Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Comparison of Methods for Detecting Methicillin-Resistant Coagulase-Negative Staphylococci in Device-Associated Infections

Author(s): Wesam Hatem Amer*, Mohamed Samir Abd Elghafar and Marwa Mohamed Ezzat Abd-El-monsef

Volume 20, Issue 1, 2022

Published on: 15 July, 2021

Article ID: e150721194815 Pages: 7

DOI: 10.2174/2211352519666210715150507

Price: $65

Abstract

Background: Coagulase-negative Staphylococci (CoNS) is one of the major causes of infections in hospitals. Methicillin resistance has greatly increased in different CoNS species in previous years. Here, we evaluated the performance of four phenotypic tests for detecting mecA-mediated methicillin resistance rate in CoNS isolated from different device-associated infections in Tanta University Hospitals, Egypt.

Methodology: One hundred and fifteen CoNS isolates were examined for mecA-mediated methicillin resistance using polymerase chain reaction (PCR) as the standard gold test. Susceptibility to methicillin was investigated using VITEK 2 assay, oxacillin broth microdilution, and cefoxitin disc diffusion tests.

Results: Of all isolates, 98.3% were mecA-positive. The sensitivities of the different methods examined were as follows: 100% for the VITEK cefoxitin test, 97.4% for the VITEK oxacillin test, 93.8% for the oxacillin broth microdilution, and 82.3% for the cefoxitin disc diffusion test. The test specificity could not be accurately determined because of the small number of mecA-negative isolates (n = 2).

Conclusion: The rate of methicillin resistance reached 98.3% among CoNS isolates. Our results demonstrate that the VITEK 2 assay is rapid and has high sensitivity compared to other phenotypic methods for detecting methicillin resistance among different species of CoNS. Therefore, we recommend the dual measurement of both cefoxitin and oxacillin susceptibilities using the VITEK 2 assay for best results.

Keywords: Cefoxitin, CoNS, disc, methicillin resistance, microdilution, VITEK 2.

Graphical Abstract

[1]
Bryers, J.D. Medical biofilms. Biotechnol. Bioeng., 2008, 100(1), 1-18.
[http://dx.doi.org/10.1002/bit.21838] [PMID: 18366134]
[2]
Rosenthal, V.D.; Bat-Erdene, I.; Gupta, D.; Belkebir, S.; Rajhans, P.; Zand, F.; Myatra, S.N.; Afeef, M.; Tanzi, V.L.; Muralidharan, S.; Gurskis, V.; Al-Abdely, H.M.; El-Kholy, A.; AlKhawaja, S.A.A.; Sen, S.; Mehta, Y.; Rai, V.; Hung, N.V.; Sayed, A.F.; Guerrero-Toapanta, F.M.; Elahi, N.; Morfin-Otero, M.D.R.; Somabutr, S.; De-Carvalho, B.M.; Magdarao, M.S.; Velinova, V.A.; Quesada-Mora, A.M.; Anguseva, T.; Ikram, A.; Aguilar-de-Moros, D.; Duszynska, W.; Mejia, N.; Horhat, F.G.; Belskiy, V.; Mioljevic, V.; Di-Silvestre, G.; Furova, K.; Gamar-Elanbya, M.O.; Gupta, U.; Abidi, K.; Raka, L.; Guo, X.; Luque-Torres, M.T.; Jayatilleke, K.; Ben-Jaballah, N.; Gikas, A.; Sandoval-Castillo, H.R.; Trotter, A.; Valderrama-Beltrán, S.L.; Leblebicioglu, H. International nosocomial infection control consortium (INICC) report, data summary of 45 countries for 2012-2017: Device-associated module. Am. J. Infect. Control, 2020, 48(4), 423-432.
[http://dx.doi.org/10.1016/j.ajic.2019.08.023] [PMID: 31676155]
[3]
Darouiche, R.O.; Darouiche, R.O. Device-associated infections: A macroproblem that starts with microadherence. Clin. Infect. Dis., 2001, 33(9), 1567-1572.
[http://dx.doi.org/10.1086/323130] [PMID: 11577378]
[4]
VanEpps, J.S.; Younger, J.G. Implantable device-related infection. Shock, 2016, 46(6), 597-608.
[http://dx.doi.org/10.1097/SHK.0000000000000692] [PMID: 27454373]
[5]
Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev., 2014, 27(4), 870-926.
[http://dx.doi.org/10.1128/CMR.00109-13] [PMID: 25278577]
[6]
Patel, J.D.; Ebert, M.; Ward, R.; Anderson, J.M.S. S. epidermidis biofilm formation: effects of biomaterial surface chemistry and serum proteins. J. Biomed. Mater. Res. A, 2007, 80(3), 742-751.
[http://dx.doi.org/10.1002/jbm.a.31103] [PMID: 17177270]
[7]
de Araujo, G.L.; Coelho, L.R.; de Carvalho, C.B.; Maciel, R.M.; Coronado, A.Z.; Rozenbaum, R.; Ferreira-Carvalho, B.T.; Figueiredo, A.M.; Teixeira, L.A. Commensal isolates of methicillin-resistant Staphylococcus epidermidis are also well equipped to produce biofilm on polystyrene surfaces. J. Antimicrob. Chemother., 2006, 57(5), 855-864.
[http://dx.doi.org/10.1093/jac/dkl071] [PMID: 16551694]
[8]
Saginur, R.; Stdenis, M.; Ferris, W.; Aaron, S.D.; Chan, F.; Lee, C.; Ramotar, K. Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections. Antimicrob. Agents Chemother., 2006, 50(1), 55-61.
[http://dx.doi.org/10.1128/AAC.50.1.55-61.2006] [PMID: 16377667]
[9]
Chambers, H.F. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin. Microbiol. Rev., 1997, 10(4), 781-791.
[http://dx.doi.org/10.1128/CMR.10.4.781] [PMID: 9336672]
[10]
Centers for disease control. National Healthcare Safety Network Surveillance (NHSN). Patient safety component manual. 2020. Available from: https://www.cdc.gov/nhsn/pdfs/pscmanual/pcsmanual_current.pdf [Accessed 20 June 2020]
[11]
Mermel, L.A.; Allon, M.; Bouza, E.; Craven, D.E.; Flynn, P.; O’Grady, N.P.; Raad, I.I.; Rijnders, B.J.; Sherertz, R.J.; Warren, D.K. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 49(1), 1-45.
[http://dx.doi.org/10.1086/599376] [PMID: 19489710]
[12]
Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet, D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 2012, 18(3), 268-281.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x] [PMID: 21793988]
[13]
Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother., 2001, 48(S1)(Suppl. 1), 5-16.
[http://dx.doi.org/10.1093/jac/48.suppl_1.5] [PMID: 11420333]
[14]
CLSI. Performance standards for antimicrobial susceptibility testing.Wayne, PA., Ed.; CLSI supplement M100, 31st; Clinical and Laboratory Standards Institute, 2021.
[15]
Frigatto, E.A.; Machado, A.M.; Pignatari, A.C.; Gales, A.C. Is the cefoxitin disk test reliable enough to detect oxacillin resistance in coagulase-negative staphylococci? J. Clin. Microbiol., 2005, 43(4), 2028-2029.
[http://dx.doi.org/10.1128/JCM.43.4.2028-2029.2005] [PMID: 15815053]
[16]
Stegger, M.; Andersen, P.S.; Kearns, A.; Pichon, B.; Holmes, M.A.; Edwards, G.; Laurent, F.; Teale, C.; Skov, R.; Larsen, A.R. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecA(LGA251). Clin. Microbiol. Infect., 2012, 18(4), 395-400.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03715.x] [PMID: 22429460]
[17]
Zhang, K.; Sparling, J.; Chow, B.L.; Elsayed, S.; Hussain, Z.; Church, D.L.; Gregson, D.B.; Louie, T.; Conly, J.M. New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J. Clin. Microbiol., 2004, 42(11), 4947-4955.
[http://dx.doi.org/10.1128/JCM.42.11.4947-4955.2004] [PMID: 15528678]
[18]
Kanj, S.; Kanafani, Z.; Sidani, N.; Alamuddin, L.; Zahreddine, N.; Rosenthal, V. International nosocomial infection control consortium findings of device-associated infections rate in an intensive care unit of a lebanese university hospital. J. Glob. Infect. Dis., 2012, 4(1), 15-21.
[http://dx.doi.org/10.4103/0974-777X.93755] [PMID: 22529622]
[19]
Iordanou, S.; Middleton, N.; Papathanassoglou, E.; Raftopoulos, V. Surveillance of device associated infections and mortality in a major intensive care unit in the Republic of Cyprus. BMC Infect. Dis., 2017, 17(1), 607.
[http://dx.doi.org/10.1186/s12879-017-2704-2] [PMID: 28877671]
[20]
Khodare, A.; Kale, P.; Pindi, G.; Joy, L.; Khillan, V. Incidence, microbiological profile, and impact of preventive measures on central line-associated bloodstream infection in liver care intensive care unit. Indian J. Crit. Care Med., 2020, 24(1), 17-22.
[http://dx.doi.org/10.5005/jp-journals-10071-23325] [PMID: 32148344]
[21]
Baier, C.; Linke, L.; Eder, M.; Schwab, F.; Chaberny, I.F.; Vonberg, R.P.; Ebadi, E. Incidence, risk factors and healthcare costs of central line-associated nosocomial bloodstream infections in hematologic and oncologic patients. PLoS One, 2020, 15(1), e0227772.
[http://dx.doi.org/10.1371/journal.pone.0227772] [PMID: 31978169]
[22]
Hariati, H.; Suza, D.E.; Tarigan, R. Risk Factors Analysis for catheter-associated urinary tract infection in Medan, Indonesia. Open Access Maced. J. Med. Sci., 2019, 7(19), 3189-3194.
[http://dx.doi.org/10.3889/oamjms.2019.798] [PMID: 31949514]
[23]
Shrestha, L.B.; Baral, R.; Khanal, B. Comparative study of antimicrobial resistance and biofilm formation among Gram-positive uropathogens isolated from community-acquired urinary tract infections and catheter-associated urinary tract infections. Infect. Drug Resist., 2019, 12, 957-963.
[http://dx.doi.org/10.2147/IDR.S200988] [PMID: 31118702]
[24]
Higuchi, W.; Isobe, H.; Iwao, Y.; Dohmae, S.; Saito, K.; Takano, T.; Otsuka, T.; Baranovich, T.; Endo, C.; Suzuki, N.; Tomiyama, Y.; Yamamoto, T. Extensive multidrug resistance of coagulase-negative staphylococci in medical students. J. Infect. Chemother., 2007, 13(1), 63-66.
[http://dx.doi.org/10.1007/s10156-006-0492-5] [PMID: 17334733]
[25]
Pedroso, S.H.S.P.; Sandes, S.H.C.; Filho, R.A.T.; Nunes, A.C.; Serufo, J.C.; Farias, L.M.; Carvalho, M.A.R.; Bomfim, M.R.Q.; Santos, S.G. Coagulase-negative staphylococci isolated from human bloodstream infections showed multidrug resistance profile. Microb. Drug Resist., 2018, 24(5), 635-647.
[http://dx.doi.org/10.1089/mdr.2017.0309] [PMID: 29683776]
[26]
Humphries, R.M.; Ambler, J.; Mitchell, S.L.; Castanheira, M.; Dingle, T.; Hindler, J.A.; Koeth, L.; Sei, K. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J. Clin. Microbiol., 2018, 56(4), e01934-e17.
[http://dx.doi.org/10.1128/JCM.01934-17] [PMID: 29367292]
[27]
Johnson, K.N.; Andreacchio, K.; Edelstein, P.H. Detection of methicillin-resistant coagulase-negative staphylococci by the Vitek 2 system. J. Clin. Microbiol., 2014, 52(9), 3196-3199.
[http://dx.doi.org/10.1128/JCM.01162-14] [PMID: 24951799]
[28]
Oliveira, A.D.; d’Azevedo, P.A.; de Sousa, L.B.; Viana-Niero, C.; Francisco, W.; Lottenberg, C.; Martino, M.D.; Höfling-Lima, A.L. Laboratory detection methods for methicillin resistance in coagulase negative Staphylococcus isolated from ophthalmic infections. Arq. Bras. Oftalmol., 2007, 70(4), 667-675.
[http://dx.doi.org/10.1590/S0004-27492007000400018] [PMID: 17906764]
[29]
Woods, W.; Ramotar, K.; Lem, P.; Toye, B. Oxacillin susceptibility testing of coagulase-negative staphylococci using the disk diffusion method and the Vitek GPS-105 card. Diagn. Microbiol. Infect. Dis., 2002, 42(4), 291-294.
[http://dx.doi.org/10.1016/S0732-8893(02)00365-6] [PMID: 12007449]
[30]
Huse, H.K.; Miller, S.A.; Chandrasekaran, S.; Hindler, J.A.; Lawhon, S.D.; Bemis, D.A.; Westblade, L.F.; Humphries, R.M. Evaluation of oxacillin and cefoxitin disk diffusion and mic breakpoints established by the clinical and laboratory standards institute for detection of meca-mediated oxacillin resistance in Staphylococcus schleiferi J. Clin. Microbiol., 2018, 56(2), e01653-e17.
[http://dx.doi.org/10.1128/JCM.01653-17] [PMID: 29187565]
[31]
Yamazumi, T.; Furuta, I.; Diekema, D.J.; Pfaller, M.A.; Jones, R.N. Comparison of the Vitek gram-positive susceptibility 106 card, the MRSA-Screen latex agglutination test, and mecA analysis for detecting oxacillin resistance in a geographically diverse collection of clinical isolates of coagulase-negative staphylococci. J. Clin. Microbiol., 2001, 39(10), 3633-3636.
[http://dx.doi.org/10.1128/JCM.39.10.3633-3636.2001] [PMID: 11574584]
[32]
Louie, L.; Majury, A.; Goodfellow, J.; Louie, M.; Simor, A.E. Evaluation of a latex agglutination test (MRSA-Screen) for detection of oxacillin resistance in coagulase-negative Staphylococci. J. Clin. Microbiol., 2001, 39(11), 4149-4151.
[http://dx.doi.org/10.1128/JCM.39.11.4149-4151.2001] [PMID: 11682545]
[33]
Singh, S.; Banerjee, G.; Agarwal, S.K.; Mala, K.; Rajput, A.; Singh, R.K. Phenotypic and genotypic methods for the detection of methicillin resistant coagulase negative staphylococci: A comparative study. J. Commun. Dis., 2009, 41(2), 93-99.
[PMID: 22010496]
[34]
Becker, K.; Ballhausen, B.; Köck, R.; Kriegeskorte, A. Methicillin resistance in Staphylococcus isolates: the “mec alphabet” with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. Int. J. Med. Microbiol., 2014, 304(7), 794-804.
[http://dx.doi.org/10.1016/j.ijmm.2014.06.007] [PMID: 25034857]
[35]
Keseru, J.S.; Gál, Z.; Barabás, G.; Benko, I.; Szabó, I. Investigation of beta-Lactamases in clinical isolates of Staphylococcus aureus for further explanation of borderline methicillin resistance. Chemotherapy, 2005, 51(6), 300-304.
[http://dx.doi.org/10.1159/000088951] [PMID: 16224179]
[36]
Suzuki, E.; Hiramatsu, K.; Yokota, T. Survey of methicillin-resistant clinical strains of coagulase-negative staphylococci for mecA gene distribution. Antimicrob. Agents Chemother., 1992, 36(2), 429-434.
[http://dx.doi.org/10.1128/AAC.36.2.429] [PMID: 1605606]
[37]
Kampf, G.; Adena, S.; Rüden, H.; Weist, K. Inducibility and potential role of MecA-gene-positive oxacillin-susceptible Staphylococcus aureus from colonized healthcare workers as a source for nosocomial infections. J. Hosp. Infect., 2003, 54(2), 124-129.
[http://dx.doi.org/10.1016/S0195-6701(03)00119-1] [PMID: 12818586]
[38]
Goering, R.V.; Swartzendruber, E.A.; Obradovich, A.E.; Tickler, I.A.; Tenover, F.C. Emergence of oxacillin resistance in stealth methicillin-resistant Staphylococcus aureus due to mecA sequence instability. Antimicrob. Agents Chemother., 2019, 63(8), e00558-e19.
[http://dx.doi.org/10.1128/AAC.00558-19] [PMID: 31109981]
[39]
Xu, Z.; Shah, H.N.; Misra, R.; Chen, J.; Zhang, W.; Liu, Y.; Cutler, R.R.; Mkrtchyan, H.V. The prevalence, antibiotic resistance and mecA characterization of coagulase negative staphylococci recovered from non-healthcare settings in London, UK. Antimicrob. Resist. Infect. Control, 2018, 7, 73.
[http://dx.doi.org/10.1186/s13756-018-0367-4] [PMID: 29946448]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy