.2017.1347783] [PMID: 28701064]
[92]
Takayama C, Meirade-Faria F, Almeida ACA, et al. Chemical composition of Rosmarinus officinalis essential oil and antioxidant action against gastric damage induced by absolute ethanol in the rat. Asian Pac J Trop Biomed 2016; 6(8): 677-81.
[http://dx.doi.org/10.1016/j.apjtb.2015.09.027]
[93]
Asadi F, Farahani PK. Effect of essential oil of leaf and aerial part of Rosmarinus Officinalis on passive avoidance memory in aged and young mice. J Alzheimers Dis Parkinsonism 2017; 7(6): 86.
[94]
Dagytė G, Den Boer JA, Trentani A. The cholinergic system and depression. Behav Brain Res 2011; 221(2): 574-82.
[http://dx.doi.org/10.1016/j.bbr.2010.02.023] [PMID: 20170685]
[95]
Ranasinghe P, Pigera S, Premakumara GA, Galappaththy P, Constantine GR, Katulanda P. Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): A systematic review. BMC Complement Altern Med 2013; 13: 275.
[http://dx.doi.org/10.1186/1472-6882-13-275] [PMID: 24148965]
[96]
Paranagama PA, Wimalasena S, Jayatilake GS, Jayawardena AL, Senanayake UM, Mubarak AM. A comparison of essential oil constituents of bark, leaf, root and fruit of cinnamon (Cinnamomum zeylanicum Blum) grown in Sri Lanka. J Natl Sci Found Sri Lanka 2001; 29(3-4): 147-53.
[http://dx.doi.org/10.4038/jnsfsr.v29i3-4.2613]
[97]
Kawatra P, Rajagopalan R. Cinnamon: Mystic powers of a minute ingredient. Pharmacognosy Res 2015; 7(Suppl. 1): S1-6.
[http://dx.doi.org/10.4103/0974-8490.157990] [PMID: 26109781]
[98]
Dugoua JJ, Seely D, Perri D, et al. From type 2 diabetes to antioxidant activity: A systematic review of the safety and efficacy of common and cassia cinnamon bark. Can J Physiol Pharmacol 2007; 85(9): 837-47.
[http://dx.doi.org/10.1139/Y07-080] [PMID: 18066129]
[99]
Wang H, Zhang C, Lu D, et al. Oligomeric proanthocyanidin protects retinal ganglion cells against oxidative stress-induced apoptosis. Neural Regen Res 2013; 8(25): 2317-26.
[PMID: 25206541]
[100]
Jayatilaka A, Poole SK, Poole CF, Chichila TMP. Simultaneous micro steam distillation/solvent extraction for the isolation of semivolatile flavor compounds from cinnamon and their separation by series coupled-column gas chromatography. Anal Chim Acta 1995; 302(2-3): 147-62.
[http://dx.doi.org/10.1016/0003-2670(94)00445-R]
[101]
Velíšek J. Chemie potravin. Czech Republic: Ossiss 1999.
[102]
WHO monographs on selected medicinal plants. Geneva: World Health Organization 1999.
[103]
Blahová J, Svobodová Z. Assessment of coumarin levels in ground cinnamon available in the Czech retail market. ScientificWorldJournal 2012; 2012: 263851.
[http://dx.doi.org/10.1100/2012/263851] [PMID: 22761548]
[104]
Frydman-Marom A, Levin A, Farfara D, et al. Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer’s disease animal models. PLoS One 2011; 6(1): e16564.
[http://dx.doi.org/10.1371/journal.pone.0016564] [PMID: 21305046]
[105]
George RC, Lew J, Graves DJ. Interaction of cinnamaldehyde and epicatechin with tau: Implications of beneficial effects in modulating Alzheimer’s disease pathogenesis. J Alzheimers Dis 2013; 36(1): 21-40.
[http://dx.doi.org/10.3233/JAD-122113] [PMID: 23531502]
[106]
Regulation (EC) No 1334/2008 of the European Parliament and of the Council on flavourings and certain food ingredients with flavouring properties for use in and on foods and amending Council Regulation (EEC) No 1601/91, Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC. Off J Eur Union 2008.
[107]
Abraham K, Pfister M, Wöhrlin F, Lampen A. Relative bioavailability of coumarin from cinnamon and cinnamon-containing foods compared to isolated coumarin: A four-way crossover study in human volunteers. Mol Nutr Food Res 2011; 55(4): 644-53.
[http://dx.doi.org/10.1002/mnfr.201000394] [PMID: 21462332]
[108]
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: The Indian solid gold. Adv Exp Med Biol 2007; 595: 1-75.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1] [PMID: 17569205]
[109]
Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: From kitchen to clinic. Biochem Pharmacol 2008; 75(4): 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016] [PMID: 17900536]
[110]
Kaur C, Kapoor HC. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int J Food Sci Technol 2002; 37(2): 153-61.
[http://dx.doi.org/10.1046/j.1365-2621.2002.00552.x]
[111]
Alvis A, Arrazola G, Martinez W. Evaluación de la Actividad y el Potencial Antioxidante de Extractos Hidro-Alcohólicos de Cúrcuma (Cúrcuma longa). Inf Tecnol 2012; 23(2): 11-8.
[http://dx.doi.org/10.4067/S0718-07642012000200003]
[112]
Venigalla M, Sonego S, Gyengesi E, Sharman MJ, Münch G. Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer’s disease. Neurochem Int 2016; 95: 63-74.
[http://dx.doi.org/10.1016/j.neuint.2015.10.011] [PMID: 26529297]
[113]
Tang M, Taghibiglou C. The mechanisms of action of curcumin in alzheimer’s disease. J Alzheimers Dis 2017; 58(4): 1003-16.
[http://dx.doi.org/10.3233/JAD-170188] [PMID: 28527218]
[114]
Bui TT, Nguyen TH. Natural product for the treatment of Alzheimer’s disease. J Basic Clin Physiol Pharmacol 2017; 28(5): 413-23.
[http://dx.doi.org/10.1515/jbcpp-2016-0147] [PMID: 28708573]
[115]
Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL. A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2005; 2(2): 131-6.
[http://dx.doi.org/10.2174/1567205053585882] [PMID: 15974909]
[116]
Liu Z, Ran Y, Huang S, et al. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Front Aging Neurosci 2017; 9: 233.
[http://dx.doi.org/10.3389/fnagi.2017.00233] [PMID: 28785217]
[117]
Shakeri A, Sahebkar A. Optimized curcumin formulations for the treatment of alzheimer’s disease: A patent evaluation. J Neurosci Res 2016; 94(2): 111-3.
[http://dx.doi.org/10.1002/jnr.23696] [PMID: 26577706]
[118]
Chin D, Huebbe P, Pallauf K, Rimbach G. Neuroprotective properties of curcumin in Alzheimer’s disease-merits and limitations. Curr Med Chem 2013; 20(32): 3955-85.
[http://dx.doi.org/10.2174/09298673113209990210] [PMID: 23931272]
[119]
Ghasemi F, Bagheri H, Barreto GE, Read MI, Sahebkar A. Effects of curcumin on microglial cells. Neurotox Res 2019; 36(1): 12-26.
[http://dx.doi.org/10.1007/s12640-019-00030-0] [PMID: 30949950]
[120]
White B. Ginger: An overview. Am Fam Physician 2007; 75(11): 1689-91.
[PMID: 17575660]
[121]
Zick SM, Djuric Z, Ruffin MT, et al. Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomarkers Prev 2008; 17(8): 1930-6.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2934] [PMID: 18708382]
[122]
Nagendra chari KL, Manasa D, Srinivas P, Sowbhagya HB. Enzyme-assisted extraction of bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chem 2013; 139(1-4): 509-14.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.099] [PMID: 23561138]
[123]
Choi JG, Kim SY, Jeong M, Oh MS. Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacol Ther 2018; 182: 56-69.
[http://dx.doi.org/10.1016/j.pharmthera.2017.08.010] [PMID: 28842272]
[124]
Simon A, Darcsi A, Kéry Á, Riethmüller E. Blood-brain barrier permeability study of ginger constituents. J Pharm Biomed Anal 2020; 177: 112820.
[http://dx.doi.org/10.1016/j.jpba.2019.112820] [PMID: 31476432]
[125]
Ahmeda HH, Zaazaab AM, El-Motelpb BAA. Zingiber officinale and Alzheimer’s disease: Evidences and mechanisms. Int J Pharm Sci Rev Res 2014; 27(2): 142-52.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy