Review Article

色氨酸代谢在动脉粥样硬化和糖尿病中的应用

卷 29, 期 1, 2022

发表于: 14 July, 2021

页: [99 - 113] 页: 15

弟呕挨: 10.2174/0929867328666210714153649

价格: $65

conference banner
摘要

必需氨基酸色氨酸(Trp)通过几种途径经历分解代谢,产生显著影响生理过程的生物活性代谢物质。负责大多数Trp分解代谢的代谢途径是犬尿氨酸合成途径(KP)。血清素和褪黑激素是最重要的 Trp 途径降解产物之一,现已经被发现,Trp代谢的改变与动脉粥样硬化和糖尿病的发作和发展之间存在很强的关系。动脉粥样硬化是由适应不良的局部免疫反应引起的中小动脉壁的慢性炎症性疾病,是多种心血管疾病(CVD)的基础。全身性低度免疫介导的炎症与动脉粥样硬化有关,其中促炎细胞因子,如干扰素γ(IFN-γ),起着重要作用。IFN-γ上调吲哚胺2,3-双加氧酶(IDO),降低血清Trp水平并增加犬尿氨酸的代谢物水平。增加IDO表达和活性可以加速动脉粥样硬化过程。因此,激活的IDO抑制可以提供关于动脉粥样硬化可能的治疗选择。糖尿病是一种以高血糖为特征的慢性代谢性疾病,随着时间的推移,导致心脏、血管、眼睛、肾脏和周围神经严重受损。未来2型糖尿病(T2DM)患者的Trp血清水平和IDO活性较低。本文回顾了最近关于哺乳动物Trp代谢与其在动脉粥样硬化和糖尿病中的作用的研究结果,并概述了干预策略。

关键词: 色氨酸,犬尿氨酸途径,吲哚胺2,3-双加氧酶,犬尿氨酸,动脉粥样硬化,糖尿病。

[1]
Wurtman, R.J.; Hefti, F.; Melamed, E. Precursor control of neurotransmitter synthesis. Pharmacol. Rev., 1980, 32(4), 315-335.
[PMID: 6115400]
[2]
Sainio, E.L.; Pulkki, K.; Young, S.N. L-Tryptophan: Biochemical, nutritional and pharmacological aspects. Amino Acids, 1996, 10(1), 21-47.
[http://dx.doi.org/10.1007/BF00806091] [PMID: 24178430]
[3]
Lopez, M.J.; Mohiuddin, S.S. StatPearls; Treasure Island: FL, 2020.
[4]
Rambali, B. V.A.E.; Schenk, G. The contribution of cocoa additive to cigarette smoking addiction.RIVM report 650270002/2002; The National Institute for Public Health and the Environment: Netherlands, 2002.
[5]
Stryer, L. Biochemistry; WH Freeman and Company: New York, 1995.
[6]
Yamazaki, F.; Kuroiwa, T.; Takikawa, O.; Kido, R. Human indolylamine 2,3-dioxygenase. Its tissue distribution, and characterization of the placental enzyme. Biochem. J., 1985, 230(3), 635-638.
[http://dx.doi.org/10.1042/bj2300635] [PMID: 3877502]
[7]
Castro-Portuguez, R.; Sutphin, G.L. Kynurenine pathway, NAD+ synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp. Gerontol., 2020, 132110841
[http://dx.doi.org/10.1016/j.exger.2020.110841] [PMID: 31954874]
[8]
Fernstrom, J.D.; Wurtman, R.J. Brain serotonin content: physiological dependence on plasma tryptophan levels. Science, 1971, 173(3992), 149-152.
[http://dx.doi.org/10.1126/science.173.3992.149] [PMID: 5581909]
[9]
Munn, D.H.; Sharma, M.D.; Hou, D.; Baban, B.; Lee, J.R.; Antonia, S.J.; Messina, J.L.; Chandler, P.; Koni, P.A.; Mellor, A.L. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest., 2004, 114(2), 280-290.
[http://dx.doi.org/10.1172/JCI21583] [PMID: 15254595]
[10]
Zaric, B.L.; Radovanovic, J.N.; Gluvic, Z.; Stewart, A.J.; Essack, M.; Motwalli, O.; Gojobori, T.; Isenovic, E.R. Atherosclerosis linked to aberrant amino acid metabolism and immunosuppressive amino acid catabolizing enzymes. Front. Immunol., 2020, 11551758
[http://dx.doi.org/10.3389/fimmu.2020.551758] [PMID: 33117340]
[11]
Yu, E.; Papandreou, C.; Ruiz-Canela, M.; Guasch-Ferre, M.; Clish, C.B.; Dennis, C.; Liang, L.; Corella, D.; Fitó, M.; Razquin, C.; Lapetra, J.; Estruch, R.; Ros, E.; Cofán, M.; Arós, F.; Toledo, E.; Serra-Majem, L.; Sorlí, J.V.; Hu, F.B.; Martinez-Gonzalez, M.A.; Salas-Salvado, J. Association of tryptophan metabolites with incident type 2 diabetes in the predimed trial: A case-cohort study. Clin. Chem., 2018, 64(8), 1211-1220.
[http://dx.doi.org/10.1373/clinchem.2018.288720] [PMID: 29884676]
[12]
Chen, T.; Zheng, X.; Ma, X.; Bao, Y.; Ni, Y.; Hu, C.; Rajani, C.; Huang, F.; Zhao, A.; Jia, W.; Jia, W. Tryptophan predicts the risk for future type 2 diabetes. PLoS One, 2016, 11(9)e0162192
[http://dx.doi.org/10.1371/journal.pone.0162192] [PMID: 27598004]
[13]
Taylor, M.W.; Feng, G.S. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J., 1991, 5(11), 2516-2522.
[http://dx.doi.org/10.1096/fasebj.5.11.1907934] [PMID: 1907934]
[14]
Li, M.; Kwok, M.K.; Fong, S.S.M.; Schooling, C.M. Indoleamine 2,3-dioxygenase and ischemic heart disease: A Mendelian Randomization study. Sci. Rep., 2019, 9(1), 8491.
[http://dx.doi.org/10.1038/s41598-019-44819-7] [PMID: 31186442]
[15]
Baldo-Enzi, G.; Baiocchi, M.R.; Bertazzo, A.; Costa, C.V.; Allegri, G. Tryptophan and atherosclerosis. Adv. Exp. Med. Biol., 1996, 398, 429-432.
[http://dx.doi.org/10.1007/978-1-4613-0381-7_67] [PMID: 8906301]
[16]
Polyzos, K.A.; Ovchinnikova, O.; Berg, M.; Baumgartner, R.; Agardh, H.; Pirault, J.; Gisterå, A.; Assinger, A.; Laguna-Fernandez, A.; Bäck, M.; Hansson, G.K.; Ketelhuth, D.F. Inhibition of indoleamine 2,3-dioxygenase promotes vascular inflammation and increases atherosclerosis in Apoe-/- mice. Cardiovasc. Res., 2015, 106(2), 295-302.
[http://dx.doi.org/10.1093/cvr/cvv100] [PMID: 25750192]
[17]
Abram, D.M.; Fernandes, L.G.R.; Ramos Filho, A.C.S.; Simioni, P.U. The modulation of enzyme indoleamine 2,3-dioxygenase from dendritic cells for the treatment of type 1 diabetes mellitus. Drug Des. Devel. Ther., 2017, 11, 2171-2178.
[http://dx.doi.org/10.2147/DDDT.S135367] [PMID: 28769554]
[18]
Zhang, Y.; Ruan, Y.; Zhang, P.; Wang, L. Increased indoleamine 2,3-dioxygenase activity in type 2 diabetic nephropathy. J. Diabetes Complications, 2017, 31(1), 223-227.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.08.020] [PMID: 27646613]
[19]
Sanger, G.J. 5-hydroxytryptamine and the gastrointestinal tract: where next? Trends Pharmacol. Sci., 2008, 29(9), 465-471.
[http://dx.doi.org/10.1016/j.tips.2008.06.008] [PMID: 19086255]
[20]
Moroni, F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur. J. Pharmacol., 1999, 375(1-3), 87-100.
[http://dx.doi.org/10.1016/S0014-2999(99)00196-X] [PMID: 10443567]
[21]
Palego, L.; Betti, L.; Rossi, A.; Giannaccini, G. Tryptophan biochemistry: Structural, nutritional, metabolic, and medical aspects in humans. J. Amino Acids, 2016, 20168952520
[http://dx.doi.org/10.1155/2016/8952520] [PMID: 26881063]
[22]
Jones, R.S. Tryptamine: a neuromodulator or neurotransmitter in mammalian brain? Prog. Neurobiol., 1982, 19(1-2), 117-139.
[http://dx.doi.org/10.1016/0301-0082(82)90023-5] [PMID: 6131482]
[23]
Bender, D.A. Biochemistry of tryptophan in health and disease. Mol. Aspects Med., 1983, 6(2), 101-197.
[http://dx.doi.org/10.1016/0098-2997(83)90005-5] [PMID: 6371429]
[24]
Matalon, R.; Surendran, S.; Matalon, K.M.; Tyring, S.; Quast, M.; Jinga, W.; Ezell, E.; Szucs, S. Future role of large neutral amino acids in transport of phenylalanine into the brain. Pediatrics, 2003, 112(6 Pt 2), 1570-1574.
[PMID: 14654667]
[25]
Mann, J.J.; McBride, P.A.; Brown, R.P.; Linnoila, M.; Leon, A.C.; DeMeo, M.; Mieczkowski, T.; Myers, J.E.; Stanley, M. Relationship between central and peripheral serotonin indexes in depressed and suicidal psychiatric inpatients. Arch. Gen. Psychiatry, 1992, 49(6), 442-446.
[http://dx.doi.org/10.1001/archpsyc.1992.01820060022003] [PMID: 1376106]
[26]
Heath, M.J.; Hen, R. Serotonin receptors. Genetic insights into serotonin function. Curr. Biol., 1995, 5(9), 997-999.
[http://dx.doi.org/10.1016/S0960-9822(95)00199-0] [PMID: 8542294]
[27]
Walther, D.J.; Peter, J.U.; Bashammakh, S.; Hörtnagl, H.; Voits, M.; Fink, H.; Bader, M. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science, 2003, 299(5603), 76.
[http://dx.doi.org/10.1126/science.1078197] [PMID: 12511643]
[28]
Yadav, V.K. Translational endocrinology of bone; Elsevier Inc., 2013, pp. 51-62.
[http://dx.doi.org/10.1016/B978-0-12-415784-2.00005-1]
[29]
Sandyk, R. L-tryptophan in neuropsychiatric disorders: a review. Int. J. Neurosci., 1992, 67(1-4), 127-144.
[http://dx.doi.org/10.3109/00207459208994781] [PMID: 1305630]
[30]
Wurtman, R.J.; Anton-Tay, F. The mammalian pineal as a neuroendocrine transducer. Recent Prog. Horm. Res., 1969, 25, 493-522.
[PMID: 4391290]
[31]
Berger, M.; Gray, J.A.; Roth, B.L. The expanded biology of serotonin. Annu. Rev. Med., 2009, 60, 355-366.
[http://dx.doi.org/10.1146/annurev.med.60.042307.110802] [PMID: 19630576]
[32]
Lopez-Vilchez, I.; Diaz-Ricart, M.; White, J.G.; Escolar, G.; Galan, A.M. Serotonin enhances platelet procoagulant properties and their activation induced during platelet tissue factor uptake. Cardiovasc. Res., 2009, 84(2), 309-316.
[http://dx.doi.org/10.1093/cvr/cvp205] [PMID: 19541671]
[33]
Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-tryptophan: Basic metabolic functions, behavioral research and therapeutic indications. Int. J. Tryptophan Res., 2009, 2, 45-60.
[http://dx.doi.org/10.4137/IJTR.S2129] [PMID: 20651948]
[34]
Oh, C.M.; Park, S.; Kim, H. Serotonin as a new therapeutic target for diabetes mellitus and obesity. Diabetes Metab. J., 2016, 40(2), 89-98.
[http://dx.doi.org/10.4093/dmj.2016.40.2.89] [PMID: 27126880]
[35]
Daugherty, M.; Polanuyer, B.; Farrell, M.; Scholle, M.; Lykidis, A.; de Crécy-Lagard, V.; Osterman, A. Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics. J. Biol. Chem., 2002, 277(24), 21431-21439.
[http://dx.doi.org/10.1074/jbc.M201708200] [PMID: 11923312]
[36]
Dougherty, D.M.; Marsh-Richard, D.M.; Mathias, C.W.; Hood, A.J.; Addicott, M.A.; Moeller, F.G.; Morgan, C.J.; Badawy, A.A. Comparison of 50- and 100-g L -tryptophan depletion and loading formulations for altering 5-HT synthesis: pharmacokinetics, side effects, and mood states. Psychopharmacology (Berl.), 2008, 198(3), 431-445.
[http://dx.doi.org/10.1007/s00213-008-1163-2] [PMID: 18452034]
[37]
Anderson, R.M.; Bitterman, K.J.; Wood, J.G.; Medvedik, O.; Cohen, H.; Lin, S.S.; Manchester, J.K.; Gordon, J.I.; Sinclair, D.A. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J. Biol. Chem., 2002, 277(21), 18881-18890.
[http://dx.doi.org/10.1074/jbc.M111773200] [PMID: 11884393]
[38]
Tan, L.; Yu, J.T.; Tan, L. The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J. Neurol. Sci., 2012, 323(1-2), 1-8.
[http://dx.doi.org/10.1016/j.jns.2012.08.005] [PMID: 22939820]
[39]
Takikawa, O. Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated L-tryptophan metabolism. Biochem. Biophys. Res. Commun., 2005, 338(1), 12-19.
[http://dx.doi.org/10.1016/j.bbrc.2005.09.032] [PMID: 16176799]
[40]
Baumgartner, R.; Forteza, M.J.; Ketelhuth, D.F.J. The interplay between cytokines and the Kynurenine pathway in inflammation and atherosclerosis. Cytokine, 2019, 122154148
[http://dx.doi.org/10.1016/j.cyto.2017.09.004] [PMID: 28899580]
[41]
Dai, W.; Gupta, S.L. Molecular cloning, sequencing and expression of human interferon-gamma-inducible indoleamine 2,3-dioxygenase cDNA. Biochem. Biophys. Res. Commun., 1990, 168(1), 1-8.
[http://dx.doi.org/10.1016/0006-291X(90)91666-G] [PMID: 2109605]
[42]
Yuasa, H.J.; Ball, H.J.; Ho, Y.F.; Austin, C.J.; Whittington, C.M.; Belov, K.; Maghzal, G.J.; Jermiin, L.S.; Hunt, N.H. Characterization and evolution of vertebrate indoleamine 2, 3-dioxygenases IDOs from monotremes and marsupials. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2009, 153(2), 137-144.
[http://dx.doi.org/10.1016/j.cbpb.2009.02.002]
[43]
Miller, C.L.; Llenos, I.C.; Dulay, J.R.; Barillo, M.M.; Yolken, R.H.; Weis, S. Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol. Dis., 2004, 15(3), 618-629.
[http://dx.doi.org/10.1016/j.nbd.2003.12.015] [PMID: 15056470]
[44]
Stone, T.W.; Perkins, M.N. Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur. J. Pharmacol., 1981, 72(4), 411-412.
[http://dx.doi.org/10.1016/0014-2999(81)90587-2] [PMID: 6268428]
[45]
Perkins, M.N.; Stone, T.W. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res., 1982, 247(1), 184-187.
[http://dx.doi.org/10.1016/0006-8993(82)91048-4] [PMID: 6215086]
[46]
Lugo-Huitrón, R.; Ugalde Muñiz, P.; Pineda, B.; Pedraza-Chaverrí, J.; Ríos, C.; Pérez-de la Cruz, V. Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxid. Med. Cell. Longev., 2013, 2013, 104024-104024.
[http://dx.doi.org/10.1155/2013/104024] [PMID: 24089628]
[47]
Cervenka, I.; Agudelo, L.Z.; Ruas, J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science, 2017, 357(6349)eaaf9794
[http://dx.doi.org/10.1126/science.aaf9794] [PMID: 28751584]
[48]
Goldstein, L.E.; Leopold, M.C.; Huang, X.; Atwood, C.S.; Saunders, A.J.; Hartshorn, M.; Lim, J.T.; Faget, K.Y.; Muffat, J.A.; Scarpa, R.C.; Chylack, L.T., Jr; Bowden, E.F.; Tanzi, R.E.; Bush, A.I. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry, 2000, 39(24), 7266-7275.
[http://dx.doi.org/10.1021/bi992997s] [PMID: 10852726]
[49]
Fukui, S.; Schwarcz, R.; Rapoport, S.I.; Takada, Y.; Smith, Q.R. Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J. Neurochem., 1991, 56(6), 2007-2017.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb03460.x] [PMID: 1827495]
[50]
Schröcksnadel, K.; Wirleitner, B.; Winkler, C.; Fuchs, D. Monitoring tryptophan metabolism in chronic immune activation. Clin. Chim. Acta, 2006, 364(1-2), 82-90.
[http://dx.doi.org/10.1016/j.cca.2005.06.013] [PMID: 16139256]
[51]
Badawy, A.A.; Guillemin, G. The plasma [kynurenine]/[tryptophan] ratio and indoleamine 2,3-dioxygenase: time for appraisal. Int. J. Tryptophan Res., 2019, 121178646919868978
[http://dx.doi.org/10.1177/1178646919868978] [PMID: 31488951]
[52]
Stone, TW F.C.; Darlington, LG. Targeting the broadly pathogenic kynurenine pathway.Springer, 2015, pp. 45-61..
[53]
Stone, T.W.; Darlington, L.G. Endogenous kynurenines as targets for drug discovery and development. Nat. Rev. Drug Discov., 2002, 1(8), 609-620.
[http://dx.doi.org/10.1038/nrd870] [PMID: 12402501]
[54]
Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci., 2008, 9(1), 46-56.
[http://dx.doi.org/10.1038/nrn2297] [PMID: 18073775]
[55]
Moroni, F.; Cozzi, A.; Sili, M.; Mannaioni, G. Kynurenic acid: A metabolite with multiple actions and multiple targets in brain and periphery. J. Neural Transm. (Vienna), 2012, 119(2), 133-139.
[http://dx.doi.org/10.1007/s00702-011-0763-x] [PMID: 22215208]
[56]
Wirthgen, E.; Hoeflich, A.; Rebl, A.; Günther, J. Kynurenic acid: The janus-faced role of an immunomodulatory tryptophan metabolite and its link to pathological conditions. Front. Immunol., 2018, 8, 1957.
[http://dx.doi.org/10.3389/fimmu.2017.01957] [PMID: 29379504]
[57]
Wirthgen, E.; Hoeflich, A. Endotoxin-induced tryptophan degradation along the kynurenine pathway: The role of indolamine 2,3-dioxygenase and aryl hydrocarbon receptor-mediated immunosuppressive effects in endotoxin tolerance and cancer and its implications for immunoparalysis. J. Amino Acids, 2015, 2015973548
[http://dx.doi.org/10.1155/2015/973548] [PMID: 26881062]
[58]
Wang, J.; Simonavicius, N.; Wu, X.; Swaminath, G.; Reagan, J.; Tian, H.; Ling, L. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem., 2006, 281(31), 22021-22028.
[http://dx.doi.org/10.1074/jbc.M603503200] [PMID: 16754668]
[59]
DiNatale, B.C.; Murray, I.A.; Schroeder, J.C.; Flaveny, C.A.; Lahoti, T.S.; Laurenzana, E.M.; Omiecinski, C.J.; Perdew, G.H. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol. Sci., 2010, 115(1), 89-97.
[http://dx.doi.org/10.1093/toxsci/kfq024] [PMID: 20106948]
[60]
Grant, R.S.; Coggan, S.E.; Smythe, G.A. The physiological action of picolinic acid in the human brain. Int. J. Tryptophan Res., 2009, 2, 71-79.
[http://dx.doi.org/10.4137/IJTR.S2469] [PMID: 22084583]
[61]
Statter, M.; Krieger, I. Picolinic carboxylase activity in rat liver and kidney. I. Influence of growth, sex, gestation, lactation, and nutritional imbalance. J. Pediatr. Gastroenterol. Nutr., 1983, 2(1), 166-170.
[http://dx.doi.org/10.1097/00005176-198302010-00020] [PMID: 6886939]
[62]
Peters, J.C. Tryptophan nutrition and metabolism: an overview. Adv. Exp. Med. Biol., 1991, 294, 345-358.
[http://dx.doi.org/10.1007/978-1-4684-5952-4_32] [PMID: 1772073]
[63]
Frumento, G.; Rotondo, R.; Tonetti, M.; Damonte, G.; Benatti, U.; Ferrara, G.B. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med., 2002, 196(4), 459-468.
[http://dx.doi.org/10.1084/jem.20020121] [PMID: 12186838]
[64]
Lima, S.; Kumar, S.; Gawandi, V.; Momany, C.; Phillips, R.S. Crystal structure of the Homo sapiens kynureninase-3-hydroxyhippuric acid inhibitor complex: insights into the molecular basis of kynureninase substrate specificity. J. Med. Chem., 2009, 52(2), 389-396.
[http://dx.doi.org/10.1021/jm8010806] [PMID: 19143568]
[65]
Cortés, J.; Alvarez, C.; Santana, P.; Torres, E.; Mercado, L. Indoleamine 2,3-dioxygenase: First evidence of expression in rainbow trout (Oncorhynchus mykiss). Dev. Comp. Immunol., 2016, 65, 73-78.
[http://dx.doi.org/10.1016/j.dci.2016.06.020] [PMID: 27370975]
[66]
Yu, E.; Ruiz-Canela, M.; Guasch-Ferré, M.; Zheng, Y.; Toledo, E.; Clish, C.B.; Salas-Salvadó, J.; Liang, L.; Wang, D.D.; Corella, D.; Fitó, M.; Gómez-Gracia, E.; Lapetra, J.; Estruch, R.; Ros, E.; Cofán, M.; Arós, F.; Romaguera, D.; Serra-Majem, L.; Sorlí, J.V.; Hu, F.B.; Martinez-Gonzalez, M.A. Increases in plasma tryptophan are inversely associated with incident cardiovascular disease in the prevención con dieta mediterránea (predimed) study. J. Nutr., 2017, 147(3), 314-322.
[http://dx.doi.org/10.3945/jn.116.241711] [PMID: 28179491]
[67]
Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; O’Donnell, C.J.; Carr, S.A.; Mootha, V.K.; Florez, J.C.; Souza, A.; Melander, O.; Clish, C.B.; Gerszten, R.E. Metabolite profiles and the risk of developing diabetes. Nat. Med., 2011, 17(4), 448-453.
[http://dx.doi.org/10.1038/nm.2307] [PMID: 21423183]
[68]
Matsuoka, K.; Kato, K.; Takao, T.; Ogawa, M.; Ishii, Y.; Shimizu, F.; Masuda, J.; Takada, A. Concentrations of various tryptophan metabolites are higher in patients with diabetes mellitus than in healthy aged male adults. Diabetol. Int., 2016, 8(1), 69-75.
[http://dx.doi.org/10.1007/s13340-016-0282-y] [PMID: 30603309]
[69]
Higuchi, K.; Hayaishi, O. Enzymic formation of D-kynurenine from D-tryptophan. Arch. Biochem. Biophys., 1967, 120(2), 397-403.
[http://dx.doi.org/10.1016/0003-9861(67)90256-1] [PMID: 4291827]
[70]
Badawy, A.A. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int. J. Tryptophan Res., 2017, 101178646917691938
[http://dx.doi.org/10.1177/1178646917691938] [PMID: 28469468]
[71]
Yeung, A.W.; Terentis, A.C.; King, N.J.; Thomas, S.R. Role of indoleamine 2,3-dioxygenase in health and disease. Clin. Sci. (Lond.), 2015, 129(7), 601-672.
[http://dx.doi.org/10.1042/CS20140392] [PMID: 26186743]
[72]
Liu, G.; Chen, S.; Zhong, J.; Teng, K.; Yin, Y. Crosstalk between tryptophan metabolism and cardiovascular disease, mechanisms, and therapeutic implications. Oxid. Med. Cell. Longev., 2017, 20171602074
[http://dx.doi.org/10.1155/2017/1602074] [PMID: 28377795]
[73]
Du, M.X.; Sotero-Esteva, W.D.; Taylor, M.W. Analysis of transcription factors regulating induction of indoleamine 2,3-dioxygenase by IFN-gamma. J. Interferon Cytokine Res., 2000, 20(2), 133-142.
[http://dx.doi.org/10.1089/107999000312531] [PMID: 10714548]
[74]
Booth, E.S.; Basran, J.; Lee, M.; Handa, S.; Raven, E.L. Substrate oxidation by indoleamine 2,3-dioxygenase: Evidence for a common reaction mechanism. J. Biol. Chem., 2015, 290(52), 30924-30930.
[http://dx.doi.org/10.1074/jbc.M115.695684] [PMID: 26511316]
[75]
Kartika, R.; Wibowo, H.; Purnamasari, D.; Pradipta, S.; Larasati, R.A. Altered indoleamine 2,3-dioxygenase production and its association to inflammatory cytokines in peripheral blood mononuclear cells culture of type 2 diabetes mellitus. Int. J. Tryptophan Res., 2020, 131178646920978236
[http://dx.doi.org/10.1177/1178646920978236] [PMID: 33343199]
[76]
Basu, G.D.; Tinder, T.L.; Bradley, J.M.; Tu, T.; Hattrup, C.L.; Pockaj, B.A.; Mukherjee, P. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO. J. Immunol., 2006, 177(4), 2391-2402.
[http://dx.doi.org/10.4049/jimmunol.177.4.2391] [PMID: 16888001]
[77]
Hennequart, M.; Pilotte, L.; Cane, S.; Hoffmann, D.; Stroobant, V.; Plaen, E.; Van den Eynde, B.J. Constitutive Ido1 expression in human tumors is driven by cyclooxygenase-2 and mediates intrinsic immune resistance. Cancer Immunol. Res., 2017, 5(8), 695-709.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0400] [PMID: 28765120]
[78]
Munn, D.H.; Shafizadeh, E.; Attwood, J.T.; Bondarev, I.; Pashine, A.; Mellor, A.L. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med., 1999, 189(9), 1363-1372.
[http://dx.doi.org/10.1084/jem.189.9.1363] [PMID: 10224276]
[79]
Munn, D.H.; Sharma, M.D.; Baban, B.; Harding, H.P.; Zhang, Y.; Ron, D.; Mellor, A.L. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity, 2005, 22(5), 633-642.
[http://dx.doi.org/10.1016/j.immuni.2005.03.013] [PMID: 15894280]
[80]
Metz, R.; Rust, S.; Duhadaway, J.B.; Mautino, M.R.; Munn, D.H.; Vahanian, N.N.; Link, C.J.; Prendergast, G.C. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan. OncoImmunology, 2012, 1(9), 1460-1468.
[http://dx.doi.org/10.4161/onci.21716] [PMID: 23264892]
[81]
Chung, D.J.; Rossi, M.; Romano, E.; Ghith, J.; Yuan, J.; Munn, D.H.; Young, J.W. Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood, 2009, 114(3), 555-563.
[http://dx.doi.org/10.1182/blood-2008-11-191197] [PMID: 19465693]
[82]
Fallarino, F.; Grohmann, U.; Hwang, K.W.; Orabona, C.; Vacca, C.; Bianchi, R.; Belladonna, M.L.; Fioretti, M.C.; Alegre, M.L.; Puccetti, P. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol., 2003, 4(12), 1206-1212.
[http://dx.doi.org/10.1038/ni1003] [PMID: 14578884]
[83]
Prendergast, G.C.; Malachowski, W.P.; DuHadaway, J.B.; Muller, A.J. Discovery of ido1 inhibitors: From bench to bedside. Cancer Res., 2017, 77(24), 6795-6811.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2285] [PMID: 29247038]
[84]
Hou, D.Y.; Muller, A.J.; Sharma, M.D.; DuHadaway, J.; Banerjee, T.; Johnson, M.; Mellor, A.L.; Prendergast, G.C.; Munn, D.H. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res., 2007, 67(2), 792-801.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2925] [PMID: 17234791]
[85]
Qian, F.; Liao, J.; Villella, J.; Edwards, R.; Kalinski, P.; Lele, S.; Shrikant, P.; Odunsi, K. Effects of 1-methyltryptophan stereoisomers on IDO2 enzyme activity and IDO2-mediated arrest of human T cell proliferation. Cancer Immunol. Immunother., 2012, 61(11), 2013-2020.
[http://dx.doi.org/10.1007/s00262-012-1265-x] [PMID: 22527253]
[86]
Metz, R.; Duhadaway, J.B.; Kamasani, U.; Laury-Kleintop, L.; Muller, A.J.; Prendergast, G.C. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res., 2007, 67(15), 7082-7087.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1872] [PMID: 17671174]
[87]
Opitz, C.A.; Litzenburger, U.M.; Opitz, U.; Sahm, F.; Ochs, K.; Lutz, C.; Wick, W.; Platten, M. The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-D-tryptophan upregulates IDO1 in human cancer cells. PLoS One, 2011, 6(5)e19823
[http://dx.doi.org/10.1371/journal.pone.0019823] [PMID: 21625531]
[88]
Sivaprakasam, S.; Ramachandran, S.; Sikder, M.O.F.; Bhutia, Y.D.; Wachtel, M.W.; Ganapathy, V. α-Methyl-l-tryptophan as a weight-loss agent in multiple models of obesity in mice. Biochem. J., 2021, 478(7), 1347-1358.
[http://dx.doi.org/10.1042/BCJ20210100] [PMID: 33720280]
[89]
Chen, H.J.; Tas, S.W.; de Winther, M.P.J. Type-I interferons in atherosclerosis. J. Exp. Med., 2020, 217(1)e20190459
[http://dx.doi.org/10.1084/jem.20190459] [PMID: 31821440]
[90]
Rafieian-Kopaei, M.; Setorki, M.; Doudi, M.; Baradaran, A.; Nasri, H. Atherosclerosis: process, indicators, risk factors and new hopes. Int. J. Prev. Med., 2014, 5(8), 927-946.
[PMID: 25489440]
[91]
Zaric, B.; Obradovic, M.; Trpkovic, A.; Banach, M.; Mikhailidis, D.P.; Isenovic, E.R. Endothelial dysfunction in dyslipidaemia: Molecular mechanisms and clinical implications. Curr. Med. Chem., 2020, 27(7), 1021-1040.
[http://dx.doi.org/10.2174/0929867326666190903112146] [PMID: 31480995]
[92]
Raggi, P.; Genest, J.; Giles, J.T.; Rayner, K.J.; Dwivedi, G.; Beanlands, R.S.; Gupta, M. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis, 2018, 276, 98-108.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.07.014] [PMID: 30055326]
[93]
Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; Kastelein, J.J.P.; Cornel, J.H.; Pais, P.; Pella, D.; Genest, J.; Cifkova, R.; Lorenzatti, A.; Forster, T.; Kobalava, Z.; Vida-Simiti, L.; Flather, M.; Shimokawa, H.; Ogawa, H.; Dellborg, M.; Rossi, P.R.F.; Troquay, R.P.T.; Libby, P.; Glynn, R.J.; Group, C.T. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med., 2017, 377(12), 1119-1131.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[94]
Nitz, K.; Lacy, M.; Atzler, D. Amino acids and their metabolism in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2019, 39(3), 319-330.
[http://dx.doi.org/10.1161/ATVBAHA.118.311572] [PMID: 30650999]
[95]
Schroecksnadel, K.; Frick, B.; Winkler, C.; Fuchs, D. Crucial role of interferon-gamma and stimulated macrophages in cardiovascular disease. Curr. Vasc. Pharmacol., 2006, 4(3), 205-213.
[http://dx.doi.org/10.2174/157016106777698379] [PMID: 16842138]
[96]
Voloshyna, I.; Littlefield, M.J.; Reiss, A.B. Atherosclerosis and interferon-γ: New insights and therapeutic targets. Trends Cardiovasc. Med., 2014, 24(1), 45-51.
[http://dx.doi.org/10.1016/j.tcm.2013.06.003] [PMID: 23916809]
[97]
Wang, Y.; Liu, H.; McKenzie, G.; Witting, P.K.; Stasch, J.P.; Hahn, M.; Changsirivathanathamrong, D.; Wu, B.J.; Ball, H.J.; Thomas, S.R.; Kapoor, V.; Celermajer, D.S.; Mellor, A.L.; Keaney, J.F., Jr; Hunt, N.H.; Stocker, R. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat. Med., 2010, 16(3), 279-285.
[http://dx.doi.org/10.1038/nm.2092] [PMID: 20190767]
[98]
Pawlak, K.; Myśliwiec, M.; Pawlak, D. Kynurenine pathway - a new link between endothelial dysfunction and carotid atherosclerosis in chronic kidney disease patients. Adv. Med. Sci., 2010, 55(2), 196-203.
[http://dx.doi.org/10.2478/v10039-010-0015-6] [PMID: 20439183]
[99]
Kwiatkowska, I.; Hermanowicz, J.M.; Mysliwiec, M.; Pawlak, D. Oxidative storm induced by tryptophan metabolites: Missing link between atherosclerosis and chronic kidney disease. Oxid. Med. Cell. Longev., 2020, 20206656033
[http://dx.doi.org/10.1155/2020/6656033] [PMID: 33456671]
[100]
Obradovic, M.; Sudar-Milovanovic, E.; Gluvic, Z.; Gojobori, T.; Essack, M.; Isenovic, E.R. Obesity and diabetes: Scientific advances and best practice; Springer International Publishing: Cham, 2020, pp. 705-717.
[http://dx.doi.org/10.1007/978-3-030-53370-0_52]
[101]
Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet, 2014, 383(9922), 1068-1083.
[http://dx.doi.org/10.1016/S0140-6736(13)62154-6] [PMID: 24315620]
[102]
Rebnord, E.W.; Strand, E.; Midttun, Ø.; Svingen, G.F.T.; Christensen, M.H.E.; Ueland, P.M.; Mellgren, G.; Njølstad, P.R.; Tell, G.S.; Nygård, O.K.; Pedersen, E.R. The kynurenine:tryptophan ratio as a predictor of incident type 2 diabetes mellitus in individuals with coronary artery disease. Diabetologia, 2017, 60(9), 1712-1721.
[http://dx.doi.org/10.1007/s00125-017-4329-9] [PMID: 28612106]
[103]
Gluvic, Z.; Zaric, B.; Resanovic, I.; Obradovic, M.; Mitrovic, A.; Radak, D.; Isenovic, E.R. Link between metabolic syndrome and insulin resistance. Curr. Vasc. Pharmacol., 2017, 15(1), 30-39.
[http://dx.doi.org/10.2174/1570161114666161007164510] [PMID: 27748199]
[104]
Kitada, M.; Zhang, Z.; Mima, A.; King, G.L. Molecular mechanisms of diabetic vascular complications. J. Diabetes Investig., 2010, 1(3), 77-89.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00018.x] [PMID: 24843412]
[105]
Rodríguez-Mañas, L.; López-Dóriga, P.; Petidier, R.; Neira, M.; Solís, J.; Pavón, I.; Peiró, C.; Sánchez-Ferrer, C.F. Effect of glycaemic control on the vascular nitric oxide system in patients with type 1 diabetes. J. Hypertens., 2003, 21(6), 1137-1143.
[http://dx.doi.org/10.1097/00004872-200306000-00013] [PMID: 12777950]
[106]
Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol., 2011, 11(2), 98-107.
[http://dx.doi.org/10.1038/nri2925] [PMID: 21233852]
[107]
Oxenkrug, G.F. Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes. Mol. Neurobiol., 2015, 52(2), 805-810.
[http://dx.doi.org/10.1007/s12035-015-9232-0] [PMID: 26055228]
[108]
Mangge, H.; Summers, K.L.; Meinitzer, A.; Zelzer, S.; Almer, G.; Prassl, R.; Schnedl, W.J.; Reininghaus, E.; Paulmichl, K.; Weghuber, D.; Fuchs, D. Obesity-related dysregulation of the tryptophan-kynurenine metabolism: role of age and parameters of the metabolic syndrome. Obesity (Silver Spring), 2014, 22(1), 195-201.
[http://dx.doi.org/10.1002/oby.20491] [PMID: 23625535]
[109]
Cussotto, S.; Delgado, I.; Anesi, A.; Dexpert, S.; Aubert, A.; Beau, C.; Forestier, D.; Ledaguenel, P.; Magne, E.; Mattivi, F.; Capuron, L. Tryptophan metabolic pathways are altered in obesity and are associated with systemic inflammation. Front. Immunol., 2020, 11, 557.
[http://dx.doi.org/10.3389/fimmu.2020.00557] [PMID: 32351500]
[110]
Inubushi, T.; Kamemura, N.; Oda, M.; Sakurai, J.; Nakaya, Y.; Harada, N.; Suenaga, M.; Matsunaga, Y.; Ishidoh, K.; Katunuma, N. L-tryptophan suppresses rise in blood glucose and preserves insulin secretion in type-2 diabetes mellitus rats. J. Nutr. Sci. Vitaminol. (Tokyo), 2012, 58(6), 415-422.
[http://dx.doi.org/10.3177/jnsv.58.415] [PMID: 23419400]
[111]
Ponter, A.A.; Sève, B.; Morgan, L.M. Intragastric tryptophan reduces glycemia after glucose, possibly via glucose-mediated insulinotropic polypeptide, in early-weaned piglets. J. Nutr., 1994, 124(2), 259-267.
[http://dx.doi.org/10.1093/jn/124.2.259] [PMID: 8308575]
[112]
Agil, A.; Rosado, I.; Ruiz, R.; Figueroa, A.; Zen, N.; Fernández-Vázquez, G. Melatonin improves glucose homeostasis in young Zucker diabetic fatty rats. J. Pineal Res., 2012, 52(2), 203-210.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00928.x] [PMID: 21883445]
[113]
Oxenkrug, G. Insulin resistance and dysregulation of tryptophan-kynurenine and kynurenine-nicotinamide adenine dinucleotide metabolic pathways. Mol. Neurobiol., 2013, 48(2), 294-301.
[http://dx.doi.org/10.1007/s12035-013-8497-4] [PMID: 23813101]
[114]
Oxenkrug, G.; van der Hart, M.; Summergrad, P. Elevated anthranilic acid plasma concentrations in type 1 but not type 2 diabetes mellitus. Integr. Mol. Med., 2015, 2(5), 365-368.
[http://dx.doi.org/10.15761/IMM.1000169] [PMID: 26523229]
[115]
Song, P.; Ramprasath, T.; Wang, H.; Zou, M.H. Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cell. Mol. Life Sci., 2017, 74(16), 2899-2916.
[http://dx.doi.org/10.1007/s00018-017-2504-2] [PMID: 28314892]
[116]
Favennec, M.; Hennart, B.; Caiazzo, R.; Leloire, A.; Yengo, L.; Verbanck, M.; Arredouani, A.; Marre, M.; Pigeyre, M.; Bessede, A.; Guillemin, G.J.; Chinetti, G.; Staels, B.; Pattou, F.; Balkau, B.; Allorge, D.; Froguel, P.; Poulain-Godefroy, O. The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation. Obesity (Silver Spring), 2015, 23(10), 2066-2074.
[http://dx.doi.org/10.1002/oby.21199] [PMID: 26347385]
[117]
Oxenkrug, G.; Cornicelli, J.; van der Hart, M.; Roeser, J.; Summergrad, P. Kynurenic acid, an aryl hydrocarbon receptor ligand, is elevated in serum of Zucker fatty rats. Integr. Mol. Med., 2016, 3(4), 761-763.
[PMID: 27738521]
[118]
Pedersen, E.R.; Svingen, G.F.; Schartum-Hansen, H.; Ueland, P.M.; Ebbing, M.; Nordrehaug, J.E.; Igland, J.; Seifert, R.; Nilsen, R.M.; Nygård, O. Urinary excretion of kynurenine and tryptophan, cardiovascular events, and mortality after elective coronary angiography. Eur. Heart J., 2013, 34(34), 2689-2696.
[http://dx.doi.org/10.1093/eurheartj/eht264] [PMID: 23886918]
[119]
Oxenkrug, G.F.; Turski, W.A.; Zgrajka, W.; Weinstock, J.V.; Summergrad, P. Tryptophan-kynurenine metabolism and insulin resistance in hepatitis C patients. Hepat. Res. Treat., 2013, 2013149247
[http://dx.doi.org/10.1155/2013/149247] [PMID: 24083022]
[120]
Cheng, S.; Rhee, E.P.; Larson, M.G.; Lewis, G.D.; McCabe, E.L.; Shen, D.; Palma, M.J.; Roberts, L.D.; Dejam, A.; Souza, A.L.; Deik, A.A.; Magnusson, M.; Fox, C.S.; O’Donnell, C.J.; Vasan, R.S.; Melander, O.; Clish, C.B.; Gerszten, R.E.; Wang, T.J. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation, 2012, 125(18), 2222-2231.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.067827] [PMID: 22496159]
[121]
Gürcü, S.; Girgin, G.; Yorulmaz, G.; Kılıçarslan, B.; Efe, B.; Baydar, T. Neopterin and biopterin levels and tryptophan degradation in patients with diabetes. Sci. Rep., 2020, 10(1), 17025.
[http://dx.doi.org/10.1038/s41598-020-74183-w] [PMID: 33046801]
[122]
Unluturk, U.E.T. Tryptophan metabolism: Implications for biological processes, health and disease; Humana Press: Cham, Switzerland, 2015, pp. 147-172.
[123]
Wolowczuk, I.; Hennart, B.; Leloire, A.; Bessede, A.; Soichot, M.; Taront, S.; Caiazzo, R.; Raverdy, V.; Pigeyre, M.; Guillemin, G.J.; Allorge, D.; Pattou, F.; Froguel, P.; Poulain-Godefroy, O.; Poulain-Godefroy, O. Tryptophan metabolism activation by indoleamine 2,3-dioxygenase in adipose tissue of obese women: an attempt to maintain immune homeostasis and vascular tone. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2012, 303(2), R135-R143.
[http://dx.doi.org/10.1152/ajpregu.00373.2011] [PMID: 22592557]
[124]
Oxenkrug, G.F. Interferon-gamma-inducible kynurenines/ pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders. J. Neural Transm. (Vienna), 2011, 118(1), 75-85.
[http://dx.doi.org/10.1007/s00702-010-0475-7] [PMID: 20811799]
[125]
Floegel, A.; Stefan, N.; Yu, Z.; Mühlenbruch, K.; Drogan, D.; Joost, H.G.; Fritsche, A.; Häring, H.U.; Hrabě de Angelis, M.; Peters, A.; Roden, M.; Prehn, C.; Wang-Sattler, R.; Illig, T.; Schulze, M.B.; Adamski, J.; Boeing, H.; Pischon, T. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes, 2013, 62(2), 639-648.
[http://dx.doi.org/10.2337/db12-0495] [PMID: 23043162]
[126]
Muzik, O.; Burghardt, P.; Yi, Z.; Kumar, A.; Seyoum, B. Successful metformin treatment of insulin resistance is associated with down-regulation of the kynurenine pathway. Biochem. Biophys. Res. Commun., 2017, 488(1), 29-32.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.155] [PMID: 28478038]
[127]
Brandacher, G.; Hoeller, E.; Fuchs, D.; Weiss, H.G. Chronic immune activation underlies morbid obesity: is IDO a key player? Curr. Drug Metab., 2007, 8(3), 289-295.
[http://dx.doi.org/10.2174/138920007780362590] [PMID: 17430117]
[128]
Munipally, P.K.; Agraharm, S.G.; Valavala, V.K.; Gundae, S.; Turlapati, N.R. Evaluation of indoleamine 2,3-dioxygenase expression and kynurenine pathway metabolites levels in serum samples of diabetic retinopathy patients. Arch. Physiol. Biochem., 2011, 117(5), 254-258.
[http://dx.doi.org/10.3109/13813455.2011.623705] [PMID: 22034910]
[129]
Oxenkrug, G.F. Targeting the broadly pathogenic kynurenine pathway; Springer: Cham, 2015, p. 430.
[130]
Rogers, K.S.; Evangelista, S.J. 3-Hydroxykynurenine, 3-hydroxyanthranilic acid, and o-aminophenol inhibit leucine-stimulated insulin release from rat pancreatic islets. Proc. Soc. Exp. Biol. Med., 1985, 178(2), 275-278.
[http://dx.doi.org/10.3181/00379727-178-42010] [PMID: 3881773]
[131]
Aouiss, A.; Anka Idrissi, D.; Kabine, M.; Zaid, Y. Update of inflammatory proliferative retinopathy: Ischemia, hypoxia and angiogenesis. Curr. Res. Transl. Med., 2019, 67(2), 62-71.
[http://dx.doi.org/10.1016/j.retram.2019.01.005] [PMID: 30685380]
[132]
Wang, Q.; Chen, J.; Wang, Y.; Han, X.; Chen, X. Hepatitis C virus induced a novel apoptosis-like death of pancreatic beta cells through a caspase 3-dependent pathway. PLoS One, 2012, 7(6)e38522
[http://dx.doi.org/10.1371/journal.pone.0038522] [PMID: 22675572]
[133]
Ikeda, S.; Kotake, Y. Urinary excretion of xanthurenic acid and zinc in diabetes: (3). Occurrence of xanthurenic acid-Zn2+ complex in urine of diabetic patients and of experimentally-diabetic rats. Ital. J. Biochem., 1986, 35(4), 232-241.
[PMID: 3781805]
[134]
Patterson, A.D.; Bonzo, J.A.; Li, F.; Krausz, K.W.; Eichler, G.S.; Aslam, S.; Tigno, X.; Weinstein, J.N.; Hansen, B.C.; Idle, J.R.; Gonzalez, F.J. Metabolomics reveals attenuation of the SLC6A20 kidney transporter in nonhuman primate and mouse models of type 2 diabetes mellitus. J. Biol. Chem., 2011, 286(22), 19511-19522.
[http://dx.doi.org/10.1074/jbc.M111.221739] [PMID: 21487016]
[135]
Noto, Y.; Okamoto, H. Inhibition by kynurenine metabolites of proinsulin synthesis in isolated pancreatic islets. Acta Diabetol. Lat., 1978, 15(5-6), 273-282.
[http://dx.doi.org/10.1007/BF02590750] [PMID: 373355]
[136]
Okamoto, H. Regulation of proinsulin synthesis in pancreatic islets and a new aspect to insulin-dependent diabetes. Mol. Cell. Biochem., 1981, 37(1), 43-61.
[http://dx.doi.org/10.1007/BF02355886] [PMID: 6166848]
[137]
Nakagami, Y.; Saito, H.; Katsuki, H. 3-Hydroxykynurenine toxicity on the rat striatum in vivo. Jpn. J. Pharmacol., 1996, 71(2), 183-186.
[http://dx.doi.org/10.1254/jjp.71.183] [PMID: 8835646]
[138]
Fuertig, R.; Azzinnari, D.; Bergamini, G.; Cathomas, F.; Sigrist, H.; Seifritz, E.; Vavassori, S.; Luippold, A.; Hengerer, B.; Ceci, A.; Pryce, C.R. Mouse chronic social stress increases blood and brain kynurenine pathway activity and fear behaviour: Both effects are reversed by inhibition of indoleamine 2,3-dioxygenase. Brain Behav. Immun., 2016, 54, 59-72.
[http://dx.doi.org/10.1016/j.bbi.2015.12.020] [PMID: 26724575]
[139]
Gu, Y.; Zhao, A.; Huang, F.; Zhang, Y.; Liu, J.; Wang, C.; Jia, W.; Xie, G.; Jia, W. Very low carbohydrate diet significantly alters the serum metabolic profiles in obese subjects. J. Proteome Res., 2013, 12(12), 5801-5811.
[http://dx.doi.org/10.1021/pr4008199] [PMID: 24224694]
[140]
Jimenez-Luna, C.; Martin-Blazquez, A.; Dieguez-Castillo, C.; Diaz, C.; Martin-Ruiz, J.L.; Genilloud, O.; Vicente, F.; Del Palacio, J.P.; Prados, J.; Caba, O. Novel Biomarkers to Distinguish between Type 3c and Type 2 Diabetes Mellitus by Untargeted Metabolomics. Metabolites, 2020, 10(11)E423
[http://dx.doi.org/10.3390/metabo10110423] [PMID: 33105675]
[141]
Niinisalo, P.; Oksala, N.; Levula, M.; Pelto-Huikko, M.; Järvinen, O.; Salenius, J.P.; Kytömäki, L.; Soini, J.T.; Kähönen, M.; Laaksonen, R.; Hurme, M.; Lehtimäki, T. Activation of indoleamine 2,3-dioxygenase-induced tryptophan degradation in advanced atherosclerotic plaques: Tampere vascular study. Ann. Med., 2010, 42(1), 55-63.
[http://dx.doi.org/10.3109/07853890903321559] [PMID: 19941414]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy