Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nanotechnology-based Colorimetric Approaches for Pathogenic Virus Sensing: A Review

Author(s): Hayati Filik* and Asiye Aslıhan Avan

Volume 29, Issue 15, 2022

Published on: 14 July, 2021

Page: [2691 - 2718] Pages: 28

DOI: 10.2174/0929867328666210714154051

Price: $65

Abstract

Fast and inexpensive virus identification protocols are of paramount value to hinder the increase of pandemic diseases, minimize economic and social damages, and expedite proper clinical rehabilitation. Until now, various biosensors have been developed for the identification of pathogenic particles. But, they offer many limitations. Nanotechnology overcomes these difficulties and allows a direct identification of pathogenic species in real-time. Among them, nanomaterial based-colorimetric sensing approach for identifying pathogenic viruses by the naked eye has attracted much awareness because of their simplicity, speed, and low cost. In this review, the latest tendencies and advancements used in detecting pathogenic viruses using colorimetric concepts, are overviewed. We focus on and reconsider the use of distinctive nanomaterials such as metal nanoparticles, carbon nanotubes, graphene oxide, and conducting polymer for the formation of colorimetric pathogenic virus sensors.

Keywords: Pathogen, virus, colorimetry, probe, sensor, nanomaterial, detection.

[1]
Verma, M.S.; Rogowski, J.L.; Jones, L.; Gu, F.X. Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnol. Adv., 2015, 33(6 Pt 1), 666-680.
[http://dx.doi.org/10.1016/j.biotechadv.2015.03.003] [PMID: 25792228]
[2]
Kaittanis, C.; Santra, S.; Perez, J.M. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv. Drug Deliv. Rev., 2010, 62(4-5), 408-423.
[http://dx.doi.org/10.1016/j.addr.2009.11.013] [PMID: 19914316]
[3]
Tallury, P.; Malhotra, A.; Byrne, L.M.; Santra, S. Nanobioimaging and sensing of infectious diseases. Adv. Drug Deliv. Rev., 2010, 62(4-5), 424-437.
[http://dx.doi.org/10.1016/j.addr.2009.11.014] [PMID: 19931579]
[4]
Kadri, K. Polymerase chain reaction (PCR): principle and applications. In: Synth. Biol. - New Interdisciplinary Sci; IntechOpen: London, 2020.
[http://dx.doi.org/10.5772/intechopen.86491]
[5]
Joshi, M.; Deshpande, J.D. Polymerase chain reaction: methods, principles and application. Int. J. Biomed. Res., 2011, 2(1), 81-97.
[http://dx.doi.org/10.7439/ijbr.v2i1.83]
[6]
Artika, I.M.; Wiyatno, A.; Ma’roef, C.N. Pathogenic viruses: molecular detection and characterization. Infect. Genet. Evol., 2020, 81104215
[http://dx.doi.org/10.1016/j.meegid.2020.104215] [PMID: 32006706]
[7]
Nii-Trebi, N.I. Emerging and neglected infectious diseases: insights, advances, and challenges. BioMed Res. Int., 2017, 20175245021
[http://dx.doi.org/10.1155/2017/5245021] [PMID: 28286767]
[8]
Ribeiro, B.V.; Cordeiro, T.A.R.; Oliveira e Freitas, G.R.; Ferreira, L.F.; Franco, D.L. Biosensors for the detection of respiratory viruses: a review. Talanta Open, 2020, 2100007
[http://dx.doi.org/10.1016/j.talo.2020.100007]
[9]
Mokhtarzadeh, A.; Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; Gharaatifar, N.; Hasanzadeh, M.; Baradaran, B.; de la Guardia, M. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Analyt. Chem., 2017, 97, 445-457.
[http://dx.doi.org/10.1016/j.trac.2017.10.005] [PMID: 32287543]
[10]
Ye, J.; Xu, M.; Tian, X.; Cai, S.; Zeng, S. Research advances in the detection of miRNA. J. Pharm. Anal., 2019, 9(4), 217-226.
[http://dx.doi.org/10.1016/j.jpha.2019.05.004] [PMID: 31452959]
[11]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[12]
Chu, D.K.W.; Pan, Y.; Cheng, S.M.S.; Hui, K.P.Y.; Krishnan, P.; Liu, Y.; Ng, D.Y.M.; Wan, C.K.C.; Yang, P.; Wang, Q.; Peiris, M.; Poon, L.L.M. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem., 2020, 66(4), 549-555.
[http://dx.doi.org/10.1093/clinchem/hvaa029] [PMID: 32031583]
[13]
Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; Mulders, D.G.J.C.; Haagmans, B.L.; van der Veer, B.; van den Brink, S.; Wijsman, L.; Goderski, G.; Romette, J.L.; Ellis, J.; Zambon, M.; Peiris, M.; Goossens, H.; Reusken, C.; Koopmans, M.P.G.; Drosten, C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill., 2020, 25(3)2000045
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045] [PMID: 31992387]
[14]
Pereira-Gómez, M.; Fajardo, Á.; Echeverría, N.; López-Tort, F.; Perbolianachis, P.; Costábile, A.; Aldunate, F.; Moreno, P.; Moratorio, G. Evaluation of SYBR green real time PCR for detecting SARS-CoV-2 from clinical samples. J. Virol. Methods, 2021, 289114035
[http://dx.doi.org/10.1016/j.jviromet.2020.114035] [PMID: 33285190]
[15]
WHO. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases, 2019. Available at: https://www.who.int/publications/i/item/10665-331501 (Accessed date: February 3, 2021)
[16]
Wacker, M.J.; Godard, M.P. Analysis of one-step and two-step real-time RT-PCR using SuperScript III. J. Biomol. Tech., 2005, 16(3), 266-271.
[PMID: 16461951]
[17]
Singh, J.; Birbian, N.; Sinha, S.; Goswami, A. A critical review on PCR, its types and applications. Int. J. Adv. Res. Biol. Sci., 2014, 1(7), 65-80.
[18]
VanDevanter, D.R.; Warrener, P.; Bennett, L.; Schultz, E.R.; Coulter, S.; Garber, R.L.; Rose, T.M. Detection and analysis of diverse herpesviral species by consensus primer PCR. J. Clin. Microbiol., 1996, 34(7), 1666-1671.
[http://dx.doi.org/10.1128/JCM.34.7.1666-1671.1996] [PMID: 8784566]
[19]
Jensen, M.A.; Fukushima, M.; Davis, R.W. DMSO and betaine greatly improve amplification of GC-rich constructs in de novo synthesis. PLoS One, 2010, 5(6)e11024
[http://dx.doi.org/10.1371/journal.pone.0011024] [PMID: 20552011]
[20]
Wang, Y.; Wang, F.; Wang, H.; Song, M. Graphene oxide enhances the specificity of the polymerase chain reaction by modifying primer-template matching. Sci. Rep., 2017, 7(1), 16510.
[http://dx.doi.org/10.1038/s41598-017-16836-x] [PMID: 29184216]
[21]
Zhong, Y.; Huang, L.; Zhang, Z.; Xiong, Y.; Sun, L.; Weng, J. Enhancing the specificity of polymerase chain reaction by graphene oxide through surface modification: zwitterionic polymer is superior to other polymers with different charges. Int. J. Nanomedicine, 2016, 11, 5989-6002.
[http://dx.doi.org/10.2147/IJN.S120659] [PMID: 27956830]
[22]
Smith, C.J.; Osborn, A.M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol., 2009, 67(1), 6-20.
[http://dx.doi.org/10.1111/j.1574-6941.2008.00629.x] [PMID: 19120456]
[23]
Watzinger, F.; Ebner, K.; Lion, T. Detection and monitoring of virus infections by real-time PCR. Mol. Aspects Med., 2006, 27(2-3), 254-298.
[http://dx.doi.org/10.1016/j.mam.2005.12.001] [PMID: 16481036]
[24]
Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, 28(12)e63
[http://dx.doi.org/10.1093/nar/28.12.e63] [PMID: 10871386]
[25]
Vanzha, E.; Pylaev, T.; Khanadeev, V.; Konnova, S.; Fedorova, V.; Khlebtsov, N. Gold nanoparticle-assisted polymerase chain reaction: effects of surface ligands, nanoparticle shape and material. RSC Advances, 2016, 6(111), 110146-110154.
[http://dx.doi.org/10.1039/C6RA20472D]
[26]
Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc., 2008, 3(5), 877-882.
[http://dx.doi.org/10.1038/nprot.2008.57] [PMID: 18451795]
[27]
Becherer, L.; Borst, N.; Bakheit, M.; Frischmann, S.; Zengerle, R.; Von Stetten, F. Loop-mediated isothermal amplification (LAMP)-review and classification of methods for sequence-specific detection. Anal. Methods, 2020, 12(6), 717-746.
[http://dx.doi.org/10.1039/C9AY02246E]
[28]
Kundapur, R.R.; Nema, V.; Tompkins, S.M. Loop-mediated isothermal amplification: beyond microbial identification. Cogent Biol., 2016, 2(1)1137110
[http://dx.doi.org/10.1080/23312025.2015.1137110]
[29]
Zhu, X.; Wang, X.; Han, L.; Chen, T.; Wang, L.; Li, H.; Li, S.; He, L.; Fu, X.; Chen, S.; Xing, M.; Chen, H.; Wang, Y. Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosens. Bioelectron., 2020, 166112437
[http://dx.doi.org/10.1016/j.bios.2020.112437] [PMID: 32692666]
[30]
Martzy, R.; Kolm, C.; Krska, R.; Mach, R.L.; Farnleitner, A.H.; Reischer, G.H. Challenges and perspectives in the application of isothermal DNA amplification methods for food and water analysis. Anal. Bioanal. Chem., 2019, 411(9), 1695-1702.
[http://dx.doi.org/10.1007/s00216-018-1553-1] [PMID: 30617408]
[31]
Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP): recent progress in research and development. J. Infect. Chemother., 2013, 19(3), 404-411.
[http://dx.doi.org/10.1007/s10156-013-0590-0] [PMID: 23539453]
[32]
Tasrip, N.A.; Khairil Mokhtar, N.F.; Hanapi, U.K.; Abdul Manaf, Y.N.; Ali, M.E.; Cheah, Y.K.; Mustafa, S.; Mohd Desa, M.N. Loop mediated isothermal amplification; a review on its application and strategy in animal species authentication of meat based food products. Int. Food Res. J., 2019, 26(1), 1-10.
[33]
Calvert, A.E.; Biggerstaff, B.J.; Tanner, N.A.; Lauterbach, M.; Lanciotti, R.S. Rapid colorimetric detection of zika virus from serum and urine specimens by reverse transcription loop-mediated isothermal amplification (RT-LAMP). PLoS One, 2017, 12(9)e0185340
[http://dx.doi.org/10.1371/journal.pone.0185340] [PMID: 28945787]
[34]
WHO. Infection prevention and control of epidemic-and pandemic prone acute respiratory infections in health care - WHO Guidelines (2014). Available at: https://www.who.int/publications/i/item/infection-prevention-and-control-of-epidemic-and-pandemic-prone-acute-respiratory-infections-in-health-care (Accessed Date: August 4, 2021).
[35]
Rauf, S.; Lahcen, A.A.; Aljedaibi, A.; Beduk, T.; Ilton de Oliveira Filho, J.; Salama, K.N. Gold nanostructured laser-scribed graphene: a new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers. Biosens. Bioelectron., 2021, 180113116
[http://dx.doi.org/10.1016/j.bios.2021.113116] [PMID: 33662847]
[36]
Yu, L.; Song, Z.; Peng, J.; Yang, M.; Zhi, H.; He, H. Progress of gold nanomaterials for colorimetric sensing based on different strategies. Trends Analyt. Chem., 2020, 127115880
[http://dx.doi.org/10.1016/j.trac.2020.115880]
[37]
Ramanathan, S.; Gopinath, S.C.B.; Arshad, M.K.M.; Poopalan, P.; Anbu, P. A DNA based visual and colorimetric aggregation assay for the early growth factor receptor (EGFR) mutation by using unmodified gold nanoparticles. Mikrochim. Acta, 2019, 186(8), 546.
[http://dx.doi.org/10.1007/s00604-019-3696-y] [PMID: 31321546]
[38]
Hamdy, M.E.; Del Carlo, M.; Hussein, H.A.; Salah, T.A.; El-Deeb, A.H.; Emara, M.M.; Pezzoni, G.; Compagnone, D. Development of gold nanoparticles biosensor for ultrasensitive diagnosis of foot and mouth disease virus. J. Nanobiotechnology, 2018, 16(1), 48.
[http://dx.doi.org/10.1186/s12951-018-0374-x] [PMID: 29751767]
[39]
Jans, H.; Huo, Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev., 2012, 41(7), 2849-2866.
[http://dx.doi.org/10.1039/C1CS15280G] [PMID: 22182959]
[40]
Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: a review. Talanta, 2018, 184, 537-556.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[41]
Chang, C-C.; Chen, C-P.; Wu, T-H.; Yang, C-H.; Lin, C-W.; Chen, C-Y. Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications. Nanomaterials (Basel), 2019, 9(6), 861.
[http://dx.doi.org/10.3390/nano9060861] [PMID: 31174348]
[42]
Jazayeri, M.H.; Aghaie, T.; Avan, A.; Vatankhah, A.; Ghaffari, M.R.S. Colorimetric detection based on gold nano particles (GNPs): an easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion). Sens. Biosensing Res., 2018, 20, 1-8.
[http://dx.doi.org/10.1016/j.sbsr.2018.05.002]
[43]
Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter, 2017, 29(20)203002
[http://dx.doi.org/10.1088/1361-648X/aa60f3] [PMID: 28426435]
[44]
Aldewachi, H.; Chalati, T.; Woodroofe, M.N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold nanoparticle-based colorimetric biosensors. Nanoscale, 2017, 10(1), 18-33.
[http://dx.doi.org/10.1039/C7NR06367A] [PMID: 29211091]
[45]
Radwan, S.H.; Azzazy, H.M.E. Gold nanoparticles for molecular diagnostics. Expert Rev. Mol. Diagn., 2009, 9(5), 511-524.
[http://dx.doi.org/10.1586/erm.09.33] [PMID: 19580434]
[46]
Zeng, S.; Yong, K.T.; Roy, I.; Dinh, X.Q.; Yu, X.; Luan, F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics, 2011, 6(3), 491-506.
[http://dx.doi.org/10.1007/s11468-011-9228-1]
[47]
Zhao, W.; Brook, M.A.; Li, Y. Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem, 2008, 9(15), 2363-2371.
[http://dx.doi.org/10.1002/cbic.200800282] [PMID: 18821551]
[48]
Zhao, V.X.T.; Wong, T.I.; Zheng, X.T.; Tan, Y.N.; Zhou, X. Colorimetric biosensors for point-of-care virus detections. Mater. Sci. Energy Technol., 2020, 3, 237-249.
[http://dx.doi.org/10.1016/j.mset.2019.10.002] [PMID: 33604529]
[49]
Wang, L.; He, K.; Sadak, O.; Wang, X.; Wang, Q.; Xu, X. Visual detection of in vitro nucleic acid replication by submicro- and nano-sized materials. Biosens. Bioelectron., 2020, 169112602
[http://dx.doi.org/10.1016/j.bios.2020.112602] [PMID: 32947078]
[50]
Sun, C.; Cheng, Y.; Pan, Y.; Yang, J.; Wang, X.; Xia, F. Efficient polymerase chain reaction assisted by metal-organic frameworks. Chem. Sci. (Camb.), 2020, 11(3), 797-802.
[http://dx.doi.org/10.1039/C9SC03202A] [PMID: 34123055]
[51]
Arduini, F.; Cinti, S.; Scognamiglio, V.; Moscone, D. Nanomaterial-based sensors. In: Handbook of Nanomaterials in Analytical Chemistry; Hussain, C.M., Ed.; Elsevier: Amsterdam, 2019, pp. 329-359.
[http://dx.doi.org/10.1016/B978-0-12-816699-4.00013-X ]
[52]
Draz, M.S.; Shafiee, H. Applications of gold nanoparticles in virus detection. Theranostics, 2018, 8(7), 1985-2017.
[http://dx.doi.org/10.7150/thno.23856] [PMID: 29556369]
[53]
Choi, Y.; Hwang, J.H.; Lee, S.Y. Recent trends in nanomaterials-based colorimetric detection of pathogenic bacteria and viruses. Small Methods, 2018, 2(4)1700351
[http://dx.doi.org/10.1002/smtd.201700351] [PMID: 32328530]
[54]
Singh, P.; Kakkar, S. Bharti; Kumar, R.; Bhalla, V. Rapid and sensitive colorimetric detection of pathogens based on silver-urease interactions. Chem. Commun. (Camb.), 2019, 55(33), 4765-4768.
[http://dx.doi.org/10.1039/C9CC00225A] [PMID: 30882114]
[55]
Peng, H.; Chen, I.A. Rapid colorimetric detection of bacterial species through the capture of gold nanoparticles by chimeric phages. ACS Nano, 2019, 13(2), 1244-1252.
[http://dx.doi.org/10.1021/acsnano.8b06395] [PMID: 30586498]
[56]
Yoo, S.M.; Lee, S.Y. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol., 2016, 34(1), 7-25.
[http://dx.doi.org/10.1016/j.tibtech.2015.09.012] [PMID: 26506111]
[57]
Li, J.; Zhu, Y.; Wu, X.; Hoffmann, M.R. Rapid detection methods for bacterial pathogens in ambient waters at the point of sample collection: a brief review. Clin. Infect. Dis., 2020, 71(Suppl. 2), S84-S90.
[http://dx.doi.org/10.1093/cid/ciaa498] [PMID: 32725238]
[58]
Lou, U.K.; Wong, C.H.; Chen, Y. A simple and rapid colorimetric detection of serum lncRNA biomarkers for diagnosis of pancreatic cancer. RSC Advances, 2020, 10(14), 8087-8092.
[http://dx.doi.org/10.1039/C9RA07858D]
[59]
Song, M.; Yang, M.; Hao, J. Pathogenic virus detection by optical nanobiosensors. Cell Rep. Phys Sci., 2021, 2(1)100288
[http://dx.doi.org/10.1016/j.xcrp.2020.100288] [PMID: 33432308]
[60]
Vermisoglou, E.; Panáček, D.; Jayaramulu, K.; Pykal, M.; Frébort, I.; Kolář, M.; Hajdúch, M.; Zbořil, R.; Otyepka, M. Human virus detection with graphene-based materials. Biosens. Bioelectron., 2020, 166112436
[http://dx.doi.org/10.1016/j.bios.2020.112436] [PMID: 32750677]
[61]
Ehtesabi, H. Application of carbon nanomaterials in human virus detection. J. Sci. Adv. Mater. Devices, 2020, 5(4), 436-450.
[http://dx.doi.org/10.1016/j.jsamd.2020.09.005]
[62]
Innocenzi, P.; Stagi, L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem. Sci. (Camb.), 2020, 11(26), 6606-6622.
[http://dx.doi.org/10.1039/D0SC02658A] [PMID: 33033592]
[63]
Turnage, N.L.; Gibson, K.E. Sampling methods for recovery of human enteric viruses from environmental surfaces. J. Virol. Methods, 2017, 248, 31-38.
[http://dx.doi.org/10.1016/j.jviromet.2017.06.008] [PMID: 28633964]
[64]
Danovaro, R.; Middelboe, M. Chapter 8 - Separation of free virus particles from sediments in aquatic systems. In: Manual of Aquatic Viral Ecology; Wilhelm, S.W.; Weinbauer, M.G.; Suttle, C.A., Eds.; ASLO: Waco, 2010, pp. 74-81.
[http://dx.doi.org/10.4319/mave.2010.978-0-9845591-0-7.74]
[65]
McNamara, R.P.; Dittmer, D.P. Modern techniques for the isolation of extracellular vesicles and viruses. J. Neuroimmune Pharmacol., 2020, 15(3), 459-472.
[http://dx.doi.org/10.1007/s11481-019-09874-x] [PMID: 31512168]
[66]
Iwai, K.; Minamisawa, T.; Suga, K.; Yajima, Y.; Shiba, K. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J. Extracell. Vesicles, 2016, 5(1), 30829.
[http://dx.doi.org/10.3402/jev.v5.30829] [PMID: 27193612]
[67]
Espy, M.J.; Patel, R.; Paya, C.V.; Smith, T.F. Comparison of three methods for extraction of viral nucleic acids from blood cultures. J. Clin. Microbiol., 1995, 33(1), 41-44.
[http://dx.doi.org/10.1128/JCM.33.1.41-44.1995] [PMID: 7699063]
[68]
Alygizakis, N.; Markou, A.N.; Rousis, N.I.; Galani, A.; Avgeris, M.; Adamopoulos, P.G.; Scorilas, A.; Lianidou, E.S.; Paraskevis, D.; Tsiodras, S.; Tsakris, A.; Dimopoulos, M.A.; Thomaidis, N.S. Analytical methodologies for the detection of SARS-CoV-2 in wastewater: protocols and future perspectives. Trends Analyt. Chem., 2021, 134116125
[http://dx.doi.org/10.1016/j.trac.2020.116125] [PMID: 33235400]
[69]
Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D. Darnell, J. Molecular Cell Biology, 4th ed; W.H. Freeman: New York, 2000.
[70]
Gould, E.A. Methods for long-term virus preservation. Mol. Biotechnol., 1999, 13(1), 57-66.
[http://dx.doi.org/10.1385/MB:13:1:57] [PMID: 10934522]
[71]
Bhat, A.I.; Rao, G.P. Storage and preservation of plant virus cultures. In: Characterization of Plant Viruses; Bhat, A.I.; Rao, G.P., Eds.; Humana: New York, NY, 2020, pp. 125-131.
[http://dx.doi.org/10.1007/978-1-0716-0334-5_20]
[72]
Yaqoob, S.B.; Adnan, R.; Rameez Khan, R.M.; Rashid, M. Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Front Chem., 2020, 8, 376.
[http://dx.doi.org/10.3389/fchem.2020.00376] [PMID: 32582621]
[73]
Zhang, Y.; Chen, L.M.; He, M.; Hepatitis, C.; Hepatitis, C. Virus in mainland China with an emphasis on genotype and subtype distribution. Virol. J., 2017, 14(1), 41.
[http://dx.doi.org/10.1186/s12985-017-0710-z] [PMID: 28231805]
[74]
Gao, T.; Chai, W.; Shi, L.; Shi, H.; Sheng, A.; Yang, J.; Li, G. A new colorimetric assay method for the detection of anti-hepatitis C virus antibody with high sensitivity. Analyst (Lond.), 2019, 144(21), 6365-6370.
[http://dx.doi.org/10.1039/C9AN01466G] [PMID: 31566645]
[75]
Cheng, Y.H.; Tang, H.; Jiang, J.H. Enzyme mediated assembly of gold nanoparticles for ultrasensitive colorimetric detection of hepatitis C virus antibody. Anal. Methods, 2017, 9(25), 3777-3781.
[http://dx.doi.org/10.1039/C7AY01086A]
[76]
Gotesman, M.; Kattlun, J.; Bergmann, S.M.; El-Matbouli, M. CyHV-3: the third cyprinid herpesvirus. Dis. Aquat. Organ., 2013, 105(2), 163-174.
[http://dx.doi.org/10.3354/dao02614] [PMID: 23872859]
[77]
Saleh, M.; El-Matbouli, M. Rapid detection of Cyprinid herpesvirus-3 (CyHV-3) using a gold nanoparticle-based hybridization assay. J. Virol. Methods, 2015, 217, 50-54.
[http://dx.doi.org/10.1016/j.jviromet.2015.02.021] [PMID: 25738211]
[78]
Hou, P.; Xu, Y.; Wang, H.; He, H. Detection of bovine viral diarrhea virus genotype 1 in aerosol by a real time RT-PCR assay. BMC Vet. Res., 2020, 16(1), 114.
[http://dx.doi.org/10.1186/s12917-020-02330-6] [PMID: 32295612]
[79]
Hou, P.; Zhao, G.; Wang, H.; He, C.; He, H. Rapid detection of bovine viral diarrhea virus using recombinase polymerase amplification combined with lateral flow dipstick assays in bulk milk. Vet. Arh., 2018, 88(5), 627-642.
[http://dx.doi.org/10.24099/vet.arhiv.0145]
[80]
Askaravi, M.; Rezatofighi, S.E.; Rastegarzadeh, S.; Seifi Abad Shapouri, M.R. Development of a new method based on unmodified gold nanoparticles and peptide nucleic acids for detecting bovine viral diarrhea virus-RNA. AMB Express, 2017, 7(1), 137.
[http://dx.doi.org/10.1186/s13568-017-0432-z] [PMID: 28655215]
[81]
Ghasemi Monjezi, S.; Rezatofighi, S.E.; Mirzadeh, K.; Rastegarzadeh, S. Enzyme-free amplification and detection of bovine viral diarrhea virus RNA using hybridization chain reaction and gold nanoparticles. Appl. Microbiol. Biotechnol., 2016, 100(20), 8913-8921.
[http://dx.doi.org/10.1007/s00253-016-7785-0] [PMID: 27535242]
[82]
Stott, D.I. Immunoblotting and dot blotting. J. Immunol. Methods, 1989, 119(2), 153-187.
[http://dx.doi.org/10.1016/0022-1759(89)90394-3] [PMID: 2656867]
[83]
Kim, M.W.; Park, H.J.; Park, C.Y.; Kim, J.H.; Cho, C.H.; Phan, L.M.T.; Park, J.P.; Kailasa, S.K.; Lee, C.H.; Park, T.J. Fabrication of a paper strip for facile and rapid detection of bovine viral diarrhea virus: via signal enhancement by copper polyhedral nanoshells. RSC Advances, 2020, 10(50), 29759-29764.
[http://dx.doi.org/10.1039/D0RA03677C]
[84]
Heidari, Z.; Rezatofighi, S.E.; Rastegarzadeh, S. A novel unmodified gold nanoparticles-based assay for direct detection of unamplified bovine viral diarrhea virus-RNA. J. Nanosci. Nanotechnol., 2016, 16(12), 12344-12350.
[http://dx.doi.org/10.1166/jnn.2016.13752]
[85]
Crespo, O.; Janssen, D.; Robles, C.; Ruiz, L. Resistance to cucumber green mottle mosaic virus in Cucumis sativus. Euphytica, 2018, 214(11), 201.
[http://dx.doi.org/10.1007/s10681-018-2286-0]
[86]
Wang, L.; Liu, Z.; Xia, X.; Yang, C.; Huang, J.; Wan, S. Colorimetric detection of cucumber green mottle mosaic virus using unmodified gold nanoparticles as colorimetric probes. J. Virol. Methods, 2017, 243, 113-119.
[http://dx.doi.org/10.1016/j.jviromet.2017.01.010] [PMID: 28109844]
[87]
Dang, M.; Cheng, Q.; Hu, Y.; Wu, J.; Zhou, X.; Qian, Y. Proteomic changes during MCMV infection revealed by iTRAQ quantitative proteomic analysis in maize. Int. J. Mol. Sci., 2019, 21(1), 35.
[http://dx.doi.org/10.3390/ijms21010035] [PMID: 31861651]
[88]
Wang, L.; Liu, Z.; Xia, X.; Huang, J. Visual detection of: maize chlorotic mottle virus by asymmetric polymerase chain reaction with unmodified gold nanoparticles as the colorimetric probe. Anal. Methods, 2016, 8(38), 6959-6964.
[http://dx.doi.org/10.1039/C6AY02116F]
[89]
Liu, Z.; Xia, X.; Yang, C.; Wang, L. Visual detection of maize chlorotic mottle virus using unmodified gold nanoparticles. RSC Advances, 2015, 5(122), 100891-100897.
[http://dx.doi.org/10.1039/C5RA16326A] [PMID: 26989479]
[90]
Petrova, V.; Kristiansen, P.; Norheim, G.; Yimer, S.A. Rift valley fever: diagnostic challenges and investment needs for vaccine development. BMJ Glob. Health, 2020, 5(8), 2694.
[http://dx.doi.org/10.1136/bmjgh-2020-002694] [PMID: 32816810]
[91]
Zaher, M.R.; Ahmed, H.A.; Hamada, K.E.Z.; Tammam, R.H. Colorimetric detection of unamplified rift valley fever virus genetic material using unmodified gold nanoparticles. Appl. Biochem. Biotechnol., 2018, 184(3), 898-908.
[http://dx.doi.org/10.1007/s12010-017-2592-3] [PMID: 28918558]
[92]
Glass, R.I.; Parashar, U.D.; Estes, M.K. Norovirus gastroenteritis. N. Engl. J. Med., 2009, 361(18), 1776-1785.
[http://dx.doi.org/10.1056/NEJMra0804575] [PMID: 19864676]
[93]
Bull, R.A.; Tanaka, M.M.; White, P.A. Norovirus recombination. J. Gen. Virol., 2007, 88(Pt 12), 3347-3359.
[http://dx.doi.org/10.1099/vir.0.83321-0] [PMID: 18024905]
[94]
Weerathunge, P.; Ramanathan, R.; Torok, V.A.; Hodgson, K.; Xu, Y.; Goodacre, R.; Behera, B.K.; Bansal, V. Ultrasensitive colorimetric detection of murine norovirus using nanoZyme aptasensor. Anal. Chem., 2019, 91(5), 3270-3276.
[http://dx.doi.org/10.1021/acs.analchem.8b03300] [PMID: 30642158]
[95]
Mahato, K.; Nagpal, S.; Shah, M.A.; Srivastava, A.; Maurya, P.K.; Roy, S.; Jaiswal, A.; Singh, R.; Chandra, P. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech, 2019, 9(2), 57.
[http://dx.doi.org/10.1007/s13205-019-1577-z] [PMID: 30729081]
[96]
Ventura, B.D.; Cennamo, M.; Minopoli, A.; Campanile, R.; Censi, S.B.; Terracciano, D.; Portella, G.; Velotta, R. Colorimetric test for fast detection of SARS-COV-2 in nasal and throat swabs. ACS Sens., 2020, 5(10), 3043-3048.
[http://dx.doi.org/10.1021/acssensors.0c01742] [PMID: 32989986]
[97]
Moghadami, M. A narrative review of influenza: a seasonal and pandemic disease. Iran. J. Med. Sci., 2017, 42(1), 2-13.
[PMID: 28293045]
[98]
Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; García-Sastre, A. Influenza. Nat. Rev. Dis. Primers, 2018, 4(1), 3.
[http://dx.doi.org/10.1038/s41572-018-0002-y] [PMID: 29955068]
[99]
Liu, Y.; Zhang, L.; Wei, W.; Zhao, H.; Zhou, Z.; Zhang, Y.; Liu, S. Colorimetric detection of influenza A virus using antibody-functionalized gold nanoparticles. Analyst (Lond.), 2015, 140(12), 3989-3995.
[http://dx.doi.org/10.1039/C5AN00407A] [PMID: 25899840]
[100]
Zong, J.; Cobb, S.L.; Cameron, N.R. Peptide-functionalized gold nanoparticles: versatile biomaterials for diagnostic and therapeutic applications. Biomater. Sci., 2017, 5(5), 872-886.
[http://dx.doi.org/10.1039/C7BM00006E] [PMID: 28304023]
[101]
Pigliacelli, C.; Sánchez-Fernández, R.; García, M.D.; Peinador, C.; Pazos, E. Self-assembled peptide-inorganic nanoparticle superstructures: from component design to applications. Chem. Commun. (Camb.), 2020, 56(58), 8000-8014.
[http://dx.doi.org/10.1039/D0CC02914A] [PMID: 32495761]
[102]
Sajjanar, B.; Kakodia, B.; Bisht, D.; Saxena, S.; Singh, A.K.; Joshi, V.; Tiwari, A.K.; Kumar, S. Peptide-activated gold nanoparticles for selective visual sensing of virus. J. Nanopart. Res., 2015, 17(5), 234.
[http://dx.doi.org/10.1007/s11051-015-3043-0]
[103]
Lee, C.; Gaston, M.A.; Weiss, A.A.; Zhang, P. Colorimetric viral detection based on sialic acid stabilized gold nanoparticles. Biosens. Bioelectron., 2013, 42(1), 236-241.
[http://dx.doi.org/10.1016/j.bios.2012.10.067] [PMID: 23208092]
[104]
Zheng, L.; Wei, J.; Lv, X.; Bi, Y.; Wu, P.; Zhang, Z.; Wang, P.; Liu, R.; Jiang, J.; Cong, H.; Liang, J.; Chen, W.; Cao, H.; Liu, W.; Gao, G.F.; Du, Y.; Jiang, X.; Li, X. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens. Bioelectron., 2017, 91, 46-52.
[http://dx.doi.org/10.1016/j.bios.2016.12.037] [PMID: 27987410]
[105]
Ghosh, S.; Jaiswal, A. Peroxidase-like activity of metal nanoparticles for biomedical applications. In: Nanobiomaterial engineering; Chandra, P.; Prakash, R., Eds.; Springer: Singapore, 2020, pp. 109-126.
[http://dx.doi.org/10.1007/978-981-32-9840-8_6]
[106]
Khoris, I.M.; Takemura, K.; Lee, J.; Hara, T.; Abe, F.; Suzuki, T.; Park, E.Y. Enhanced colorimetric detection of norovirus using in-situ growth of Ag shell on Au NPs. Biosens. Bioelectron., 2019, 126, 425-432.
[http://dx.doi.org/10.1016/j.bios.2018.10.067] [PMID: 30471568]
[107]
Smith, I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev., 2003, 16(3), 463-496.
[http://dx.doi.org/10.1128/CMR.16.3.463-496.2003] [PMID: 12857778]
[108]
Burd, E.M. Human papillomavirus and cervical cancer. Clin. Microbiol. Rev., 2003, 16(1), 1-17.
[http://dx.doi.org/10.1128/CMR.16.1.1-17.2003] [PMID: 12525422]
[109]
de Wit, E.; Rasmussen, A.L.; Falzarano, D.; Bushmaker, T.; Feldmann, F.; Brining, D.L.; Fischer, E.R.; Martellaro, C.; Okumura, A.; Chang, J.; Scott, D.; Benecke, A.G.; Katze, M.G.; Feldmann, H.; Munster, V.J. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc. Natl. Acad. Sci. USA, 2013, 110(41), 16598-16603.
[http://dx.doi.org/10.1073/pnas.1310744110] [PMID: 24062443]
[110]
Teengam, P.; Siangproh, W.; Tuantranont, A.; Vilaivan, T.; Chailapakul, O.; Henry, C.S. Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal. Chem., 2017, 89(10), 5428-5435.
[http://dx.doi.org/10.1021/acs.analchem.7b00255] [PMID: 28394582]
[111]
Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review. Anal. Chim. Acta, 2011, 706(1), 8-24.
[http://dx.doi.org/10.1016/j.aca.2011.08.020] [PMID: 21995909]
[112]
Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev., 2011, 111(6), 3828-3857.
[http://dx.doi.org/10.1021/cr100313v] [PMID: 21648956]
[113]
Kim, H.; Park, M.; Hwang, J.; Kim, J.H.; Chung, D.R.; Lee, K.S.; Kang, M. Development of label-free colorimetric assay for MERS-CoV using gold nanoparticles. ACS Sens., 2019, 4(5), 1306-1312.
[http://dx.doi.org/10.1021/acssensors.9b00175] [PMID: 31062580]
[114]
Shawky, S.M.; Awad, A.M.; Allam, W.; Alkordi, M.H.; El-Khamisy, S.F. Gold aggregating gold: a novel nanoparticle biosensor approach for the direct quantification of hepatitis C virus RNA in clinical samples. Biosens. Bioelectron., 2017, 92, 349-356.
[http://dx.doi.org/10.1016/j.bios.2016.11.001] [PMID: 27836599]
[115]
Wang, B.; Brand-Miller, J. The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutr., 2003, 57(11), 1351-1369.
[http://dx.doi.org/10.1038/sj.ejcn.1601704] [PMID: 14576748]
[116]
Marín, M.J.; Rashid, A.; Rejzek, M.; Fairhurst, S.A.; Wharton, S.A.; Martin, S.R.; McCauley, J.W.; Wileman, T.; Field, R.A.; Russell, D.A. Glyconanoparticles for the plasmonic detection and discrimination between human and avian influenza virus. Org. Biomol. Chem., 2013, 11(41), 7101-7107.
[http://dx.doi.org/10.1039/c3ob41703d] [PMID: 24057694]
[117]
Lee, J.; Ahmed, S.R.; Oh, S.; Kim, J.; Suzuki, T.; Parmar, K.; Park, S.S.; Lee, J.; Park, E.Y. A plasmon-assisted fluoro-immunoassay using gold nanoparticle-decorated carbon nanotubes for monitoring the influenza virus. Biosens. Bioelectron., 2015, 64, 311-317.
[http://dx.doi.org/10.1016/j.bios.2014.09.021] [PMID: 25240957]
[118]
Zhang, Y.; Xu, C.; Li, B.; Li, Y. In situ growth of positively-charged gold nanoparticles on single-walled carbon nanotubes as a highly active peroxidase mimetic and its application in biosensing. Biosens. Bioelectron., 2013, 43(1), 205-210.
[http://dx.doi.org/10.1016/j.bios.2012.12.016] [PMID: 23313702]
[119]
Ahmed, S.R.; Kim, J.; Suzuki, T.; Lee, J.; Park, E.Y. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens. Bioelectron., 2016, 85, 503-508.
[http://dx.doi.org/10.1016/j.bios.2016.05.050] [PMID: 27209577]
[120]
Yin, P.T.; Shah, S.; Chhowalla, M.; Lee, K.B. Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. Chem. Rev., 2015, 115(7), 2483-2531.
[http://dx.doi.org/10.1021/cr500537t] [PMID: 25692385]
[121]
Parnianchi, F.; Nazari, M.; Maleki, J.; Mohebi, M. Combination of graphene and graphene oxide with metal and metal oxide nanoparticles in fabrication of electrochemical enzymatic biosensors. Int. Nano Lett., 2018, 8(4), 229-239.
[http://dx.doi.org/10.1007/s40089-018-0253-3]
[122]
Ahmed, S.R.; Takemeura, K.; Li, T.C.; Kitamoto, N.; Tanaka, T.; Suzuki, T.; Park, E.Y. Size-controlled preparation of peroxidase-like graphene-gold nanoparticle hybrids for the visible detection of norovirus-like particles. Biosens. Bioelectron., 2017, 87, 558-565.
[http://dx.doi.org/10.1016/j.bios.2016.08.101] [PMID: 27611475]
[123]
Gao, X.; Liu, Q.; Zhao, Y.; Li, Z.; Wang, Y.; Zhou, D.; Jiang, K.; Luo, C. Influences of gold and silver nanoparticles in loop-mediated isothermal amplification reactions. J. Exp. Nanosci., 2014, 9(9), 922-930.
[http://dx.doi.org/10.1080/17458080.2012.743684]
[124]
Carlos, F.F.; Veigas, B.; Matias, A.S.; Doria, G.; Flores, O.; Baptista, P.V. Allele specific LAMP- gold nanoparticle for characterization of single nucleotide polymorphisms. Biotechnol. Rep. (Amst.), 2017, 16, 21-25.
[http://dx.doi.org/10.1016/j.btre.2017.10.003] [PMID: 29124021]
[125]
Seetang-Nun, Y.; Jaroenram, W.; Sriurairatana, S.; Suebsing, R.; Kiatpathomchai, W. Visual detection of white spot syndrome virus using DNA-functionalized gold nanoparticles as probes combined with loop-mediated isothermal amplification. Mol. Cell. Probes, 2013, 27(2), 71-79.
[http://dx.doi.org/10.1016/j.mcp.2012.11.005] [PMID: 23211683]
[126]
Kumvongpin, R.; Jearanaikool, P.; Wilailuckana, C.; Sae-Ung, N.; Prasongdee, P.; Daduang, S.; Wongsena, M.; Boonsiri, P.; Kiatpathomchai, W.; Swangvaree, S.S.; Sandee, A.; Daduang, J. High sensitivity, loop-mediated isothermal amplification combined with colorimetric gold-nanoparticle probes for visual detection of high risk human papillomavirus genotypes 16 and 18. J. Virol. Methods, 2016, 234, 90-95.
[http://dx.doi.org/10.1016/j.jviromet.2016.04.008] [PMID: 27086727]
[127]
Balbin, M.M.; Lertanantawong, B.; Suraruengchai, W.; Mingala, C.N. Colorimetric detection of caprine arthritis encephalitis virus (CAEV) through loop-mediated isothermal amplification (LAMP) with gold nanoprobes. Small Rumin. Res., 2017, 147, 48-55.
[http://dx.doi.org/10.1016/j.smallrumres.2016.11.021]
[128]
Phromjai, J.; Mathuros, T.; Phokharatkul, D.; Prombun, P.; Suebsing, R.; Tuantranont, A.; Kiatpathomchai, W. RT-LAMP detection of shrimp taura syndrome virus (TSV) by combination with a nanogold-oligo probe. Aquacult. Res., 2015, 46(8), 1902-1913.
[http://dx.doi.org/10.1111/are.12345]
[129]
Jaroenram, W.; Arunrut, N.; Kiatpathomchai, W. Rapid and sensitive detection of shrimp yellow head virus using loop-mediated isothermal amplification and a colorogenic nanogold hybridization probe. J. Virol. Methods, 2012, 186(1-2), 36-42.
[http://dx.doi.org/10.1016/j.jviromet.2012.08.013] [PMID: 22960564]
[130]
Arunrut, N.; Kampeera, J.; Suebsing, R.; Kiatpathomchai, W. Rapid and sensitive detection of shrimp infectious myonecrosis virus using a reverse transcription loop-mediated isothermal amplification and visual colorogenic nanogold hybridization probe assay. J. Virol. Methods, 2013, 193(2), 542-547.
[http://dx.doi.org/10.1016/j.jviromet.2013.07.017] [PMID: 23876366]
[131]
Kim, Y.T.; Chen, Y.; Choi, J.Y.; Kim, W.J.; Dae, H.M.; Jung, J.; Seo, T.S. Integrated microdevice of reverse transcription-polymerase chain reaction with colorimetric immunochromatographic detection for rapid gene expression analysis of influenza A H1N1 virus. Biosens. Bioelectron., 2012, 33(1), 88-94.
[http://dx.doi.org/10.1016/j.bios.2011.12.024] [PMID: 22265877]
[132]
Hwang, S.G.; Ha, K.; Guk, K.; Lee, D.K.; Eom, G.; Song, S.; Kang, T.; Park, H.; Jung, J.; Lim, E.K. Rapid and simple detection of tamiflu-resistant influenza virus: development of oseltamivir derivative-based lateral flow biosensor for point-of-care (POC) diagnostics. Sci. Rep., 2018, 8(1), 12999.
[http://dx.doi.org/10.1038/s41598-018-31311-x] [PMID: 30158601]
[133]
Gao, Y.; Zhou, Y.; Chandrawati, R. Metal and metal oxide nanoparticles to enhance the performance of enzyme-linked immunosorbent assay (ELISA). ACS Appl. Nano Mater., 2020, 3(1), 1-21.
[http://dx.doi.org/10.1021/acsanm.9b02003]
[134]
Yu, X.; Zhang, Z.L.; Zheng, S.Y. Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization. Biosens. Bioelectron., 2015, 66, 520-526.
[http://dx.doi.org/10.1016/j.bios.2014.11.035] [PMID: 25500528]
[135]
Zhou, C.H.; Zhao, J.Y.; Pang, D.W.; Zhang, Z.L. Enzyme-induced metallization as a signal amplification strategy for highly sensitive colorimetric detection of avian influenza virus particles. Anal. Chem., 2014, 86(5), 2752-2759.
[http://dx.doi.org/10.1021/ac404177c] [PMID: 24475750]
[136]
Mancuso, M.; Jiang, L.; Cesarman, E.; Erickson, D. Multiplexed colorimetric detection of Kaposi’s sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles. Nanoscale, 2013, 5(4), 1678-1686.
[http://dx.doi.org/10.1039/c3nr33492a] [PMID: 23340972]
[137]
Thompson, D.G.; Enright, A.; Faulds, K.; Smith, W.E.; Graham, D. Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Anal. Chem., 2008, 80(8), 2805-2810.
[http://dx.doi.org/10.1021/ac702403w] [PMID: 18307361]
[138]
Storhoff, J.J.; Elghanian, R.; Mucic, R.C.; Mirkin, C.A.; Letsinger, R.L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc., 1998, 120(9), 1959-1964.
[http://dx.doi.org/10.1021/ja972332i]
[139]
Wu, K.; Cheeran, M.C.J.; Wang, J.P.; Saha, R.; Su, D.; Krishna, V.D.; Liu, J. Magnetic-nanosensor-based virus and pathogen detection strategies before and during covid-19. ACS Appl. Nano Mater., 2020, 3(10), 9560-9580.
[http://dx.doi.org/10.1021/acsanm.0c02048]
[140]
Loyprasert-Thananimit, S.; Saleedang, A.; Deachamag, P.; Waiyapoka, T.; Neulplub, M.; Chotigeat, W. Development of an immuno-based colorimetric assay for white spot syndrome virus. Biotechnol. Appl. Biochem., 2014, 61(3), 357-362.
[http://dx.doi.org/10.1002/bab.1169] [PMID: 24131426]
[141]
Dean, R.L. Kinetic studies with alkaline phosphatase in the presence and absence of inhibitors and divalent cations. Biochem. Mol. Biol. Educ., 2002, 30(6), 401-407.
[http://dx.doi.org/10.1002/bmb.2002.494030060138]
[142]
Fang, F.; Meng, F.; Luo, L. Recent advances on polydiacetylene-based smart materials for biomedical applications. Mater. Chem. Front., 2020, 4(4), 1089-1104.
[http://dx.doi.org/10.1039/C9QM00788A]
[143]
Chen, X.; Zhou, G.; Peng, X.; Yoon, J. Biosensors and chemosensors based on the optical responses of polydiacetylenes. Chem. Soc. Rev., 2012, 41(13), 4610-4630.
[http://dx.doi.org/10.1039/c2cs35055f] [PMID: 22569480]
[144]
Song, S.; Ha, K.; Guk, K.; Hwang, S-G.; Choi, J.M.; Kang, T.; Bae, P.; Jung, J.; Lim, E-K. Colorimetric detection of influenza A (H1N1) virus by a peptide-functionalized polydiacetylene (PEP-PDA) nanosensor. RSC Advances, 2016, 6(54), 48566-48570.
[http://dx.doi.org/10.1039/C6RA06689E]
[145]
Julian, T.R.; Schwab, K.J. Challenges in environmental detection of human viral pathogens. Curr. Opin. Virol., 2012, 2(1), 78-83.
[http://dx.doi.org/10.1016/j.coviro.2011.10.027] [PMID: 22440969]
[146]
Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev., 2019, 48(4), 1004-1076.
[http://dx.doi.org/10.1039/C8CS00457A] [PMID: 30534770]
[147]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[148]
Shukla, A.K.; Iravani, S. Green Synthesis, Characterization and Applications of Nanoparticles, 1st ed; Elsevier: Amsterdam, 2018.
[149]
Jampilek, J.; Kos, J.; Kralova, K. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials (Basel), 2019, 9(2), 296.
[http://dx.doi.org/10.3390/nano9020296] [PMID: 30791492]
[150]
Sharifi, S.; Vahed, S.Z.; Ahmadian, E.; Dizaj, S.M.; Eftekhari, A.; Khalilov, R.; Ahmadi, M.; Hamidi-Asl, E.; Labib, M. Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens. Bioelectron., 2020, 150111933
[http://dx.doi.org/10.1016/j.bios.2019.111933] [PMID: 31818764]
[151]
Eftekhari, A.; Alipour, M.; Chodari, L.; Maleki Dizaj, S.; Ardalan, M.; Samiei, M.; Sharifi, S.; Zununi Vahed, S.; Huseynova, I.; Khalilov, R.; Ahmadian, E.; Cucchiarini, M. A comprehensive review of detection methods for SARS-CoV-2. Microorganisms, 2021, 9(2), 232.
[http://dx.doi.org/10.3390/microorganisms9020232] [PMID: 33499379]
[152]
Farmani, A.; Soroosh, M.; Mozaffari, M.H.; Daghooghi, T. Chapter 25 - Optical nanosensors for cancer and virus detections. In: Nanosensors For Smart Cities; Han, B.; Tomer, V.K.; Nguyen, T.A.; Farmani, A.; Singh, P.K., Eds.; Elsevier: Amsterdam, 2020, pp. 419-432.
[http://dx.doi.org/10.1016/B978-0-12-819870-4.00024-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy