Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Environmental Factors Modifying HDL Functionality

Author(s): Constantine E. Kosmas, Andreas Sourlas, Eliscer Guzman and Christina E. Kostara*

Volume 29, Issue 10, 2022

Published on: 14 July, 2021

Page: [1687 - 1701] Pages: 15

DOI: 10.2174/0929867328666210714155422

Price: $65

Abstract

Background: Currently, it has been recognized that High-Density Lipoprotein (HDL) functionality plays a much more essential role in protection from atherosclerosis than circulating HDLcholesterol (HDL-C) levels per se. Cholesterol efflux capacity (CEC) from macrophages to HDL has been shown to be a key metric of HDL functionality. Thus, quantitative assessment of CEC may be an important tool for the evaluation of HDL functionality, as improvement of HDL function may lead to a reduction of the risk for Cardiovascular disease (CVD).

Introduction: Although the cardioprotective action of HDLs is exerted mainly through their involvement in the reverse cholesterol transport (RCT) pathway, HDLs have also important anti-inflammatory, antioxidant, antiaggregatory and anticoagulant properties that contribute to their favorable cardiovascular effects. Certain genetic, pathophysiologic, disease states and environmental conditions may influence the cardioprotective effects of HDL either by inducing modifications in lipidome and/or protein composition, or in the enzymes responsible for HDL metabolism. On the other hand, certain healthy habits or pharmacologic interventions may actually favorably affect HDL functionality.

Methods: The present review discusses the effects of environmental factors, including obesity, smoking, alcohol consumption, dietary habits, various pharmacologic interventions, as well as aerobic exercise, on HDL functionality.

Results: Experimental and clinical studies or pharmacological interventions support the impact of these environmental factors in the modification of HDL functionality, although the involved mechanisms are not fully understood.

Conclusion: Further research should be conducted to identify the underlying mechanisms of these environmental factors and to identify new pharmacologic interventions capable of enhancing CEC, improving HDL functionality and potentially improving cardiovascular risk.

Keywords: HDL functionality, cholesterol efflux capacity (CEC), obesity, smoking, alcohol, dietary habits, pharmacologic interventions, aerobic exercise.

[1]
GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159), 1736-1788.
[http://dx.doi.org/10.1016/S0140-6736(18)32203-7] [PMID: 30496103]
[2]
Castelli, W.P. Cholesterol and lipids in the risk of coronary artery disease-the Framingham Heart Study. Can. J. Cardiol., 1988, 4(Suppl. A), 5A-10A.
[PMID: 3179802]
[3]
Barter, P.; Gotto, A.M.; LaRosa, J.C.; Maroni, J.; Szarek, M.; Grundy, S.M.; Kastelein, J.J.; Bittner, V.; Fruchart, J.C. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N. Engl. J. Med., 2007, 357(13), 1301-1310.
[http://dx.doi.org/10.1056/NEJMoa064278] [PMID: 17898099]
[4]
Kosmas, C.E.; Christodoulidis, G.; Cheng, J.W.; Vittorio, T.J.; Lerakis, S. High-density lipoprotein functionality in coronary artery disease. Am. J. Med. Sci., 2014, 347(6), 504-508.
[http://dx.doi.org/10.1097/MAJ.0000000000000231] [PMID: 24603157]
[5]
Sourlas, A.; Kosmas, C.E. Inheritance of high and low HDL: Mechanisms and management. Curr. Opin. Lipidol., 2019, 30(4), 307-313.
[http://dx.doi.org/10.1097/MOL.0000000000000610] [PMID: 31135593]
[6]
Cuchel, M.; Rader, D.J. Macrophage reverse cholesterol transport: Key to the regression of atherosclerosis? Circulation, 2006, 113(21), 2548-2555.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.475715] [PMID: 16735689]
[7]
Khera, A.V.; Cuchel, M.; de la Llera-Moya, M.; Rodrigues, A.; Burke, M.F.; Jafri, K.; French, B.C.; Phillips, J.A.; Mucksavage, M.L.; Wilensky, R.L.; Mohler, E.R.; Rothblat, G.H.; Rader, D.J. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med., 2011, 364(2), 127-135.
[http://dx.doi.org/10.1056/NEJMoa1001689] [PMID: 21226578]
[8]
Adorni, M.P.; Zimetti, F.; Billheimer, J.T.; Wang, N.; Rader, D.J.; Phillips, M.C.; Rothblat, G.H. The roles of different pathways in the release of cholesterol from macrophages. J. Lipid Res., 2007, 48(11), 2453-2462.
[http://dx.doi.org/10.1194/jlr.M700274-JLR200] [PMID: 17761631]
[9]
Rye, K.A.; Barter, P.J. Cardioprotective functions of HDLs. J. Lipid Res., 2014, 55(2), 168-179.
[http://dx.doi.org/10.1194/jlr.R039297] [PMID: 23812558]
[10]
Barter, P.J.; Baker, P.W.; Rye, K.A. Effect of high-density lipoproteins on the expression of adhesion molecules in endothelial cells. Curr. Opin. Lipidol., 2002, 13(3), 285-288.
[http://dx.doi.org/10.1097/00041433-200206000-00008] [PMID: 12045398 ]
[11]
Kosmas, C.E.; Silverio, D.; Sourlas, A.; Montan, P.D.; Guzman, E. Dysfunctional high-density lipoprotein and atherogenesis. Vessel Plus, 2019, 3, 2.
[12]
Montan, P.D.; Sourlas, A.; Olivero, J.; Silverio, D.; Guzman, E.; Kosmas, C.E. Pharmacologic therapy of obesity: Mechanisms of action and cardiometabolic effects. Ann. Transl. Med., 2019, 7(16), 393.
[http://dx.doi.org/10.21037/atm.2019.07.27] [PMID: 31555707]
[13]
World Health Organization; Obesity and overweight., 2020. Available from:. http://www.who.int/news-room/fact-sheets/ detail/obesity-and-overweight
[14]
Zhang, T.; Chen, J.; Tang, X.; Luo, Q.; Xu, D.; Yu, B. Interaction between adipocytes and high-density lipoprotein:New insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis., 2019, 18(1), 223.
[http://dx.doi.org/10.1186/s12944-019-1170-9] [PMID: 31842884]
[15]
Duong, M.; Uno, K.; Nankivell, V.; Bursill, C.; Nicholls, S.J. Induction of obesity impairs reverse cholesterol transport in ob/ob mice. PLoS One, 2018, 13(9), e0202102.
[http://dx.doi.org/10.1371/journal.pone.0202102] [PMID: 30216355]
[16]
Sasahara, T.; Nestel, P.; Fidge, N.; Sviridov, D. Cholesterol transport between cells and high density lipoprotein subfractions from obese and lean subjects. J. Lipid Res., 1998, 39(3), 544-554.
[http://dx.doi.org/10.1016/S0022-2275(20)33293-4] [PMID: 9548587]
[17]
Matsuo, Y.; Oberbach, A.; Till, H.; Inge, T.H.; Wabitsch, M.; Moss, A.; Jehmlich, N.; Völker, U.; Müller, U.; Siegfried, W.; Kanesawa, N.; Kurabayashi, M.; Schuler, G.; Linke, A.; Adams, V. Impaired HDL function in obese adolescents: Impact of lifestyle intervention and bariatric surgery. Obesity (Silver Spring), 2013, 21(12), E687-E695.
[http://dx.doi.org/10.1002/oby.20538] [PMID: 23804534]
[18]
McMorrow, A.M.; O’Reilly, M.; Connaughton, R.M.; Carolan, E.; O’Shea, D.; Lithander, F.E.; McGillicuddy, F.C.; Roche, H.M. Obesity and dietary fat modulate HDL function in adolescents: Results from a cross-sectional analysis and a randomized, placebo-controlled, crossover trial. FASEB J., 2016, 30(1)(Suppl.)
[19]
Zvintzou, E.; Skroubis, G.; Chroni, A.; Petropoulou, P.I.; Gkolfinopoulou, C.; Sakellaropoulos, G.; Gantz, D.; Mihou, I.; Kalfarentzos, F.; Kypreos, K.E. Effects of bariatric surgery on HDL structure and functionality: Results from a prospective trial. J. Clin. Lipidol., 2014, 8(4), 408-417.
[http://dx.doi.org/10.1016/j.jacl.2014.05.001] [PMID: 25110222]
[20]
He, B.M.; Zhao, S.P.; Peng, Z.Y. Effects of cigarette smoking on HDL quantity and function: Implications for atherosclerosis. J. Cell. Biochem., 2013, 114(11), 2431-2436.
[http://dx.doi.org/10.1002/jcb.24581] [PMID: 23852759]
[21]
Costa, L.G.; Vitalone, A.; Cole, T.B.; Furlong, C.E. Modulation of paraoxonase (PON1) activity. Biochem. Pharmacol., 2005, 69(4), 541-550.
[http://dx.doi.org/10.1016/j.bcp.2004.08.027] [PMID: 15670573 ]
[22]
Mackness, B.; Durrington, P.; McElduff, P.; Yarnell, J.; Azam, N.; Watt, M.; Mackness, M. Low paraoxonase activity predicts coronary events in the Caerphilly Prospective Study. Circulation, 2003, 107(22), 2775-2779.
[http://dx.doi.org/10.1161/01.CIR.0000070954.00271.13] [PMID: 12756158]
[23]
Granér, M.; James, R.W.; Kahri, J.; Nieminen, M.S.; Syvänne, M.; Taskinen, M.R. Association of paraoxonase-1 activity and concentration with angiographic severity and extent of coronary artery disease. J. Am. Coll. Cardiol., 2006, 47(12), 2429-2435.
[http://dx.doi.org/10.1016/j.jacc.2006.01.074] [PMID: 16781370]
[24]
James, R.W.; Leviev, I.; Righetti, A. Smoking is associated with reduced serum paraoxonase activity and concentration in patients with coronary artery disease. Circulation, 2000, 101(19), 2252-2257.
[http://dx.doi.org/10.1161/01.CIR.101.19.2252] [PMID: 10811591]
[25]
Chiva-Blanch, G.; Badimon, L. Benefits and risks of moderate alcohol consumption on cardiovascular disease: Current findings and controversies. Nutrients, 2019, 12(1), 108.
[http://dx.doi.org/10.3390/nu12010108] [PMID: 31906033]
[26]
Pownall, H.J.; Gotto, A.M. Jr. New insights into the high-density lipoprotein dilemma. Trends Endocrinol. Metab., 2016, 27(1), 44-53.
[http://dx.doi.org/10.1016/j.tem.2015.11.004] [PMID: 26673122]
[27]
Marmillot, P.; Munoz, J.; Patel, S.; Garige, M.; Rosse, R.B.; Lakshman, M.R. Long-term ethanol consumption impairs reverse cholesterol transport function of high-density lipoproteins by depleting high-density lipoprotein sphingomyelin both in rats and in humans. Metabolism, 2007, 56(7), 947-953.
[http://dx.doi.org/10.1016/j.metabol.2007.03.003] [PMID: 17570257]
[28]
Mäkelä, S.M.; Jauhiainen, M.; Ala-Korpela, M.; Metso, J.; Lehto, T.M.; Savolainen, M.J.; Hannuksela, M.L. HDL2 of heavy alcohol drinkers enhances cholesterol efflux from raw macrophages via phospholipid-rich HDL 2b particles. Alcohol. Clin. Exp. Res., 2008, 32(6), 991-1000.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00660.x] [PMID: 18498551]
[29]
Beulens, J.W.; Sierksma, A.; van Tol, A.; Fournier, N.; van Gent, T.; Paul, J.L.; Hendriks, H.F. Moderate alcohol consumption increases cholesterol efflux mediated by ABCA1. J. Lipid Res., 2004, 45(9), 1716-1723.
[http://dx.doi.org/10.1194/jlr.M400109-JLR200] [PMID: 15231854]
[30]
De Oliveira, E. Silva, E.R.; Foster, D.; McGee Harper, M.; Seidman, C.E.; Smith, J.D.; Breslow, J.L.; Brinton, E.A. Alcohol consumption raises HDL cholesterol levels by increasing the transport rate of apolipoproteins A-I and A-II. Circulation, 2000, 102(19), 2347-2352.
[http://dx.doi.org/10.1161/01.CIR.102.19.2347] [PMID: 11067787 ]
[31]
Escolà-Gil, J.C.; Julve, J.; Griffin, B.A.; Freeman, D.; Blanco-Vaca, F. HDL and lifestyle interventions. Handb. Exp. Pharmacol., 2015, 224, 569-592.
[http://dx.doi.org/10.1007/978-3-319-09665-0_18] [PMID: 25523002]
[32]
van der Gaag, M.S.; van Tol, A.; Scheek, L.M.; James, R.W.; Urgert, R.; Schaafsma, G.; Hendriks, H.F. Daily moderate alcohol consumption increases serum paraoxonase activity; a diet-controlled, randomised intervention study in middle-aged men. Atherosclerosis, 1999, 147(2), 405-410.
[http://dx.doi.org/10.1016/S0021-9150(99)00243-9] [PMID: 10559527]
[33]
Rao, M.N.; Marmillot, P.; Gong, M.; Palmer, D.A.; Seeff, L.B.; Strader, D.B.; Lakshman, M.R. Light, but not heavy alcohol drinking, stimulates paraoxonase by upregulating liver mRNA in rats and humans. Metabolism, 2003, 52(10), 1287-1294.
[http://dx.doi.org/10.1016/S0026-0495(03)00191-4] [PMID: 14564680]
[34]
Kasbi Chadli, F.; Nazih, H.; Krempf, M.; Nguyen, P.; Ouguerram, K. Omega 3 fatty acids promote macrophage reverse cholesterol transport in hamster fed high fat diet. PLoS One, 2013, 8(4), e61109.
[http://dx.doi.org/10.1371/journal.pone.0061109] [PMID: 23613796]
[35]
Helal, O.; Berrougui, H.; Loued, S.; Khalil, A. Extra-virgin olive oil consumption improves the capacity of HDL to mediate cholesterol efflux and increases ABCA1 and ABCG1 expression in human macrophages. Br. J. Nutr., 2013, 109(10), 1844-1855.
[http://dx.doi.org/10.1017/S0007114512003856] [PMID: 23051557]
[36]
Nicholls, S.J.; Lundman, P.; Harmer, J.A.; Cutri, B.; Griffiths, K.A.; Rye, K.A.; Barter, P.J.; Celermajer, D.S. Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J. Am. Coll. Cardiol., 2006, 48(4), 715-720.
[http://dx.doi.org/10.1016/j.jacc.2006.04.080] [PMID: 16904539]
[37]
Tall, A.R. Plasma cholesteryl ester transfer protein. J. Lipid Res., 1993, 34(8), 1255-1274.
[http://dx.doi.org/10.1016/S0022-2275(20)36957-1] [PMID: 8409761]
[38]
Kosmas, C.E.; DeJesus, E.; Rosario, D.; Vittorio, T.J. CETP inhibition: Past failures and future hopes. Clin. Med. Insights Cardiol., 2016, 10, 37-42.
[http://dx.doi.org/10.4137/CMC.S32667] [PMID: 26997876 ]
[39]
Barter, P.J.; Caulfield, M.; Eriksson, M.; Grundy, S.M.; Kastelein, J.J.; Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif, J.C.; Waters, D.D.; Shear, C.L.; Revkin, J.H.; Buhr, K.A.; Fisher, M.R.; Tall, A.R.; Brewer, B. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med., 2007, 357(21), 2109-2122.
[http://dx.doi.org/10.1056/NEJMoa0706628] [PMID: 17984165]
[40]
Schwartz, G.G.; Olsson, A.G.; Abt, M.; Ballantyne, C.M.; Barter, P.J.; Brumm, J.; Chaitman, B.R.; Holme, I.M.; Kallend, D.; Leiter, L.A.; Leitersdorf, E.; McMurray, J.J.; Mundl, H.; Nicholls, S.J.; Shah, P.K.; Tardif, J.C.; Wright, R.S. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med., 2012, 367(22), 2089-2099.
[http://dx.doi.org/10.1056/NEJMoa1206797] [PMID: 23126252 ]
[41]
Lincoff, A.M.; Nicholls, S.J.; Riesmeyer, J.S.; Barter, P.J.; Brewer, H.B.; Fox, K.A.A.; Gibson, C.M.; Granger, C.; Menon, V.; Montalescot, G.; Rader, D.; Tall, A.R.; McErlean, E.; Wolski, K.; Ruotolo, G.; Vangerow, B.; Weerakkody, G.; Goodman, S.G.; Conde, D.; McGuire, D.K.; Nicolau, J.C.; Leiva-Pons, J.L.; Pesant, Y.; Li, W.; Kandath, D.; Kouz, S.; Tahirkheli, N.; Mason, D.; Nissen, S.E. Accelerate investigators. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N. Engl. J. Med., 2017, 376(20), 1933-1942.
[http://dx.doi.org/10.1056/NEJMoa1609581] [PMID: 28514624]
[42]
Bowman, L.; Hopewell, J.C.; Chen, F.; Wallendszus, K.; Stevens, W.; Collins, R.; Wiviott, S.D.; Cannon, C.P.; Braunwald, E.; Sammons, E.; Landray, M.J. Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med., 2017, 377(13), 1217-1227.
[http://dx.doi.org/10.1056/NEJMoa1706444] [PMID: 28847206 ]
[43]
Kosmas, C.E.; Martinez, I.; Sourlas, A.; Bouza, K.V.; Campos, F.N.; Torres, V.; Montan, P.D.; Guzman, E. High-density lipoprotein (HDL) functionality and its relevance to atherosclerotic cardiovascular disease. Drugs Context, 2018, 72, 12525.
[http://dx.doi.org/10.7573/dic.212525] [PMID: 29623098]
[44]
Mackey, R.H.; Greenland, P.; Goff, D.C., Jr; Lloyd-Jones, D.; Sibley, C.T.; Mora, S. High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis). J. Am. Coll. Cardiol., 2012, 60(6), 508-516.
[http://dx.doi.org/10.1016/j.jacc.2012.03.060] [PMID: 22796256]
[45]
Kontush, A. HDL particle number and size as predictors of cardiovascular disease. Front. Pharmacol., 2015, 6, 218.
[http://dx.doi.org/10.3389/fphar.2015.00218] [PMID: 26500551]
[46]
Rashedi, N.; Brennan, D.; Kastelein, J.J.; Nissen, S.E.; Nicholls, S. Impact of cholesteryl ester transfer protein inhibition on nuclear magnetic resonance derived lipoprotein particle parameters (abstr). Atheroscler. Suppl., 2011, 12, 48.
[http://dx.doi.org/10.1016/S1567-5688(11)70218-5]
[47]
Ballantyne, C.M.; Miller, M.; Niesor, E.J.; Burgess, T.; Kallend, D.; Stein, E.A. Effect of dalcetrapib plus pravastatin on lipoprotein metabolism and high-density lipoprotein composition and function in dyslipidemic patients: Results of a phase IIb dose-ranging study. Am. Heart J., 2012, 163(3), 515-521. , 521.e1-521.e3.
[http://dx.doi.org/10.1016/j.ahj.2011.11.017] [PMID: 22424025]
[48]
Ishigami, M.; Yamashita, S.; Sakai, N.; Arai, T.; Hirano, K.; Hiraoka, H.; Kameda-Takemura, K.; Matsuzawa, Y. Large and cholesteryl ester-rich high-density lipoproteins in cholesteryl ester transfer protein (CETP) deficiency can not protect macrophages from cholesterol accumulation induced by acetylated low-density lipoproteins. J. Biochem., 1994, 116(2), 257-262.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a124516] [PMID: 7822240]
[49]
Qi, Y.; Fan, J.; Liu, J.; Wang, W.; Wang, M.; Sun, J.; Liu, J.; Xie, W.; Zhao, F.; Li, Y.; Zhao, D. Cholesterol-overloaded HDL particles are independently associated with progression of carotid atherosclerosis in a cardiovascular disease-free population: A community-based cohort study. J. Am. Coll. Cardiol., 2015, 65(4), 355-363.
[http://dx.doi.org/10.1016/j.jacc.2014.11.019] [PMID: 25634834]
[50]
van der Steeg, W.A.; Holme, I.; Boekholdt, S.M.; Larsen, M.L.; Lindahl, C.; Stroes, E.S.; Tikkanen, M.J.; Wareham, N.J.; Faergeman, O.; Olsson, A.G.; Pedersen, T.R.; Khaw, K.T.; Kastelein, J.J. High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: Significance for cardiovascular risk: The IDEAL and EPIC-Norfolk studies. J. Am. Coll. Cardiol., 2008, 51(6), 634-642.
[http://dx.doi.org/10.1016/j.jacc.2007.09.060] [PMID: 18261682]
[51]
Camont, L.; Chapman, M.J.; Kontush, A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol. Med., 2011, 17(10), 594-603.
[http://dx.doi.org/10.1016/j.molmed.2011.05.013] [PMID: 21839683 ]
[52]
Kontush, A.; Chantepie, S.; Chapman, M.J. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler. Thromb. Vasc. Biol., 2003, 23(10), 1881-1888.
[http://dx.doi.org/10.1161/01.ATV.0000091338.93223.E8] [PMID: 12920049 ]
[53]
Wang, H.; Liu, Y.; Zhu, L.; Wang, W.; Wan, Z.; Chen, F.; Wu, Y.; Zhou, J.; Yuan, Z. 17β-estradiol promotes cholesterol efflux from vascular smooth muscle cells through a liver X receptor α-dependent pathway. Int. J. Mol. Med., 2014, 33(3), 550-558.
[http://dx.doi.org/10.3892/ijmm.2014.1619] [PMID: 24398697 ]
[54]
Zhu, L.; Shi, J.; Luu, T.N.; Neuman, J.C.; Trefts, E.; Yu, S.; Palmisano, B.T.; Wasserman, D.H.; Linton, M.F.; Stafford, J.M. Hepatocyte estrogen receptor alpha mediates estrogen action to promote reverse cholesterol transport during Western-type diet feeding. Mol. Metab., 2018, 8, 106-116.
[http://dx.doi.org/10.1016/j.molmet.2017.12.012] [PMID: 29331506 ]
[55]
Ulloa, N.; Arteaga, E.; Bustos, P.; Durán-Sandoval, D.; Schulze, K.; Castro, G.; Jauhiainen, M.; Fruchart, J.C.; Calvo, C. Sequential estrogen-progestin replacement therapy in healthy postmenopausal women: Effects on cholesterol efflux capacity and key proteins regulating high-density lipoprotein levels. Metabolism, 2002, 51(11), 1410-1417.
[http://dx.doi.org/10.1053/meta.2002.35580] [PMID: 12404190 ]
[56]
Ansell, B.J.; Navab, M.; Hama, S.; Kamranpour, N.; Fonarow, G.; Hough, G.; Rahmani, S.; Mottahedeh, R.; Dave, R.; Reddy, S.T.; Fogelman, A.M. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation, 2003, 108(22), 2751-2756.
[http://dx.doi.org/10.1161/01.CIR.0000103624.14436.4B] [PMID: 14638544 ]
[57]
Triolo, M.; Annema, W.; de Boer, J.F.; Tietge, U.J.; Dullaart, R.P. Simvastatin and bezafibrate increase cholesterol efflux in men with type 2 diabetes. Eur. J. Clin. Invest., 2014, 44(3), 240-248.
[http://dx.doi.org/10.1111/eci.12226] [PMID: 24325778 ]
[58]
Khera, A.V.; Demler, O.V.; Adelman, S.J.; Collins, H.L.; Glynn, R.J.; Ridker, P.M.; Rader, D.J.; Mora, S. Cholesterol efflux capacity, high-density lipoprotein particle number, and incident cardiovascular events: An analysis from the Jupiter trial (justification for the use of statins in prevention: An intervention trial evaluating rosuvastatin). Circulation, 2017, 135(25), 2494-2504.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025678] [PMID: 28450350 ]
[59]
Lee, C.J.; Choi, S.; Cheon, D.H.; Kim, K.Y.; Cheon, E.J.; Ann, S.J.; Noh, H.M.; Park, S.; Kang, S.M.; Choi, D.; Lee, J.E.; Lee, S.H. Effect of two lipid-lowering strategies on high-density lipoprotein function and some HDL-related proteins: A randomized clinical trial. Lipids Health Dis., 2017, 16(1), 49.
[http://dx.doi.org/10.1186/s12944-017-0433-6] [PMID: 28245873 ]
[60]
Miyamoto-Sasaki, M.; Yasuda, T.; Monguchi, T.; Nakajima, H.; Mori, K.; Toh, R.; Ishida, T.; Hirata, K. Pitavastatin increases HDL particles functionally preserved with cholesterol efflux capacity and antioxidative actions in dyslipidemic patients. J. Atheroscler. Thromb., 2013, 20(9), 708-716.
[http://dx.doi.org/10.5551/jat.17210] [PMID: 23739642 ]
[61]
Muñoz-Hernandez, L.; Ortiz-Bautista, R.J.; Brito-Córdova, G.; Lozano-Arvizu, F.; Saucedo, S.; Pérez-Méndez, O.; Zentella-Dehesa, A.; Dauteuille, C.; Lhomme, M.; Lesnik, P.; Chapman, M.J.; Kontush, A.; Aguilar Salinas, C.A. Cholesterol efflux capacity of large, small and total HDL particles is unaltered by atorvastatin in patients with type 2 diabetes. Atherosclerosis, 2018, 277, 72-79.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.08.027] [PMID: 30176567 ]
[62]
Le, N.A.; Jin, R.; Tomassini, J.E.; Tershakovec, A.M.; Neff, D.R.; Wilson, P.W. Changes in lipoprotein particle number with ezetimibe/simvastatin coadministered with extended-release niacin in hyperlipidemic patients. J. Am. Heart Assoc., 2013, 2(4)e000037
[http://dx.doi.org/10.1161/JAHA.113.000037] [PMID: 23926117 ]
[63]
Boden, W.E.; Probstfield, J.L.; Anderson, T.; Chaitman, B.R.; Desvignes-Nickens, P.; Koprowicz, K.; McBride, R.; Teo, K.; Weintraub, W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med., 2011, 365(24), 2255-2267.
[http://dx.doi.org/10.1056/NEJMoa1107579] [PMID: 22085343 ]
[64]
HPS2-THRIVE Collaborative Group, Landray, M.J.; Haynes, R.; Hopewell, J.C.; Parish, S.; Aung, T.; Tomson, J.; Wallendszus, K.; Craig, M.; Jiang, L.; Collins, R.; Armitage, J. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med., 2014, 371(3), 203-212.
[65]
Mani, P.; Rohatgi, A. Niacin therapy, hdl cholesterol, and cardiovascular disease: Is the HDL hypothesis defunct? Curr. Atheroscler. Rep., 2015, 17(8), 43.
[http://dx.doi.org/10.1007/s11883-015-0521-x] [PMID: 26048725]
[66]
Khera, A.V.; Patel, P.J.; Reilly, M.P.; Rader, D.J. The addition of niacin to statin therapy improves high-density lipoprotein cholesterol levels but not metrics of functionality. J. Am. Coll. Cardiol., 2013, 62(20), 1909-1910.
[http://dx.doi.org/10.1016/j.jacc.2013.07.025] [PMID: 23933538]
[67]
Staels, B.; Maes, M.; Zambon, A. Fibrates and future PPARalpha agonists in the treatment of cardiovascular disease. Nat. Clin. Pract. Cardiovasc. Med., 2008, 5(9), 542-553.
[http://dx.doi.org/10.1038/ncpcardio1278] [PMID: 18628776]
[68]
Scott, R.; O’Brien, R.; Fulcher, G.; Pardy, C.; D’Emden, M.; Tse, D.; Taskinen, M.R.; Ehnholm, C.; Keech, A. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care, 2009, 32(3), 493-498.
[http://dx.doi.org/10.2337/dc08-1543] [PMID: 18984774]
[69]
Ginsberg, H.N.; Elam, M.B.; Lovato, L.C.; Crouse, J.R., III; Leiter, L.A.; Linz, P.; Friedewald, W.T.; Buse, J.B.; Gerstein, H.C.; Probstfield, J.; Grimm, R.H.; Ismail-Beigi, F.; Bigger, J.T.; Goff, D.C. Jr.; Cushman, W.C.; Simons-Morton, D.G.; Byington, R.P. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med., 2010, 362(17), 1563-1574.
[http://dx.doi.org/10.1056/NEJMoa1001282] [PMID: 20228404]
[70]
Annema, W.; von Eckardstein, A. Dysfunctional high-density lipoproteins in coronary heart disease: Implications for diagnostics and therapy. Transl. Res., 2016, 173, 30-57.
[http://dx.doi.org/10.1016/j.trsl.2016.02.008] [PMID: 26972566]
[71]
Rotllan, N.; Llaverías, G.; Julve, J.; Jauhiainen, M.; Calpe-Berdiel, L.; Hernández, C.; Simó, R.; Blanco-Vaca, F.; Escolà-Gil, J.C. Differential effects of gemfibrozil and fenofibrate on reverse cholesterol transport from macrophages to feces in vivo. Biochim. Biophys. Acta, 2011, 1811(2), 104-110.
[http://dx.doi.org/10.1016/j.bbalip.2010.11.006] [PMID: 21126601]
[72]
Franceschini, G.; Calabresi, L.; Colombo, C.; Favari, E.; Bernini, F.; Sirtori, C.R. Effects of fenofibrate and simvastatin on HDL-related biomarkers in low-HDL patients. Atherosclerosis, 2007, 195(2), 385-391.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.10.017] [PMID: 17109866]
[73]
Franceschini, G.; Favari, E.; Calabresi, L.; Simonelli, S.; Bondioli, A.; Adorni, M.P.; Zimetti, F.; Gomaraschi, M.; Coutant, K.; Rossomanno, S.; Niesor, E.J.; Bernini, F.; Benghozi, R. Differential effects of fenofibrate and extended-release niacin on high-density lipoprotein particle size distribution and cholesterol efflux capacity in dyslipidemic patients. J. Clin. Lipidol., 2013, 7(5), 414-422.
[http://dx.doi.org/10.1016/j.jacl.2013.06.007] [PMID: 24079282]
[74]
Tsunoda, F.; Asztalos, I.B.; Horvath, K.V.; Steiner, G.; Schaefer, E.J.; Asztalos, B.F. Fenofibrate, HDL, and cardiovascular disease in Type-2 diabetes: The DAIS trial. Atherosclerosis, 2016, 247, 35-39.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.01.028] [PMID: 26854974]
[75]
Khera, A.V.; Millar, J.S.; Ruotolo, G.; Wang, M.D.; Rader, D.J. Potent peroxisome proliferator-activated receptor-α agonist treatment increases cholesterol efflux capacity in humans with the metabolic syndrome. Eur. Heart J., 2015, 36(43), 3020-3022.
[http://dx.doi.org/10.1093/eurheartj/ehv291] [PMID: 26112886]
[76]
Yokote, K.; Yamashita, S.; Arai, H.; Araki, E.; Suganami, H.; Ishibashi, S. Of The K-Study Group, O.B. Long-term efficacy and safety of pemafibrate, a novel selective peroxisome proliferator-activated receptor-α modulator (spparmα), in dyslipidemic patients with renal impairment. Int. J. Mol. Sci., 2019, 20(3), 706.
[http://dx.doi.org/10.3390/ijms20030706] [PMID: 30736366 ]
[77]
Yamashita, S.; Masuda, D.; Matsuzawa, Y. Pemafibrate, a new selective pparα modulator: Drug concept and its clinical applications for dyslipidemia and metabolic diseases. Curr. Atheroscler. Rep., 2020, 22(1), 5.
[http://dx.doi.org/10.1007/s11883-020-0823-5] [PMID: 31974794 ]
[78]
Miyazaki, Y.; DeFronzo, R.A. Rosiglitazone and pioglitazone similarly improve insulin sensitivity and secretion, glucose tolerance and adipocytokines in type 2 diabetic patients. Diabetes Obes. Metab., 2008, 10(12), 1204-1211.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00880.x] [PMID: 18476983 ]
[79]
Ozasa, H.; Ayaori, M.; Iizuka, M.; Terao, Y.; Uto-Kondo, H.; Yakushiji, E.; Takiguchi, S.; Nakaya, K.; Hisada, T.; Uehara, Y.; Ogura, M.; Sasaki, M.; Komatsu, T.; Horii, S.; Mochizuki, S.; Yoshimura, M.; Ikewaki, K. Pioglitazone enhances cholesterol efflux from macrophages by increasing ABCA1/ABCG1 expressions via PPARγ/LXRα pathway: Findings from in vitro and ex vivo studies. Atherosclerosis, 2011, 219(1), 141-150.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.07.113] [PMID: 21862012 ]
[80]
Millar, J.S.; Ikewaki, K.; Bloedon, L.T.; Wolfe, M.L.; Szapary, P.O.; Rader, D.J. Effect of rosiglitazone on HDL metabolism in subjects with metabolic syndrome and low HDL. J. Lipid Res., 2011, 52(1), 136-142.
[http://dx.doi.org/10.1194/jlr.P008136] [PMID: 20971975 ]
[81]
Nissen, S.E.; Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med., 2007, 356(24), 2457-2471.
[http://dx.doi.org/10.1056/NEJMoa072761] [PMID: 17517853 ]
[82]
Wallach, J.D.; Wang, K.; Zhang, A.D.; Cheng, D.; Grossetta Nardini, H.K.; Lin, H.; Bracken, M.B.; Desai, M.; Krumholz, H.M.; Ross, J.S. Updating insights into rosiglitazone and cardiovascular risk through shared data: Individual patient and summary level meta-analyses. BMJ, 2020, 368, l7078.
[http://dx.doi.org/10.1136/bmj.l7078] [PMID: 32024657 ]
[83]
Goldberg, R.B.; Kendall, D.M.; Deeg, M.A.; Buse, J.B.; Zagar, A.J.; Pinaire, J.A.; Tan, M.H.; Khan, M.A.; Perez, A.T.; Jacober, S.J. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care, 2005, 28(7), 1547-1554.
[http://dx.doi.org/10.2337/diacare.28.7.1547] [PMID: 15983299 ]
[84]
Mazzone, T.; Meyer, P.M.; Feinstein, S.B.; Davidson, M.H.; Kondos, G.T.; D’Agostino, R.B., Sr; Perez, A.; Provost, J.C.; Haffner, S.M. Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: A randomized trial. JAMA, 2006, 296(21), 2572-2581.
[http://dx.doi.org/10.1001/jama.296.21.joc60158] [PMID: 17101640 ]
[85]
Nissen, S.E.; Nicholls, S.J.; Wolski, K.; Nesto, R.; Kupfer, S.; Perez, A.; Jure, H.; De Larochellière, R.; Staniloae, C.S.; Mavromatis, K.; Saw, J.; Hu, B.; Lincoff, A.M.; Tuzcu, E.M. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: The PERISCOPE randomized controlled trial. JAMA, 2008, 299(13), 1561-1573.
[http://dx.doi.org/10.1001/jama.299.13.1561] [PMID: 18378631 ]
[86]
Liao, H.W.; Saver, J.L.; Wu, Y.L.; Chen, T.H.; Lee, M.; Ovbiagele, B. Pioglitazone and cardiovascular outcomes in patients with insulin resistance, pre-diabetes and type 2 diabetes: A systematic review and meta-analysis. BMJ Open, 2017, 7(1), e013927.
[http://dx.doi.org/10.1136/bmjopen-2016-013927] [PMID: 28057658]
[87]
Choi, S.; Aljakna, A.; Srivastava, U.; Peterson, B.R.; Deng, B.; Prat, A.; Korstanje, R. Decreased APOE-containing HDL subfractions and cholesterol efflux capacity of serum in mice lacking PCSK9. Lipids Health Dis., 2013, 12, 112.
[http://dx.doi.org/10.1186/1476-511X-12-112] [PMID: 23883163 ]
[88]
Ingueneau, C.; Hollstein, T.; Grenkowitz, T.; Ruidavets, J.B.; Kassner, U.; Duparc, T.; Combes, G.; Perret, B.; Genoux, A.; Schumann, F.; Bobbert, T.; Steinhagen-Thiessen, E.; Martinez, L.O. Treatment with PCSK9 inhibitors induces a more anti-atherogenic HDL lipid profile in patients at high cardiovascular risk. Vascul. Pharmacol., 2020, 135106804
[http://dx.doi.org/10.1016/j.vph.2020.106804] [PMID: 32987194 ]
[89]
Ruiz-Ramie, J.J.; Barber, J.L.; Sarzynski, M.A. Effects of exercise on HDL functionality. Curr. Opin. Lipidol., 2019, 30(1), 16-23.
[http://dx.doi.org/10.1097/MOL.0000000000000568] [PMID: 30480581 ]
[90]
Koba, S.; Ayaori, M.; Uto-Kondo, H.; Furuyama, F.; Yokota, Y.; Tsunoda, F.; Shoji, M.; Ikewaki, K.; Kobayashi, Y. Beneficial effects of exercise-based cardiac rehabilitation on high-density lipoprotein-mediated cholesterol efflux capacity in patients with acute coronary syndrome. J. Atheroscler. Thromb., 2016, 23(7), 865-877.
[http://dx.doi.org/10.5551/jat.34454] [PMID: 26947596 ]
[91]
Furuyama, F.; Koba, S.; Yokota, Y.; Tsunoda, F.; Shoji, M.; Kobayashi, Y. Effects of cardiac rehabilitation on high-density lipoprotein-mediated cholesterol efflux capacity and paraoxonase-1 activity in patients with acute coronary syndrome. J. Atheroscler. Thromb., 2018, 25(2), 153-169.
[http://dx.doi.org/10.5551/jat.41095] [PMID: 28855433 ]
[92]
Boyer, M.; Mitchell, P.L.; Poirier, P.; Alméras, N.; Tremblay, A.; Bergeron, J.; Després, J.P.; Arsenault, B.J. Impact of a one-year lifestyle modification program on cholesterol efflux capacities in men with abdominal obesity and dyslipidemia. Am. J. Physiol. Endocrinol. Metab., 2018, 315(4), E460-E468.
[http://dx.doi.org/10.1152/ajpendo.00127.2018] [PMID: 29870675 ]
[93]
Khan, A.A.; Mundra, P.A.; Straznicky, N.E.; Nestel, P.J.; Wong, G.; Tan, R.; Huynh, K.; Ng, T.W.; Mellett, N.A.; Weir, J.M.; Barlow, C.K.; Alshehry, Z.H.; Lambert, G.W.; Kingwell, B.A.; Meikle, P.J. Weight loss and exercise alter the high-density lipoprotein lipidome and improve high-density lipoprotein functionality in metabolic syndrome. Arterioscler. Thromb. Vasc. Biol., 2018, 38(2), 438-447.
[http://dx.doi.org/10.1161/ATVBAHA.117.310212] [PMID: 29284607 ]
[94]
Wesnigk, J.; Bruyndonckx, L.; Hoymans, V.Y.; De Guchtenaere, A.; Fischer, T.; Schuler, G.; Vrints, C.J.; Adams, V. Impact of lifestyle intervention on HDL-induced enos activation and cholesterol efflux capacity in obese adolescent. Cardiol. Res. Pract., 2016, 2016, 2820432.
[http://dx.doi.org/10.1155/2016/2820432] [PMID: 27965912 ]
[95]
Albaghdadi, M.S.; Wang, Z.; Gao, Y.; Mutharasan, R.K.; Wilkins, J. High-density lipoprotein subfractions and cholesterol efflux capacity are not affected by supervised exercise but are associated with baseline interleukin-6 in patients with peripheral artery disease. Front. Cardiovasc. Med., 2017, 4, 9.
[http://dx.doi.org/10.3389/fcvm.2017.00009] [PMID: 28303243 ]
[96]
Sarzynski, M.A.; Ruiz-Ramie, J.J.; Barber, J.L.; Slentz, C.A.; Apolzan, J.W.; McGarrah, R.W.; Harris, M.N.; Church, T.S.; Borja, M.S.; He, Y.; Oda, M.N.; Martin, C.K.; Kraus, W.E.; Rohatgi, A. Effects of increasing exercise intensity and dose on multiple measures of HDL (high-density lipoprotein) function. Arterioscler. Thromb. Vasc. Biol., 2018, 38(4), 943-952.
[http://dx.doi.org/10.1161/ATVBAHA.117.310307] [PMID: 29437573 ]
[97]
Ribeiro, I.C.; Iborra, R.T.; Neves, M.Q.; Lottenberg, S.A.; Charf, A.M.; Nunes, V.S.; Negrão, C.E.; Nakandakare, E.R.; Quintão, E.C.; Passarelli, M. HDL atheroprotection by aerobic exercise training in type 2 diabetes mellitus. Med. Sci. Sports Exerc., 2008, 40(5), 779-786.
[http://dx.doi.org/10.1249/MSS.0b013e3181632d2d] [PMID: 18408623 ]
[98]
Casella-Filho, A.; Chagas, A.C.; Maranhão, R.C.; Trombetta, I.C.; Cesena, F.H.; Silva, V.M.; Tanus-Santos, J.E.; Negrão, C.E.; da Luz, P.L. Effect of exercise training on plasma levels and functional properties of high-density lipoprotein cholesterol in the metabolic syndrome. Am. J. Cardiol., 2011, 107(8), 1168-1172.
[http://dx.doi.org/10.1016/j.amjcard.2010.12.014] [PMID: 21310370 ]
[99]
Sang, H.; Yao, S.; Zhang, L.; Li, X.; Yang, N.; Zhao, J.; Zhao, L.; Si, Y.; Zhang, Y.; Lv, X.; Xue, Y.; Qin, S. Walk-run training improves the anti-inflammation properties of high-density lipoprotein in patients with metabolic syndrome. J. Clin. Endocrinol. Metab., 2015, 100(3), 870-879.
[http://dx.doi.org/10.1210/jc.2014-2979] [PMID: 25514103]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy