Review Article

纳米材料和干细胞分化潜能:生物学方面和生物医学功效的综述

卷 29, 期 10, 2022

发表于: 12 July, 2021

页: [1804 - 1823] 页: 20

弟呕挨: 10.2174/0929867328666210712193113

价格: $65

摘要

纳米颗粒(NPs)由于其医学应用而得到了广泛的应用。因此,使用间充质干细胞是组织工程领域最重要的替代选择之一。NPs在干细胞的增殖和分化中发挥着有效的作用。NPs和干细胞的组织再生的结合为我们创造了一种新的人类治疗方法。值得注意的是,NPs的理化性质决定了它们的生物学功能。有趣的是,各种机制,如调节信号通路和活性氧的生成,都参与了NPs诱导的细胞增殖和分化。本文综述了影响干细胞分化的纳米材料的类型、纳米材料的物理化学特性、生物医学应用以及纳米材料与环境的关系。

关键词: 纳米颗粒,间充质干细胞,组织再生,细胞分化,生物医学应用,纳米材料。

« Previous
[1]
El-Sayed, M.A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res., 2001, 34(4), 257-264.
[http://dx.doi.org/10.1021/ar960016n] [PMID: 11308299]
[2]
Dos Santos Ramos, M.A.; Da Silva, P.B.; Spósito, L.; De Toledo, L.G.; Bonifácio, B.V.; Rodero, C.F.; Dos Santos, K.C.; Chorilli, M.; Bauab, T.M. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int. J. Nanomedicine, 2018, 13, 1179-1213.
[http://dx.doi.org/10.2147/IJN.S146195] [PMID: 29520143]
[3]
Abdal Dayem, A.; Lee, S.B.; Cho, S-G. The impact of metallic nanoparticles on stem cell proliferation and differentiation. Nanomaterials (Basel), 2018, 8(10), 761.
[http://dx.doi.org/10.3390/nano8100761] [PMID: 30261637]
[4]
De, M.; Ghosh, P.S.; Rotello, V.M. Applications of nanoparticles in biology. Adv. Mater., 2008, 20(22), 4225-4241.
[http://dx.doi.org/10.1002/adma.200703183]
[5]
Rivera_Gil, P. Development of an assay based on cell counting with quantum dot labels for comparing cell adhesion within cocultures. Nano Today, 2011, 6(1), 20-27.
[6]
Rivera Gil, P.; Hühn, D.; del Mercato, L.L.; Sasse, D.; Parak, W.J. Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacol. Res., 2010, 62(2), 115-125.
[http://dx.doi.org/10.1016/j.phrs.2010.01.009] [PMID: 20097288]
[7]
Wei, M.; Li, S.; Le, W. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. J. Nanobiotechnology, 2017, 15(1), 75.
[http://dx.doi.org/10.1186/s12951-017-0310-5] [PMID: 29065876]
[8]
Ilie, I.; Ilie, R.; Mocan, T.; Bartos, D.; Mocan, L. Influence of nanomaterials on stem cell differentiation: designing an appropriate nanobiointerface. Int. J. Nanomedicine, 2012, 7, 2211-2225.
[PMID: 22619557]
[9]
Ravichandran, R.; Sridhar, R.; Venugopal, J.R.; Sundarrajan, S.; Mukherjee, S.; Ramakrishna, S. Gold nanoparticle loaded hybrid nanofibers for cardiogenic differentiation of stem cells for infarcted myocardium regeneration. Macromol. Biosci., 2014, 14(4), 515-525.
[http://dx.doi.org/10.1002/mabi.201300407] [PMID: 24327549]
[10]
Prochazkova, M. Embryonic versus adult stem cells.Stem Cell Biology and Tissue Engineering in Dental Sciences; Elsevier, 2015, pp. 249-262.
[http://dx.doi.org/10.1016/B978-0-12-397157-9.00020-5]
[11]
Kaufman, M.H.; Robertson, E.J.; Handyside, A.H.; Evans, M.J. Establishment of pluripotential cell lines from haploid mouse embryos. J. Embryol. Exp. Morphol., 1983, 73(1), 249-261.
[PMID: 6875460]
[12]
Takahashi, K.; Okita, K.; Nakagawa, M.; Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc., 2007, 2(12), 3081-3089.
[http://dx.doi.org/10.1038/nprot.2007.418] [PMID: 18079707]
[13]
Nakagawa, M.; Koyanagi, M.; Tanabe, K.; Takahashi, K.; Ichisaka, T.; Aoi, T.; Okita, K.; Mochiduki, Y.; Takizawa, N.; Yamanaka, S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol., 2008, 26(1), 101-106.
[http://dx.doi.org/10.1038/nbt1374] [PMID: 18059259]
[14]
Yu, J.; Hu, K.; Smuga-Otto, K.; Tian, S.; Stewart, R.; Slukvin, I.I.; Thomson, J.A. Human induced pluripotent stem cells free of vector and transgene sequences. Science, 2009, 324(5928), 797-801.
[http://dx.doi.org/10.1126/science.1172482] [PMID: 19325077]
[15]
Kalra, K.; Tomar, P. Stem cell: basics, classification and applications. Am. J. Phytomed. Clin. Ther., 2014, 2(7), 919-930.
[16]
Williams, A.R.; Hare, J.M. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ. Res., 2011, 109(8), 923-940.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.243147] [PMID: 21960725]
[17]
Quevedo, H.C.; Hatzistergos, K.E.; Oskouei, B.N.; Feigenbaum, G.S.; Rodriguez, J.E.; Valdes, D.; Pattany, P.M.; Zambrano, J.P.; Hu, Q.; McNiece, I.; Heldman, A.W.; Hare, J.M. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 14022-14027.
[http://dx.doi.org/10.1073/pnas.0903201106] [PMID: 19666564]
[18]
Sridhar, S.; Venugopal, J.R.; Sridhar, R.; Ramakrishna, S. Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf. B Biointerfaces, 2015, 134, 346-354.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.019] [PMID: 26209968]
[19]
Zhang, Y.; Fan, W.; Wang, K.; Wei, H.; Zhang, R.; Wu, Y. Novel preparation of Au nanoparticles loaded Laponite nanoparticles/ECM injectable hydrogel on cardiac differentiation of resident cardiac stem cells to cardiomyocytes. J. Photochem. Photobiol. B, 2019, 192, 49-54.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.12.022] [PMID: 30682654]
[20]
Wang, Y.; Yang, D.; Song, L.; Li, T.; Yang, J.; Zhang, X.; Le, W. Mifepristone-inducible caspase-1 expression in mouse embryonic stem cells eliminates tumor formation but spares differentiated cells in vitro and in vivo. Stem Cells, 2012, 30(2), 169-179.
[http://dx.doi.org/10.1002/stem.1000] [PMID: 22131096]
[21]
Lee, W.C.; Lim, C.H.; Shi, H.; Tang, L.A.; Wang, Y.; Lim, C.T.; Loh, K.P. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano, 2011, 5(9), 7334-7341.
[http://dx.doi.org/10.1021/nn202190c] [PMID: 21793541]
[22]
Przyborski, S.A. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells, 2005, 23(9), 1242-1250.
[http://dx.doi.org/10.1634/stemcells.2005-0014] [PMID: 16210408]
[23]
Le Blanc, K.; Ringdén, O. Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Curr. Opin. Immunol., 2006, 18(5), 586-591.
[http://dx.doi.org/10.1016/j.coi.2006.07.004] [PMID: 16879957]
[24]
Chamberlain, G.; Fox, J.; Ashton, B.; Middleton, J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 2007, 25(11), 2739-2749.
[http://dx.doi.org/10.1634/stemcells.2007-0197] [PMID: 17656645]
[25]
Meirelles, Lda.S.; Fontes, A.M.; Covas, D.T.; Caplan, A.I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev., 2009, 20(5-6), 419-427.
[http://dx.doi.org/10.1016/j.cytogfr.2009.10.002] [PMID: 19926330]
[26]
Ayala-Cuellar, A.P.; Kang, J.H.; Jeung, E.B.; Choi, K.C. Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol. Ther. (Seoul), 2019, 27(1), 25-33.
[http://dx.doi.org/10.4062/biomolther.2017.260] [PMID: 29902862]
[27]
Reiter, J.; Drummond, S.; Sammour, I.; Huang, J.; Florea, V.; Dornas, P.; Hare, J.M.; Rodrigues, C.O.; Young, K.C. Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia. Respir. Res., 2017, 18(1), 137.
[http://dx.doi.org/10.1186/s12931-017-0620-z] [PMID: 28701189]
[28]
Schlosser, S.; Dennler, C.; Schweizer, R.; Eberli, D.; Stein, J.V.; Enzmann, V.; Giovanoli, P.; Erni, D.; Plock, J.A. Paracrine effects of mesenchymal stem cells enhance vascular regeneration in ischemic murine skin. Microvasc. Res., 2012, 83(3), 267-275.
[http://dx.doi.org/10.1016/j.mvr.2012.02.011] [PMID: 22391452]
[29]
Maxson, S.; Lopez, E.A.; Yoo, D.; Danilkovitch-Miagkova, A.; Leroux, M.A. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl. Med., 2012, 1(2), 142-149.
[http://dx.doi.org/10.5966/sctm.2011-0018] [PMID: 23197761]
[30]
Zimmermann, W-H.; Melnychenko, I.; Wasmeier, G.; Didié, M.; Naito, H.; Nixdorff, U.; Hess, A.; Budinsky, L.; Brune, K.; Michaelis, B.; Dhein, S.; Schwoerer, A.; Ehmke, H.; Eschenhagen, T. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med., 2006, 12(4), 452-458.
[http://dx.doi.org/10.1038/nm1394] [PMID: 16582915]
[31]
Davies, B. Human cord blood stem cells enhance neonatal right ventricular function in an ovine model of right ventricular training. Ann. Thorac. Surg., 2010, 89(2), 585-593.
[http://dx.doi.org/10.1016/j.athoracsur.2009.10.035]
[32]
Khorsand, A.; Eslaminejad, M.B.; Arabsolghar, M.; Paknejad, M.; Ghaedi, B.; Rokn, A.R.; Moslemi, N.; Nazarian, H.; Jahangir, S. Autologous dental pulp stem cells in regeneration of defect created in canine periodontal tissue. J. Oral Implantol., 2013, 39(4), 433-443.
[http://dx.doi.org/10.1563/AAID-JOI-D-12-00027] [PMID: 23964777]
[33]
Bai, L.; Caplan, A.; Lennon, D.; Miller, R.H. Human mesenchymal stem cells signals regulate neural stem cell fate. Neurochem. Res., 2007, 32(2), 353-362.
[http://dx.doi.org/10.1007/s11064-006-9212-x] [PMID: 17191131]
[34]
de Miguel, M.P. Mesenchymal stem cells for liver regeneration in liver failure: from experimental models to clinical trials. Stem Cells Int., 2019, 2019, 3945672.
[http://dx.doi.org/10.1155/2019/3945672]
[35]
Goldberg, A.; Mitchell, K.; Soans, J.; Kim, L.; Zaidi, R. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J. Orthop. Surg. Res., 2017, 12(1), 39.
[http://dx.doi.org/10.1186/s13018-017-0534-y] [PMID: 28279182]
[36]
Farahzadi, R.; Fathi, E.; Vietor, I. Mesenchymal stem cells could be considered as a candidate for further studies in cell-based therapy of Alzheimer’s disease via targeting the signaling pathways. ACS Chem. Neurosci., 2020, 11(10), 1424-1435.
[http://dx.doi.org/10.1021/acschemneuro.0c00052] [PMID: 32310632]
[37]
Donaldson, K. Resolving the nanoparticles paradox. Nanomedicine (Lond), 2006, 1(2), 229-34.
[http://dx.doi.org/10.2217/17435889.1.2.229]
[38]
Arora, S.; Rajwade, J.M.; Paknikar, K.M. Nanotoxicology and in vitro studies: the need of the hour. Toxicol. Appl. Pharmacol., 2012, 258(2), 151-165.
[http://dx.doi.org/10.1016/j.taap.2011.11.010] [PMID: 22178382]
[39]
Napierska, D.; Thomassen, L.C.; Lison, D.; Martens, J.A.; Hoet, P.H. The nanosilica hazard: another variable entity. Part. Fibre Toxicol., 2010, 7(1), 39.
[http://dx.doi.org/10.1186/1743-8977-7-39] [PMID: 21126379]
[40]
Linsinger, T. Requirements on measurements the European Commission definition of the term “nanomaterial”. 2012.
[41]
Mageswari, A. Nanomaterials: classification, biological synthesis and characterization in nanoscience in food and agriculture. Springer, 2016, 3, 31-71.
[http://dx.doi.org/10.1007/978-3-319-48009-1_2]
[42]
Saleh, T.A. Nanomaterials: Classification, properties, and environmental toxicities; Environmental Technology & Innovation. , 2020, p. p. 101067.
[43]
Mashinchian, O.; Turner, L.A.; Dalby, M.J.; Laurent, S.; Shokrgozar, M.A.; Bonakdar, S.; Imani, M.; Mahmoudi, M. Regulation of stem cell fate by nanomaterial substrates. Nanomedicine (Lond.), 2015, 10(5), 829-847.
[http://dx.doi.org/10.2217/nnm.14.225] [PMID: 25816883]
[44]
Kim, S.; Choi, I.H. Phagocytosis and endocytosis of silver nanoparticles induce interleukin-8 production in human macrophages. Yonsei Med. J. 2012, 53(3), 654-7.
[45]
Zhao, F. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small, 2011, 7(10), 1322-1337.
[http://dx.doi.org/10.1002/smll.201100001]
[46]
Wei, M.; Li, S.; Yang, Z.; Zheng, W.; Le, W. Gold nanoparticles enhance the differentiation of embryonic stem cells into dopaminergic neurons via mTOR/p70S6K pathway. Nanomedicine (Lond.), 2017, 12(11), 1305-1317.
[http://dx.doi.org/10.2217/nnm-2017-0001] [PMID: 28520507]
[47]
Baranes, K.; Shevach, M.; Shefi, O.; Dvir, T. Gold nanoparticle-decorated scaffolds promote neuronal differentiation and maturation. Nano Lett., 2016, 16(5), 2916-2920.
[http://dx.doi.org/10.1021/acs.nanolett.5b04033] [PMID: 26674672]
[48]
Gurunathan, S.; Kim, J-H. Biocompatible gold nanoparticles ameliorate retinoic acid-induced cell death and induce differentiation in F9 teratocarcinoma stem cells. Nanomaterials (Basel), 2018, 8(6), 396.
[http://dx.doi.org/10.3390/nano8060396] [PMID: 29865197]
[49]
Khan, A.R.; Farid, T.A.; Pathan, A.; Tripathi, A.; Ghafghazi, S.; Wysoczynski, M.; Bolli, R. Impact of cell therapy on myocardial perfusion and cardiovascular outcomes in patients with angina refractory to medical therapy: a systematic review and meta-analysis. Circ. Res., 2016, 118(6), 984-993.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.308056] [PMID: 26838794]
[50]
Ko, W-K.; Heo, D.N.; Moon, H.J.; Lee, S.J.; Bae, M.S.; Lee, J.B.; Sun, I.C.; Jeon, H.B.; Park, H.K.; Kwon, I.K. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J. Colloid Interface Sci., 2015, 438, 68-76.
[http://dx.doi.org/10.1016/j.jcis.2014.08.058] [PMID: 25454427]
[51]
Choi, S.Y.; Song, M.S.; Ryu, P.D.; Lam, A.T.; Joo, S.W.; Lee, S.Y. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway. Int. J. Nanomedicine, 2015, 10, 4383-4392.
[PMID: 26185441]
[52]
Zhang, D.; Liu, D.; Zhang, J.; Fong, C.; Yang, M. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway. Mater. Sci. Eng. C, 2014, 42, 70-77.
[http://dx.doi.org/10.1016/j.msec.2014.04.042] [PMID: 25063094]
[53]
Yun, Y-R.; Won, J.E.; Jeon, E.; Lee, S.; Kang, W.; Jo, H.; Jang, J.H.; Shin, U.S.; Kim, H.W. Fibroblast growth factors: biology, function, and application for tissue regeneration. J. Tissue Eng., 2010, 2010(1), 218142.
[http://dx.doi.org/10.4061/2010/218142] [PMID: 21350642]
[54]
Samberg, M.E.; Loboa, E.G.; Oldenburg, S.J.; Monteiro-Riviere, N.A. Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity. Nanomedicine (Lond.), 2012, 7(8), 1197-1209.
[http://dx.doi.org/10.2217/nnm.12.18] [PMID: 22583572]
[55]
He, W.; Kienzle, A.; Liu, X.; Müller, W.E.; Elkhooly, T.A.; Feng, Q. In vitro effect of 30 nm silver nanoparticles on adipogenic differentiation of human mesenchymal stem cells. J. Biomed. Nanotechnol., 2016, 12(3), 525-535.
[http://dx.doi.org/10.1166/jbn.2016.2182] [PMID: 27280250]
[56]
Sengstock, C.; Diendorf, J.; Epple, M.; Schildhauer, T.A.; Köller, M. Effect of silver nanoparticles on human mesenchymal stem cell differentiation. Beilstein J. Nanotechnol., 2014, 5(1), 2058-2069.
[http://dx.doi.org/10.3762/bjnano.5.214] [PMID: 25551033]
[57]
Zhang, R.; Lee, P.; Lui, V.C.; Chen, Y.; Liu, X.; Lok, C.N.; To, M.; Yeung, K.W.; Wong, K.K. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine (Lond.), 2015, 11(8), 1949-1959.
[http://dx.doi.org/10.1016/j.nano.2015.07.016] [PMID: 26282383]
[58]
Qureshi, A.T.; Monroe, W.T.; Dasa, V.; Gimble, J.M.; Hayes, D.J. miR-148b-nanoparticle conjugates for light mediated osteogenesis of human adipose stromal/stem cells. Biomaterials, 2013, 34(31), 7799-7810.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.004] [PMID: 23870854]
[59]
Carinci, F.; Guidi, R.; Franco, M.; Viscioni, A.; Rigo, L.; De Santis, B.; Tropina, E. Implants inserted in fresh-frozen bone: a retrospective analysis of 88 implants loaded 4 months after insertion. Quintessence Int., 2009, 40(5), 413-419.
[PMID: 19582246]
[60]
Gapski, R.; Wang, H.L.; Mascarenhas, P.; Lang, N.P. Critical review of immediate implant loading. Clin. Oral Implants Res., 2003, 14(5), 515-527.
[http://dx.doi.org/10.1034/j.1600-0501.2003.00950.x] [PMID: 12969355]
[61]
Liu, X.; Ren, X.; Deng, X.; Huo, Y.; Xie, J.; Huang, H.; Jiao, Z.; Wu, M.; Liu, Y.; Wen, T. A protein interaction network for the analysis of the neuronal differentiation of neural stem cells in response to titanium dioxide nanoparticles. Biomaterials, 2010, 31(11), 3063-3070.
[http://dx.doi.org/10.1016/j.biomaterials.2009.12.054] [PMID: 20071024]
[62]
Bauer, S.; Park, J.; Faltenbacher, J.; Berger, S.; von der Mark, K.; Schmuki, P. Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays. Integr. Biol., 2009, 1(8-9), 525-532.
[http://dx.doi.org/10.1039/b908196h] [PMID: 20023767]
[63]
Oh, S.; Brammer, K.S.; Li, Y.S.; Teng, D.; Engler, A.J.; Chien, S.; Jin, S. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA, 2009, 106(7), 2130-2135.
[http://dx.doi.org/10.1073/pnas.0813200106] [PMID: 19179282]
[64]
Park, J.; Bauer, S.; von der Mark, K.; Schmuki, P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett., 2007, 7(6), 1686-1691.
[http://dx.doi.org/10.1021/nl070678d] [PMID: 17503870]
[65]
Pozio, A.; Palmieri, A.; Girardi, A.; Cura, F.; Carinci, F. Titanium nanotubes stimulate osteoblast differentiation of stem cells from pulp and adipose tissue. Dent Res J (Isfahan), 2012, 9(Suppl. 2), S169-S174.
[PMID: 23814578]
[66]
Lv, L.; Liu, Y.; Zhang, P.; Zhang, X.; Liu, J.; Chen, T.; Su, P.; Li, H.; Zhou, Y. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials, 2015, 39, 193-205.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.002] [PMID: 25468371]
[67]
Namgung, S.; Baik, K.Y.; Park, J.; Hong, S. Controlling the growth and differentiation of human mesenchymal stem cells by the arrangement of individual carbon nanotubes. ACS Nano, 2011, 5(9), 7383-7390.
[http://dx.doi.org/10.1021/nn2023057] [PMID: 21819114]
[68]
Holmes, B.; Castro, N.J.; Li, J.; Keidar, M.; Zhang, L.G. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes. Nanotechnology, 2013, 24(36), 365102.
[http://dx.doi.org/10.1088/0957-4484/24/36/365102] [PMID: 23959974]
[69]
Karadzic, I.; Vucic, V.; Jokanovic, V.; Debeljak-Martacic, J.; Markovic, D.; Petrovic, S.; Glibetic, M. Effects of novel hydroxyapatite-based 3D biomaterials on proliferation and osteoblastic differentiation of mesenchymal stem cells. J. Biomed. Mater. Res. A, 2015, 103(1), 350-357.
[http://dx.doi.org/10.1002/jbm.a.35180] [PMID: 24665062]
[70]
Ebrahimi-Barough, S.; Hoveizi, E.; Norouzi Javidan, A.; Ai, J. Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold. J. Biomed. Mater. Res. A, 2015, 103(8), 2621-2627.
[http://dx.doi.org/10.1002/jbm.a.35397] [PMID: 25611196]
[71]
Qu, T.; Liu, X. Nano-structured gelatin/bioactive glass hybrid scaffolds for the enhancement of odontogenic differentiation of human dental pulp stem cells. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(37), 4764-4772.
[http://dx.doi.org/10.1039/c3tb21002b] [PMID: 24098854]
[72]
Pullisaar, H.; Verket, A.; Szoke, K.; Tiainen, H.; Haugen, H.J.; Brinchmann, J.E.; Reseland, J.E.; Østrup, E. Alginate hydrogel enriched with enamel matrix derivative to target osteogenic cell differentiation in TiO2 scaffolds. J. Tissue Eng., 2015, 6, 2041731415575870.
[http://dx.doi.org/10.1177/2041731415575870] [PMID: 26090086]
[73]
Pullisaar, H.; Tiainen, H.; Landin, M.A.; Lyngstadaas, S.P.; Haugen, H.J.; Reseland, J.E.; Ostrup, E. Enhanced in vitro osteoblast differentiation on TiO2 scaffold coated with alginate hydrogel containing simvastatin. J. Tissue Eng., 2013, 4, 2041731413515670.
[http://dx.doi.org/10.1177/2041731413515670] [PMID: 24555011]
[74]
Crowder, S.W.; Liang, Y.; Rath, R.; Park, A.M.; Maltais, S.; Pintauro, P.N.; Hofmeister, W.; Lim, C.C.; Wang, X.; Sung, H.J. Poly(ε-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells. Nanomedicine (Lond.), 2013, 8(11), 1763-1776.
[http://dx.doi.org/10.2217/nnm.12.204] [PMID: 23530764]
[75]
Wang, F.; Guan, J. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv. Drug Deliv. Rev., 2010, 62(7-8), 784-797.
[http://dx.doi.org/10.1016/j.addr.2010.03.001] [PMID: 20214939]
[76]
Mooney, E.; Dockery, P.; Greiser, U.; Murphy, M.; Barron, V. Carbon nanotubes and mesenchymal stem cells: biocompatibility, proliferation and differentiation. Nano Lett., 2008, 8(8), 2137-2143.
[http://dx.doi.org/10.1021/nl073300o] [PMID: 18624387]
[77]
Meng, X.; Stout, D.A.; Sun, L.; Beingessner, R.L.; Fenniri, H.; Webster, T.J. Novel injectable biomimetic hydrogels with carbon nanofibers and self assembled rosette nanotubes for myocardial applications. J. Biomed. Mater. Res. A, 2013, 101(4), 1095-1102.
[http://dx.doi.org/10.1002/jbm.a.34400] [PMID: 23008178]
[78]
Mooney, E.; Mackle, J.N.; Blond, D.J.; O’Cearbhaill, E.; Shaw, G.; Blau, W.J.; Barry, F.P.; Barron, V.; Murphy, J.M. The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials, 2012, 33(26), 6132-6139.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.032] [PMID: 22681974]
[79]
Martinelli, V.; Cellot, G.; Toma, F.M.; Long, C.S.; Caldwell, J.H.; Zentilin, L.; Giacca, M.; Turco, A.; Prato, M.; Ballerini, L.; Mestroni, L. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett., 2012, 12(4), 1831-1838.
[http://dx.doi.org/10.1021/nl204064s] [PMID: 22432413]
[80]
Rivera-Gil, P.; Jimenez de Aberasturi, D.; Wulf, V.; Pelaz, B.; del Pino, P.; Zhao, Y.; de la Fuente, J.M.; Ruiz de Larramendi, I.; Rojo, T.; Liang, X.J.; Parak, W.J. The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc. Chem. Res., 2013, 46(3), 743-749.
[http://dx.doi.org/10.1021/ar300039j] [PMID: 22786674]
[81]
Liu, X.; He, W.; Fang, Z.; Kienzle, A.; Feng, Q. Influence of silver nanoparticles on osteogenic differentiation of human mesenchymal stem cells. J. Biomed. Nanotechnol., 2014, 10(7), 1277-1285.
[http://dx.doi.org/10.1166/jbn.2014.1824] [PMID: 24804548]
[82]
Chithrani, B.D.; Chan, W.C. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett., 2007, 7(6), 1542-1550.
[http://dx.doi.org/10.1021/nl070363y] [PMID: 17465586]
[83]
Nel, A. Toxic potential of materials at the nanolevel. science, 2006, 311(5761), 622-627.
[http://dx.doi.org/10.1126/science.1114397]
[84]
Li, J.; Li, J.J.; Zhang, J.; Wang, X.; Kawazoe, N.; Chen, G. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale, 2016, 8(15), 7992-8007.
[http://dx.doi.org/10.1039/C5NR08808A] [PMID: 27010117]
[85]
Seong, J.M.; Kim, B.C.; Park, J.H.; Kwon, I.K.; Mantalaris, A.; Hwang, Y.S. Stem cells in bone tissue engineering. Biomed. Mater., 2010, 5(6), 062001.
[http://dx.doi.org/10.1088/1748-6041/5/6/062001] [PMID: 20924139]
[86]
Li, J.J.; Kawazoe, N.; Chen, G. Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis. Biomaterials, 2015, 54, 226-236.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.001] [PMID: 25858865]
[87]
Xia, T.; Kovochich, M.; Liong, M.; Zink, J.I.; Nel, A.E. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano, 2008, 2(1), 85-96.
[http://dx.doi.org/10.1021/nn700256c] [PMID: 19206551]
[88]
Arvizo, R.R.; Miranda, O.R.; Thompson, M.A.; Pabelick, C.M.; Bhattacharya, R.; Robertson, J.D.; Rotello, V.M.; Prakash, Y.S.; Mukherjee, P. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett., 2010, 10(7), 2543-2548.
[http://dx.doi.org/10.1021/nl101140t] [PMID: 20533851]
[89]
Leroueil, P.R.; Hong, S.; Mecke, A.; Baker, J.R., Jr; Orr, B.G.; Banaszak Holl, M.M. Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc. Chem. Res., 2007, 40(5), 335-342.
[http://dx.doi.org/10.1021/ar600012y] [PMID: 17474708]
[90]
Yi, C.; Liu, D.; Fong, C.C.; Zhang, J.; Yang, M. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano, 2010, 4(11), 6439-6448.
[http://dx.doi.org/10.1021/nn101373r] [PMID: 21028783]
[91]
Ferreira, L. Nanoparticles as tools to study and control stem cells. J. Cell. Biochem., 2009, 108(4), 746-752.
[http://dx.doi.org/10.1002/jcb.22303] [PMID: 19708027]
[92]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 156(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024]
[93]
Zavan, B.; Vindigni, V.; Vezzù, K.; Zorzato, G.; Luni, C.; Abatangelo, G.; Elvassore, N.; Cortivo, R. Hyaluronan based porous nano-particles enriched with growth factors for the treatment of ulcers: a placebo-controlled study. J. Mater. Sci. Mater. Med., 2009, 20(1), 235-247.
[http://dx.doi.org/10.1007/s10856-008-3566-3] [PMID: 18758917]
[94]
Lee, J.K.; Jin, H.K.; Endo, S.; Schuchman, E.H.; Carter, J.E.; Bae, J.S. Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells, 2010, 28(2), 329-343.
[PMID: 20014009]
[95]
Pagani, F.D.; DerSimonian, H.; Zawadzka, A.; Wetzel, K.; Edge, A.S.; Jacoby, D.B.; Dinsmore, J.H.; Wright, S.; Aretz, T.H.; Eisen, H.J.; Aaronson, K.D. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J. Am. Coll. Cardiol., 2003, 41(5), 879-888.
[http://dx.doi.org/10.1016/S0735-1097(03)00081-0] [PMID: 12628737]
[96]
Buschke, D.G.; Squirrell, J.M.; Fong, J.J.; Eliceiri, K.W.; Ogle, B.M. Cell death, non-invasively assessed by intrinsic fluorescence intensity of NADH, is a predictive indicator of functional differentiation of embryonic stem cells. Biol. Cell, 2012, 104(6), 352-364.
[http://dx.doi.org/10.1111/boc.201100091] [PMID: 22304470]
[97]
Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W.W.; Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science, 1994, 263(5148), 802-805.
[http://dx.doi.org/10.1126/science.8303295] [PMID: 8303295]
[98]
Wang, H.; Cao, F.; De, A.; Cao, Y.; Contag, C.; Gambhir, S.S.; Wu, J.C.; Chen, X. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells, 2009, 27(7), 1548-1558.
[http://dx.doi.org/10.1002/stem.81] [PMID: 19544460]
[99]
Perán, M.; García, M.A.; López-Ruiz, E.; Bustamante, M.; Jiménez, G.; Madeddu, R.; Marchal, J.A. Functionalized nanostructures with application in regenerative medicine. Int. J. Mol. Sci., 2012, 13(3), 3847-3886.
[http://dx.doi.org/10.3390/ijms13033847] [PMID: 22489186]
[100]
Solanki, A.; Kim, J.D.; Lee, K.-B. Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine (Lond), 2008, 3(4), 567-78.
[http://dx.doi.org/10.2217/17435889.3.4.567]
[101]
Deb, K.D.; Griffith, M.; Muinck, E.D.; Rafat, M. Nanotechnology in stem cells research: advances and applications. Front. Biosci., 2012, 17, 1747-1760.
[http://dx.doi.org/10.2741/4016] [PMID: 22201833]
[102]
Villa, C.; Erratico, S.; Razini, P.; Fiori, F.; Rustichelli, F.; Torrente, Y.; Belicchi, M. Stem cell tracking by nanotechnologies. Int. J. Mol. Sci., 2010, 11(3), 1070-1081.
[http://dx.doi.org/10.3390/ijms11031070] [PMID: 20480000]
[103]
Bruchez, M. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385), 2013-2016.
[http://dx.doi.org/10.1126/science.281.5385.2013]
[104]
Chan, W.C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385), 2016-2018.
[http://dx.doi.org/10.1126/science.281.5385.2016] [PMID: 9748158]
[105]
Rizvi, S.B.; Ghaderi, S.; Keshtgar, M.; Seifalian, A.M. Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev., 2010, 1(1), 5161.
[http://dx.doi.org/10.3402/nano.v1i0.5161] [PMID: 22110865]
[106]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4(6), 435-446.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[107]
Jaiswal, J.K.; Mattoussi, H.; Mauro, J.M.; Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol., 2003, 21(1), 47-51.
[http://dx.doi.org/10.1038/nbt767] [PMID: 12459736]
[108]
Derfus, A.M.; Chan, W.C.W.; Bhatia, S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett., 2004, 4(1), 11-18.
[http://dx.doi.org/10.1021/nl0347334] [PMID: 28890669]
[109]
Michalet, X. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709), 538-544.
[http://dx.doi.org/10.1126/science.1104274]
[110]
Gao, X.; Yang, L.; Petros, J.A.; Marshall, F.F.; Simons, J.W.; Nie, S. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol., 2005, 16(1), 63-72.
[http://dx.doi.org/10.1016/j.copbio.2004.11.003] [PMID: 15722017]
[111]
Hoshino, A. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett., 2004, 4(11), 2163-2169.
[http://dx.doi.org/10.1021/nl048715d]
[112]
Chakraborty, S.K.; Fitzpatrick, J.A.; Phillippi, J.A.; Andreko, S.; Waggoner, A.S.; Bruchez, M.P.; Ballou, B. Cholera toxin B conjugated quantum dots for live cell labeling. Nano Lett., 2007, 7(9), 2618-2626.
[http://dx.doi.org/10.1021/nl0709930] [PMID: 17663586]
[113]
Shah, B.S.; Clark, P.A.; Moioli, E.K.; Stroscio, M.A.; Mao, J.J. Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett., 2007, 7(10), 3071-3079.
[http://dx.doi.org/10.1021/nl071547f] [PMID: 17887799]
[114]
Shah, B.S.; Mao, J.J. Labeling of mesenchymal stem cells with bioconjugated quantum dots. Molecular Imaging; Springer, 2011, pp. 61-75.
[http://dx.doi.org/10.1007/978-1-60761-901-7_4]
[115]
Chen, G.; Tian, F.; Li, C.; Zhang, Y.; Weng, Z.; Zhang, Y.; Peng, R.; Wang, Q. In vivo real-time visualization of mesenchymal stem cells tropism for cutaneous regeneration using NIR-II fluorescence imaging. Biomaterials, 2015, 53, 265-273.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.090] [PMID: 25890725]
[116]
Tang, L.; Cheng, J. Nonporous silica nanoparticles for nanomedicine application. Nano Today, 2013, 8(3), 290-312.
[http://dx.doi.org/10.1016/j.nantod.2013.04.007] [PMID: 23997809]
[117]
Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater., 2012, 24(12), 1504-1534.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[118]
Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.W.; Lin, V.S. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008, 60(11), 1278-1288.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[119]
Burns, A.; Ow, H.; Wiesner, U. Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem. Soc. Rev., 2006, 35(11), 1028-1042.
[http://dx.doi.org/10.1039/B600562B] [PMID: 17057833]
[120]
Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci., 1968, 26(1), 62-69.
[http://dx.doi.org/10.1016/0021-9797(68)90272-5]
[121]
Yamauchi, H.; Ishikawa, T.; Kondo, S. Surface characterization of ultramicro spherical particles of silica prepared by w/o microemulsion method. Colloids Surf., 1989, 37, 71-80.
[http://dx.doi.org/10.1016/0166-6622(89)80107-6]
[122]
Lindberg, R.; Sjöblom, J.; Sundholm, G. Preparation of silica particles utilizing the sol-gel and the emulsion-gel processes. Colloids Surf. A Physicochem. Eng. Asp., 1995, 99(1), 79-88.
[http://dx.doi.org/10.1016/0927-7757(95)03117-V]
[123]
Accomasso, L. Stem cell tracking with nanoparticles for regenerative medicine purposes: An overview. Stem Cells Int., 2016, 2016, 7920358.
[http://dx.doi.org/10.1155/2016/7920358]
[124]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012]
[125]
Dey, P.; Blakey, I.; Stone, N. Diagnostic prospects and preclinical development of optical technologies using gold nanostructure contrast agents to boost endogenous tissue contrast. Chem. Sci. (Camb.), 2020, 11(33), 8671-8685.
[http://dx.doi.org/10.1039/D0SC01926G] [PMID: 34123125]
[126]
Galvão, W.S. Super-paramagnetic nanoparticles with spinel structure: a review of synthesis and biomedical applications. in solid state phenomena; ; Publ, T., Ed.; . , 2016.
[127]
Ricles, L.M.; Nam, S.Y.; Sokolov, K.; Emelianov, S.Y.; Suggs, L.J. Function of mesenchymal stem cells following loading of gold nanotracers. Int. J. Nanomedicine, 2011, 6, 407-416.
[http://dx.doi.org/10.2147/IJN.S16354] [PMID: 21499430]
[128]
Jokerst, J.V.; Thangaraj, M.; Kempen, P.J.; Sinclair, R.; Gambhir, S.S. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano, 2012, 6(7), 5920-5930.
[http://dx.doi.org/10.1021/nn302042y] [PMID: 22681633]
[129]
da Silva, A.L. SPR biosensors based on gold and silver nanoparticle multilayer films. J. Braz. Chem. Soc., 2014, 25(5), 928-934.
[http://dx.doi.org/10.5935/0103-5053.20140064]
[130]
Kim, D.; Park, S.; Lee, J.H.; Jeong, Y.Y.; Jon, S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc., 2007, 129(24), 7661-7665.
[http://dx.doi.org/10.1021/ja071471p] [PMID: 17530850]
[131]
Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K. Novel optical nanosensors for probing and imaging live cells. Nanomedicine (Lond.), 2010, 6(2), 214-226.
[http://dx.doi.org/10.1016/j.nano.2009.07.009] [PMID: 19699322]
[132]
Yang, X.; Stein, E.W.; Ashkenazi, S.; Wang, L.V. Nanoparticles for photoacoustic imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(4), 360-368.
[http://dx.doi.org/10.1002/wnan.42] [PMID: 20049803]
[133]
Vartholomeos, P.; Fruchard, M.; Ferreira, A.; Mavroidis, C. MRI-guided nanorobotic systems for therapeutic and diagnostic applications. Annu. Rev. Biomed. Eng., 2011, 13, 157-184.
[http://dx.doi.org/10.1146/annurev-bioeng-071910-124724] [PMID: 21529162]
[134]
Nietzold, C.; Lisdat, F. Fast protein detection using absorption properties of gold nanoparticles. Analyst (Lond.), 2012, 137(12), 2821-2826.
[http://dx.doi.org/10.1039/c2an35054h] [PMID: 22569135]
[135]
Mahapatro, A.; Singh, D.K. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotechnology, 2011, 9(1), 55.
[http://dx.doi.org/10.1186/1477-3155-9-55] [PMID: 22123084]
[136]
Lim, E-K.; Jang, E.; Lee, K.; Haam, S.; Huh, Y.M. Delivery of cancer therapeutics using nanotechnology. Pharmaceutics, 2013, 5(2), 294-317.
[http://dx.doi.org/10.3390/pharmaceutics5020294] [PMID: 24300452]
[137]
Chen, Y-H.; Tsai, C.Y.; Huang, P.Y.; Chang, M.Y.; Cheng, P.C.; Chou, C.H.; Chen, D.H.; Wang, C.R.; Shiau, A.L.; Wu, C.L. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol. Pharm., 2007, 4(5), 713-722.
[http://dx.doi.org/10.1021/mp060132k] [PMID: 17708653]
[138]
Wang, F.; Wang, Y.C.; Dou, S.; Xiong, M.H.; Sun, T.M.; Wang, J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano, 2011, 5(5), 3679-3692.
[http://dx.doi.org/10.1021/nn200007z] [PMID: 21462992]
[139]
Satapathy, S.R.; Mohapatra, P.; Preet, R.; Das, D.; Sarkar, B.; Choudhuri, T.; Wyatt, M.D.; Kundu, C.N. Silver-based nanoparticles induce apoptosis in human colon cancer cells mediated through p53. Nanomedicine (Lond.), 2013, 8(8), 1307-1322.
[http://dx.doi.org/10.2217/nnm.12.176] [PMID: 23514434]
[140]
Nallathamby, P.D.; Xu, X-H.N. Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells. Nanoscale, 2010, 2(6), 942-952.
[http://dx.doi.org/10.1039/c0nr00080a] [PMID: 20648292]
[141]
Guo, D.; Zhu, L.; Huang, Z.; Zhou, H.; Ge, Y.; Ma, W.; Wu, J.; Zhang, X.; Zhou, X.; Zhang, Y.; Zhao, Y.; Gu, N. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials, 2013, 34(32), 7884-7894.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.015] [PMID: 23876760]
[142]
Fageria, L.; Pareek, V.; Dilip, R.V.; Bhargava, A.; Pasha, S.S.; Laskar, I.R.; Saini, H.; Dash, S.; Chowdhury, R.; Panwar, J. Biosynthesized protein-capped silver nanoparticles induce ros-dependent proapoptotic signals and prosurvival autophagy in cancer cells. ACS Omega, 2017, 2(4), 1489-1504.
[http://dx.doi.org/10.1021/acsomega.7b00045] [PMID: 30023637]
[143]
Abdal Dayem, A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G.M.; Choi, H.Y.; Cho, S.G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci., 2017, 18(1), 120.
[http://dx.doi.org/10.3390/ijms18010120] [PMID: 28075405]
[144]
Kajani, A.A. Gold nanoparticles as potent anticancer agent: green synthesis, characterization, and in vitro study. RSC Advances, 2016, 6(68), 63973-63983.
[http://dx.doi.org/10.1039/C6RA09050H]
[145]
Geetha, R.; Ashokkumar, T.; Tamilselvan, S.; Govindaraju, K.; Sadiq, M.; Singaravelu, G. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol., 2013, 4(4-5), 91-98.
[http://dx.doi.org/10.1007/s12645-013-0040-9] [PMID: 26069504]
[146]
Farooq, M.U.; Novosad, V.; Rozhkova, E.A.; Wali, H.; Ali, A.; Fateh, A.A.; Neogi, P.B.; Neogi, A.; Wang, Z. Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Sci. Rep., 2018, 8(1), 2907.
[http://dx.doi.org/10.1038/s41598-018-21331-y] [PMID: 29440698]
[147]
Mukherjee, S.; Sushma, V.; Patra, S.; Barui, A.K.; Bhadra, M.P.; Sreedhar, B.; Patra, C.R. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology, 2012, 23(45), 455103.
[http://dx.doi.org/10.1088/0957-4484/23/45/455103] [PMID: 23064012]
[148]
Ahamed, M.; Akhtar, M.J.; Raja, M.; Ahmad, I.; Siddiqui, M.K.; AlSalhi, M.S.; Alrokayan, S.A. ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine (Lond.), 2011, 7(6), 904-913.
[http://dx.doi.org/10.1016/j.nano.2011.04.011] [PMID: 21664489]
[149]
Premanathan, M.; Karthikeyan, K.; Jeyasubramanian, K.; Manivannan, G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine (Lond.), 2011, 7(2), 184-192.
[http://dx.doi.org/10.1016/j.nano.2010.10.001] [PMID: 21034861]
[150]
Li, Y.; Lu, W.; Huang, Q.; Huang, M.; Li, C.; Chen, W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine (Lond.), 2010, 5(8), 1161-1171.
[http://dx.doi.org/10.2217/nnm.10.85] [PMID: 21039194]
[151]
Lai, T-Y.; Lee, W-C. Killing of cancer cell line by photoexcitation of folic acid-modified titanium dioxide nanoparticles. J. Photochem. Photobiol. Chem., 2009, 204(2-3), 148-153.
[http://dx.doi.org/10.1016/j.jphotochem.2009.03.009]
[152]
Yacoby, I.; Benhar, I. Antibacterial nanomedicine. Nanomedicine (Lond), 2008, 3(3), 329-41.
[http://dx.doi.org/10.2217/17435889.3.3.329]
[153]
Lok, C-N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res., 2006, 5(4), 916-924.
[http://dx.doi.org/10.1021/pr0504079] [PMID: 16602699]
[154]
Li, W-R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol., 2010, 85(4), 1115-1122.
[http://dx.doi.org/10.1007/s00253-009-2159-5] [PMID: 19669753]
[155]
Singh, R.; Wagh, P.; Wadhwani, S.; Gaidhani, S.; Kumbhar, A.; Bellare, J.; Chopade, B.A. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomedicine, 2013, 8, 4277-4290.
[PMID: 24235826]
[156]
Abdelhamid, H.N.; Wu, H-F. Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. Trends Analyt. Chem., 2015, 65, 30-46.
[http://dx.doi.org/10.1016/j.trac.2014.09.010]
[157]
Yousef, M.S.; Abdelhamid, H.N.; Hidalgo, M.; Fathy, R.; Gómez-Gascón, L.; Dorado, J. Antimicrobial activity of silver-carbon nanoparticles on the bacterial flora of bull semen. Theriogenology, 2021, 161, 219-227.
[http://dx.doi.org/10.1016/j.theriogenology.2020.12.006] [PMID: 33340755]
[158]
Dutta, R.K.; Nenavathu, B.P.; Gangishetty, M.K.; Reddy, A.V. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf. B Biointerfaces, 2012, 94, 143-150.
[http://dx.doi.org/10.1016/j.colsurfb.2012.01.046] [PMID: 22348987]
[159]
Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M.F.; Fiévet, F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett., 2006, 6(4), 866-870.
[http://dx.doi.org/10.1021/nl052326h] [PMID: 16608300]
[160]
Kumar, A.; Pandey, A.K.; Singh, S.S.; Shanker, R.; Dhawan, A. Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic. Biol. Med., 2011, 51(10), 1872-1881.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.08.025] [PMID: 21920432]
[161]
Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, 27(7), 4020-4028.
[http://dx.doi.org/10.1021/la104825u] [PMID: 21401066]
[162]
Skorb, E. Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2: In2O3 nanocomposite. Appl. Catal. B, 2008, 84(1-2), 94-99.
[http://dx.doi.org/10.1016/j.apcatb.2008.03.007]
[163]
Kangwansupamonkon, W.; Lauruengtana, V.; Surassmo, S.; Ruktanonchai, U. Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomedicine (Lond.), 2009, 5(2), 240-249.
[http://dx.doi.org/10.1016/j.nano.2008.09.004] [PMID: 19223243]
[164]
Baghriche, O.; Rtimi, S.; Pulgarin, C.; Sanjines, R.; Kiwi, J. Innovative TiO2/Cu nanosurfaces inactivating bacteria in the minute range under low-intensity actinic light. ACS Appl. Mater. Interfaces, 2012, 4(10), 5234-5240.
[http://dx.doi.org/10.1021/am301153j] [PMID: 23020183]
[165]
Armelao, L. Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology, 2007, 18(37), 375709.
[http://dx.doi.org/10.1088/0957-4484/18/37/375709]
[166]
Uchiyama, M.K.; Deda, D.K.; Rodrigues, S.F.; Drewes, C.C.; Bolonheis, S.M.; Kiyohara, P.K.; Toledo, S.P.; Colli, W.; Araki, K.; Farsky, S.H. In vivo and in vitro toxicity and anti-inflammatory properties of gold nanoparticle bioconjugates to the vascular system. Toxicol. Sci., 2014, 142(2), 497-507.
[http://dx.doi.org/10.1093/toxsci/kfu202] [PMID: 25260831]
[167]
Rehman, M.U.; Yoshihisa, Y.; Miyamoto, Y.; Shimizu, T. The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. Inflamm. Res., 2012, 61(11), 1177-1185.
[http://dx.doi.org/10.1007/s00011-012-0512-0] [PMID: 22752115]
[168]
Wong, K.K. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem, 2009, 4(7), 1129-35.
[http://dx.doi.org/10.1002/cmdc.200900049]
[169]
Caruso, D.M.; Foster, K.N.; Blome-Eberwein, S.A.; Twomey, J.A.; Herndon, D.N.; Luterman, A.; Silverstein, P.; Antimarino, J.R.; Bauer, G.J. Randomized clinical study of Hydrofiber dressing with silver or silver sulfadiazine in the management of partial-thickness burns. J. Burn Care Res., 2006, 27(3), 298-309.
[http://dx.doi.org/10.1097/01.BCR.0000216741.21433.66] [PMID: 16679897]
[170]
David, L.; Moldovan, B.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Florea, A.; Crisan, M.; Chiorean, I.; Clichici, S.; Filip, G.A. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf. B Biointerfaces, 2014, 122, 767-777.
[http://dx.doi.org/10.1016/j.colsurfb.2014.08.018] [PMID: 25174985]
[171]
Umrani, R.D.; Paknikar, K.M. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine (Lond.), 2014, 9(1), 89-104.
[http://dx.doi.org/10.2217/nnm.12.205] [PMID: 23427863]
[172]
Alkaladi, A.; Abdelazim, A.M.; Afifi, M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int. J. Mol. Sci., 2014, 15(2), 2015-2023.
[http://dx.doi.org/10.3390/ijms15022015] [PMID: 24477262]
[173]
Mohammadpour, M.; Hashemi, H.; Jabbarvand, M.; Delrish, E. Penetration of silicate nanoparticles into the corneal stroma and intraocular fluids. Cornea, 2014, 33(7), 738-743.
[http://dx.doi.org/10.1097/ICO.0000000000000144] [PMID: 24886997]
[174]
Kim, J.H.; Kim, M.H.; Jo, D.H.; Yu, Y.S.; Lee, T.G.; Kim, J.H. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials, 2011, 32(7), 1865-1871.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.030] [PMID: 21145587]
[175]
Jo, D.H.; Kim, J.H.; Yu, Y.S.; Lee, T.G.; Kim, J.H. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomedicine (Lond.), 2012, 8(5), 784-791.
[http://dx.doi.org/10.1016/j.nano.2011.09.003] [PMID: 21945900]
[176]
Jo, D.H.; Kim, J.H.; Son, J.G.; Song, N.W.; Kim, Y.I.; Yu, Y.S.; Lee, T.G.; Kim, J.H. Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity. Nanomedicine (Lond.), 2014, 10(5), 1109-1117.
[http://dx.doi.org/10.1016/j.nano.2014.02.007] [PMID: 24566275]
[177]
Rastogi, S.; Sharma, G.; Kandasubramanian, B. Nanomaterials and the Environment. The ELSI Handbook of Nanotechnology: Risk, Safety, ELSI and Commercialization, 2020; Chapter 1, p. 1-23.
[178]
Sidiropoulou, E.; Feidantsis, K.; Kalogiannis, S.; Gallios, G.P.; Kastrinaki, G.; Papaioannou, E.; Václavíková, M.; Kaloyianni, M. Insights into the toxicity of iron oxides nanoparticles in land snails. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2018, 206-207, 1-10.
[http://dx.doi.org/10.1016/j.cbpc.2018.02.001] [PMID: 29408432]
[179]
Thomas, S.P.; Al-Mutairi, E.M.; De, S.K. Impact of nanomaterials on health and environment. Arab. J. Sci. Eng., 2013, 38(3), 457-477.
[http://dx.doi.org/10.1007/s13369-012-0324-0]
[180]
Bhatia, M. Implicating nanoparticles as potential biodegradation enhancers: a review. J. Nanomed. Nanotechnol., 2013, 4(175), 2.
[http://dx.doi.org/10.4172/2157-7439.1000175]
[181]
Li, Q.; Wang, J.; Wu, Q.; Cao, N.; Yang, H.T. Perspective on human pluripotent stem cell-derived cardiomyocytes in heart disease modeling and repair. Stem Cells Transl. Med., 2020, 9(10), 1121-1128.
[http://dx.doi.org/10.1002/sctm.19-0340] [PMID: 32725800]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy