Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Mini-Review Article

In-vitro Dissolution Study of Pharmaceutical Products with USP Apparatus- IV

Author(s): Mohit Kumar and Uttam Kumar Mandal*

Volume 11, Issue 3, 2021

Published on: 11 July, 2021

Page: [195 - 202] Pages: 8

DOI: 10.2174/2210303111666210712101322

Price: $65

Abstract

The objective of the present article is to review various aspects of dissolution studies of dosage forms performed with the flow-through apparatus (USP type-IV apparatus). USP type-IV apparatus is comprised of a pump that compels the dissolution media upwards via the flow-through cell. A reservoir of dissolution medium is attached to the cell that is mounted vertically with a filter system to restrain the escape of un-dissolved particles. The apparatus is specially designed for powders, microparticles, pellets and tablets. In this type of in vitro dissolution method, the test sample is placed in the bottom of the small-volume flow-through cell; the solvent passes through it at a temperature of 37°C. This study is very important to build up the in-vivo and in-vitro relationship. Likewise, this study is used to distinguish the extent of medication released from the tested sample so as to foresee its in vivo viability in actual patient population. The flow-through cell is used to determine the dissolution of micro-particulate, suppositories, implants, controlled-release formulations with drugs that have very low aqueous solubility. The drugs with small particle size and large surface area are dissolved at a faster rate as compared to other existing and compendial dissolution apparatuses. The article also highlights some of the in vitro dissolution studies carried out with the USP type-IV apparatus.

Keywords: Flow through cell, dissolution medium, in vitro drug release, controlled release formulations, in vivo-in vitro correlation, dosage forms.

Next »
Graphical Abstract

[1]
Brown, W. Apparatus 4 flow through cell: Some thoughts on operational characteristics. Dissolut. Technol., 2005, 12(2), 28-30.
[http://dx.doi.org/10.14227/DT120205P28]
[2]
Shohin, I.E.; Grebenkin, D.Y.; Malashenko, E.A.; Stanishevskii, Y.M.; Ramenskaya, G.V. A brief review of the FDA dissolution methods database. Dissolut. Technol., 2016, 23(3), 6-10.
[http://dx.doi.org/10.14227/DT230316P6]
[3]
Shiko, G.; Gladden, L.F.; Sederman, A.J.; Connolly, P.C.; Butler, J.M. MRI studies of the hydrodynamics in a USP 4 dissolution testing cell. J. Pharm. Sci., 2011, 100(3), 976-991.
[http://dx.doi.org/10.1002/jps.22343] [PMID: 20949631]
[4]
Kalantzi, L.; Nicolaides, E.; Page, R.C.; Digenis, G.A.; Reppas, C. Prediction of the average plasma profile after oral administration of cross-linked gelatin capsules of amoxicillin, Poster presentation. International Symposium on Scientific and Regulatory Aspects of Dissolution and Bioeuivalence, Athens, 2002.
[5]
Kalantzi, L.; Polentarutti, B.; Albery, T.; Laitmer, D.; Abrahamsson, B.; Dressman, J.; Reppas, C. The delayed dissolution of paracetamol products in the canine fed stomach can be predicted in vitro but it does not affect the onset of plasma levels. Int. J. Pharm., 2005, 296(1-2), 87-93.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.028] [PMID: 15885459]
[6]
Kelly, K.; O’Mahony, B.; Lindsay, B.; Jones, T.; Grattan, T.J.; Rostami-Hodjegan, A.; Stevens, H.N.; Wilson, C.G. Comparison of the rates of disintegration, gastric emptying, and drug absorption following administration of a new and a conventional paracetamol formulation, using γ scintigraphy. Pharm. Res., 2003, 20(10), 1668-1673.
[http://dx.doi.org/10.1023/A:1026155822121] [PMID: 14620524]
[7]
Heng, D.; Cutler, D.J.; Chan, H-K.; Yun, J.; Raper, J.A. What is a suitable dissolution method for drug nanoparticles? Pharm. Res., 2008, 25(7), 1696-1701.
[http://dx.doi.org/10.1007/s11095-008-9560-0] [PMID: 18320295]
[8]
Greco, K.; Bergman, T.L.; Bogner, R. Design and characterization of a laminar flow-through dissolution apparatus: Comparison of hydrodynamic conditions to those of common dissolution techniques. Pharm. Dev. Technol., 2011, 16(1), 75-87.
[http://dx.doi.org/10.3109/10837450903499341] [PMID: 20105086]
[9]
Cohen, J.L.; Hubert, B.B.; Leeson, L.J.; Rhodes, C.T.; Robinson, J.R.; Roseman, T.J.; Shefter, E. The development of USP dissolution and drug release standards. Pharm. Res., 1990, 7(10), 983-987.
[http://dx.doi.org/10.1023/A:1015922629207] [PMID: 2281043]
[10]
Kakhi, M. Classification of the flow regimes in the flow-through cell. Eur. J. Pharm. Sci., 2009, 37(5), 531-544.
[http://dx.doi.org/10.1016/j.ejps.2009.04.003] [PMID: 19379811]
[11]
Nicolaides, E.; Symillides, M.; Dressman, J.B.; Reppas, C. Biorelevant dissolution testing to predict the plasma profile of lipophilic drugs after oral administration. Pharm. Res., 2001, 18(3), 380-388.
[http://dx.doi.org/10.1023/A:1011071401306] [PMID: 11442280]
[12]
Singh, I.; Aboul-Enein, H. Advantages of USP Apparatus IV (Flow-through Cell Apparatus) in Dissolution Studies. J. Iran. Chem. Soc., 2006, 3, 220-222.
[http://dx.doi.org/10.1007/BF03247211]
[13]
Fotaki, N.; Reppas, C. The flow through cell methodology in the evaluation of intralumenal drug release characteristics. Dissolut. Technol., 2005, 12(2), 17-21.
[http://dx.doi.org/10.14227/DT120205P17]
[14]
Sunesen, V.H.; Pedersen, B.L.; Kristensen, H.G.; Müllertz, A. In vivoin vitro correlations for a poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media. Eur. J. Pharm. Sci., 2005, 24(4), 305-313.
[http://dx.doi.org/10.1016/j.ejps.2004.11.007] [PMID: 15734297]
[15]
Lenn, J.; Brown, M. Cost-effective approaches for successful generic dermal drug product authorisations. Available from: http://staging.ondrugdelivery.com/wp-content/uploads/2018/03/ONdrugDel-SKIN-DRUG-DELI-84-Mar-2018-Medpharm.pdf
[16]
Hodson, A.; Wilkinson, K. A. Simultaneous sampling and hplc injection from usp apparatus 4 using a dual sampling rack. Dissolution Technol., 2005, 12, 44-45.
[17]
Özdemir, N.; Ordu, S.; Özkan, Y. Studies of floating dosage forms of furosemide: in vitro and in vivo evaluations of bilayer tablet formulations. Drug Dev. Ind. Pharm., 2000, 26(8), 857-866.
[http://dx.doi.org/10.1081/DDC-100101309] [PMID: 10900542]
[18]
Fotaki, N. Flow-through Cell Apparatus (USP Apparatus 4): Operation and Features. Dissolut. Technol., 2011, 18(4), 46-49.
[http://dx.doi.org/10.14227/DT180411P46]
[19]
Bhattachar, S.N.; Wesley, J.A.; Fioritto, A.; Martin, P.J.; Babu, S.R. Dissolution testing of a poorly soluble compound using the flow-through cell dissolution apparatus. Int. J. Pharm., 2002, 236(1-2), 135-143.
[http://dx.doi.org/10.1016/S0378-5173(02)00027-3] [PMID: 11891077]
[20]
Moller, H. Dissolution testing of different dosage forms using the flow-through method. 1983.
[21]
Siewert, M.; Dressman, J.; Brown, C.K.; Shah, V.P.; Aiache, J-M.; Aoyagi, N.; Bashaw, D.; Brown, C.; Brown, W.; Burgess, D. FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. AAPS Pharm. Sci. Tech., 2003, 4(1), E7.
[http://dx.doi.org/10.1208/pt040107] [PMID: 12916916]
[22]
Sun, W.; Larive, C.K.; Southard, M.Z. A mechanistic study of danazol dissolution in ionic surfactant solutions. J. Pharm. Sci., 2003, 92(2), 424-435.
[http://dx.doi.org/10.1002/jps.10309] [PMID: 12532392]
[23]
Hanson, R.; Gray, V. Handbook of Dissolution Testing; Dissolution Technologies Inc.: Hockessin, 2004, p. 25.
[24]
Eren, Z.S.; Tunçer, S.; Gezer, G.; Yildirim, L.T.; Banerjee, S.; Yilmaz, A. Improved solubility of celecoxib by inclusion in SBA-15 mesoporous silica: Drug loading in different solvents and release. Microporous Mesoporous Mater., 2016, 235, 211-223.
[http://dx.doi.org/10.1016/j.micromeso.2016.08.014]
[25]
Maiti, S.; Dey, P.; Banik, A.; Sa, B.; Ray, S.; Kaity, S. Tailoring of locust bean gum and development of hydrogel beads for controlled oral delivery of glipizide. Drug Deliv., 2010, 17(5), 288-300.
[http://dx.doi.org/10.3109/10717541003706265] [PMID: 20350054]
[26]
Garcia, C.V.; Paim, C.S.; Steppe, M.; Schapoval, E.E.S. Development and validation of a dissolution test for rabeprazole sodium in coated tablets. J. Pharm. Biomed. Anal., 2006, 41(3), 833-837.
[http://dx.doi.org/10.1016/j.jpba.2006.01.050] [PMID: 16513316]
[27]
Garbacz, G.; Cadé, D.; Benameur, H.; Weitschies, W. Bio-relevant dissolution testing of hard capsules prepared from different shell materials using the dynamic open flow through test apparatus. Eur. J. Pharm. Sci., 2014, 57, 264-272.
[http://dx.doi.org/10.1016/j.ejps.2013.08.039] [PMID: 24021609]
[28]
Cascone, S. Modeling and comparison of release profiles: Effect of the dissolution method. Eur. J. Pharm. Sci., 2017, 106, 352-361.
[http://dx.doi.org/10.1016/j.ejps.2017.06.021] [PMID: 28627469]
[29]
Brown, C.K.; Friedel, H.D.; Barker, A.R.; Buhse, L.F.; Keitel, S.; Cecil, T.L.; Kraemer, J.; Morris, J.M.; Reppas, C.; Stickelmeyer, M.P. FIP/AAPS joint workshop report: Dissolution/in vitro release testing of novel/special dosage forms. AAPS Pharm. Sci. Tech., 2011, 12(2), 782-94.
[30]
Zur, M.; Cohen, N.; Agbaria, R.; Dahan, A. The biopharmaceutics of successful controlled release drug product: Segmental-dependent permeability of glipizide vs. metoprolol throughout the intestinal tract. Int. J. Pharm., 2015, 489(1-2), 304-310.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.002] [PMID: 25957705]
[31]
Ouyang, D.; Nie, S.; Li, W.; Guo, H.; Liu, H.; Pan, W. Design and evaluation of compound metformin/glipizide elementary osmotic pump tablets. J. Pharm. Pharmacol., 2005, 57(7), 817-820.
[http://dx.doi.org/10.1211/0022357056370] [PMID: 15969939]
[32]
Figueroa-Campos, A.; Sánchez-Dengra, B.; Merino, V.; Dahan, A.; González-Álvarez, I.; García-Arieta, A.; González-Álvarez, M.; Bermejo, M. Candesartan cilexetil in vitro-in vivo correlation: Predictive dissolution as a development tool. Pharmaceutics, 2020, 12(7), 633.
[http://dx.doi.org/10.3390/pharmaceutics12070633] [PMID: 32640620]
[33]
Medina-López, R.; Guillén-Moedano, S.; Hurtado, M. In vitro release studies of furosemide reference tablets: Influence of agitation rate, USP apparatus and dissolution media. ADMET DMPK, 2020, 8(4), 411-423.
[34]
Bodhe, R.; Deshmukh, R.; Gorle, A.; Shinde, R.; Bodhe, P. Formulation, development and evaluation of carbamazepine extended release tablet: dissolution apparatus USP IV. World J. Pharm. Res., 2019, 8(9), 1484-1504.
[35]
Medina, J.R.; Ortiz, H.D.; Hurtado, M.; Domínguez-Ramírez, A.M. Influence of dose and the USP basket and flow-through cell dissolution apparatuses in the release kinetics of metronidazole immediate-release products. Int. J. Res. Pharm. Sci., 2014, 5, 137-146.
[36]
Morais, J.M.; Burgess, D.J. In vitro release testing methods for vitamin E nanoemulsions. Int. J. Pharm., 2014, 475(1-2), 393-400.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.063] [PMID: 25178829]
[37]
Zhang, Q.; Gladden, L.; Avalle, P.; Mantle, M. in vitro quantitative ((1))H and ((19))F nuclear magnetic resonance spectroscopy and imaging studies of fluvastatin™ in Lescol® XL tablets in a USP-IV dissolution cell. J. Control. Release, 2011, 156(3), 345-354.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.039] [PMID: 21911016]
[38]
Langham, Z.A.; Booth, J.; Hughes, L.P.; Reynolds, G.K.; Wren, S.A.C. Mechanistic insights into the dissolution of spray-dried amorphous solid dispersions. J. Pharm. Sci., 2012, 101(8), 2798-2810.
[http://dx.doi.org/10.1002/jps.23192] [PMID: 22592919]
[39]
Shen, J.; Choi, S.; Qu, W.; Wang, Y.; Burgess, D.J. In vitro-in vivo correlation of parenteral risperidone polymeric microspheres. J. Control. Release, 2015, 218, 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.051] [PMID: 26423236]
[40]
Krull, S.M.; Susarla, R.; Afolabi, A.; Li, M.; Ying, Y.; Iqbal, Z.; Bilgili, E.; Davé, R.N. Polymer strip films as a robust, surfactant-free platform for delivery of BCS Class II drug nanoparticles. Int. J. Pharm., 2015, 489(1-2), 45-57.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.034] [PMID: 25888803]
[41]
Akil, A.; Parniak, M.A.; Dezzuitti, C.S.; Moncla, B.J.; Cost, M.R.; Li, M.; Rohan, L.C. Development and characterization of a vaginal film containing dapivirine, a non-nucleoside reverse transcriptase inhibitor (NNRTI), for prevention of HIV-1 sexual transmission. Drug Deliv. Transl. Res., 2011, 1(3), 209-222.
[http://dx.doi.org/10.1007/s13346-011-0022-6] [PMID: 22708075]
[42]
Andhariya, J.V.; Choi, S.; Wang, Y.; Zou, Y.; Burgess, D.J.; Shen, J. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres. Int. J. Pharm., 2017, 520(1-2), 79-85.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.050] [PMID: 28153651]
[43]
Eaton, J.W.; Tran, D.; Hauck, W.W.; Stippler, E.S. Development of a performance verification test for USP apparatus 4. Pharm. Res., 2012, 29(2), 345-351.
[http://dx.doi.org/10.1007/s11095-011-0559-6] [PMID: 21826572]
[44]
Ham, A.S.; Rohan, L.C.; Boczar, A.; Yang, L.; W Buckheit, K.; Buckheit, R.W., Jr Vaginal film drug delivery of the pyrimidinedione IQP-0528 for the prevention of HIV infection. Pharm. Res., 2012, 29(7), 1897-1907.
[http://dx.doi.org/10.1007/s11095-012-0715-7] [PMID: 22392331]
[45]
Emara, L.H.; Emam, M.F.; Taha, N.F.; El-ashmawy, A.A.; Mursi, N.M. In-vitro dissolution study of meloxicam immediate release products using flow through cell (USP apparatus 4) under different operational conditions. Int. J. Pharm. Pharm. Sci., 2014, 6(11), 254-260.
[46]
Shi, Y.; Gao, P.; Gong, Y.; Ping, H. Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption. Mol. Pharm., 2010, 7(5), 1458-1465.
[http://dx.doi.org/10.1021/mp100114a] [PMID: 20704265]
[47]
Sievens-Figueroa, L.; Pandya, N.; Bhakay, A.; Keyvan, G.; Michniak-Kohn, B.; Bilgili, E.; Davé, R.N. Using USP I and USP IV for discriminating dissolution rates of nano- and microparticle-loaded pharmaceutical strip-films. AAPS PharmSciTech, 2012, 13(4), 1473-1482.
[http://dx.doi.org/10.1208/s12249-012-9875-3] [PMID: 23090112]
[48]
Miller, J.H.; Danielson, T.; Pithawalla, Y.B.; Brown, A.P.; Wilkinson, C.; Wagner, K.; Aldeek, F. Method development and validation of dissolution testing for nicotine release from smokeless tobacco products using flow-through cell apparatus and UPLC-PDA. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1141, 122012.
[http://dx.doi.org/10.1016/j.jchromb.2020.122012] [PMID: 32065955]
[49]
Zakowiecki, D.; Cal, K.; Kaminski, K.; Adrjanowicz, K.; Swinder, L.; Kaminska, E.; Garbacz, G. The improvement of the dissolution rate of ziprasidone free base from solid oral formulations. AAPS PharmSciTech, 2015, 16(4), 922-933.
[http://dx.doi.org/10.1208/s12249-015-0285-1] [PMID: 25588366]
[50]
McCarthy, C.A.; Faisal, W.; O’Shea, J.P.; Murphy, C.; Ahern, R.J.; Ryan, K.B.; Griffin, B.T.; Crean, A.M. In vitro dissolution models for the prediction of in vivo performance of an oral mesoporous silica formulation. J. Control. Release, 2017, 250, 86-95.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.043] [PMID: 28132935]
[51]
Tang, J.; Srinivasan, S.; Yuan, W.; Ming, R.; Liu, Y.; Dai, Z.; Noble, C.O.; Hayes, M.E.; Zheng, N.; Jiang, W.; Szoka, F.C.; Schwendeman, A. Development of a flow-through USP 4 apparatus drug release assay for the evaluation of amphotericin B liposome. Eur. J. Pharm. Biopharm., 2019, 134, 107-116.
[http://dx.doi.org/10.1016/j.ejpb.2018.11.010] [PMID: 30481559]
[52]
Yuan, W.; Kuai, R.; Dai, Z.; Yuan, Y.; Zheng, N.; Jiang, W.; Noble, C.; Hayes, M.; Szoka, F.C.; Schwendeman, A. Development of a flow-through usp-4 apparatus drug release assay to evaluate doxorubicin liposomes. AAPS J., 2017, 19(1), 150-160.
[http://dx.doi.org/10.1208/s12248-016-9958-2] [PMID: 27485642]
[53]
Speer, I.; Preis, M.; Breitkreutz, J. Novel dissolution method for oral film preparations with modified release properties. AAPS PharmSciTech, 2018, 20(1), 7.
[http://dx.doi.org/10.1208/s12249-018-1255-1] [PMID: 30560468]
[54]
Zarmpi, P.; Flanagan, T.; Meehan, E.; Mann, J.; Østergaard, J.; Fotaki, N. Biopharmaceutical implications of excipient variability on drug dissolution from immediate release products. Eur. J. Pharm. Biopharm., 2020, 154, 195-209.
[http://dx.doi.org/10.1016/j.ejpb.2020.07.014] [PMID: 32681966]
[55]
Forrest, W.P.; Reuter, K.G.; Shah, V.; Kazakevich, I.; Heslinga, M.; Dudhat, S.; Patel, S.; Neri, C.; Mao, Y. USP apparatus 4: A valuable in vitro tool to enable formulation development of long-acting parenteral (LAP) nanosuspension formulations of poorly water-soluble compounds. AAPS PharmSciTech, 2018, 19(1), 413-424.
[http://dx.doi.org/10.1208/s12249-017-0842-x] [PMID: 28755052]
[56]
Dorozyński, P.P.; Kulinowski, P.; Mendyk, A.; Młynarczyk, A.; Jachowicz, R. Novel application of MRI technique combined with flow-through cell dissolution apparatus as supportive discriminatory test for evaluation of controlled release formulations. AAPS PharmSciTech, 2010, 11(2), 588-597.
[http://dx.doi.org/10.1208/s12249-010-9418-8] [PMID: 20352532]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy