Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Research Progress of Nanostructured Lipid Carriers in Ocular Drug Delivery

Author(s): Chandrashekhar Mahadeo Chakole* and Meenakshi Kanwar Chauhan

Volume 11, Issue 3, 2021

Published on: 12 February, 2021

Page: [203 - 219] Pages: 17

DOI: 10.2174/2210303111666210212143011

Price: $65

Abstract

The eye is the most important sensory organ, which restricts most of the active substances due to its static and dynamic barriers. The application of conventional eye drop is still popular, but it was found to be less permeable to both anterior and posterior eye portions, requiring more frequent administration. It seems to be a great challenge for the researcher to fabricate an ocular formulation that crosses the barriers and achieves an optimal therapeutic concentration at the ocular globe. Recent studies revealed that a nanostructured lipid carrier has great potential in ophthalmic use and has become more popular due to its permeability in the eye cavity.

This review describes the nanostructured lipid carriers with respect to the mechanism of ocular permeation, structural feature, manufacturing process, characterization, and its merits over other nanocarriers. In recent years, newly nanostructured-based ocular formulations have been developed, like surface-modified with various cationic compounds and their integration with different polymeric systems, to enhance ocular bioavailability in both regions of the eye. Newly developed nanostructured lipid carriers include surface modified cationic lipid, polymers, and thiolated compounds, etc., that increases mucoadhesive property. Finally, nanostructured incorporated forms, in situ gel, and hydrogel increase permeation in the posterior region of the eye.

Keywords: Lipid nanoparticles, NLC, ocular drug delivery, pre-corneal retention, mucoadhesive, zeta potential, ocular bioavailability, transcorneal permeation.

Graphical Abstract

[1]
Janagam, D.R.; Wu, L.; Lowe, T.L. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug Deliv. Rev., 2017, 122, 31-64.
[http://dx.doi.org/10.1016/j.addr.2017.04.001] [PMID: 28392306]
[2]
Addo, E.; Bamiro, O.A.; Siwale, R. Anatomy of the eye and common diseases affecting the eye. In: Ocular drug delivery: Advances, challenges and applications; Springer Cham: Switzerland, 2016; pp. 11-25.
[http://dx.doi.org/10.1007/978-3-319-47691-9_2]
[3]
Joseph, R.R.; Venkatraman, S.S. Drug delivery to the eye: What benefits do nanocarriers offer? Nanomedicine (Lond.), 2017, 12(6), 683-702.
[http://dx.doi.org/10.2217/nnm-2016-0379] [PMID: 28186436]
[4]
Ghate, D.; Edelhauser, H.F. Ocular drug delivery. Expert Opin. Drug Deliv., 2006, 3(2), 275-287.
[http://dx.doi.org/10.1517/17425247.3.2.275] [PMID: 16506953]
[5]
Sánchez-López, E.; Espina, M.; Doktorovova, S.; Souto, E.B.; García, M.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye - Part I - Barriers and determining factors in ocular delivery. Eur. J. Pharm. Biopharm., 2017, 110, 70-75.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.009] [PMID: 27789358]
[6]
Bisht, R.; Mandal, A.; Jaiswal, J.K.; Rupenthal, I.D. Nanocarrier mediated retinal drug delivery: Overcoming ocular barriers to treat posterior eye diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2018, 10(2), e1473.
[http://dx.doi.org/10.1002/wnan.1473] [PMID: 28425224]
[7]
Kotreka, U.K.; Davis, V.L.; Adeyeye, M.C. Development of topical ophthalmic in situ gel-forming estradiol delivery system intended for the prevention of age-related cataracts. PLoS One, 2017, 12(2), e0172306.
[http://dx.doi.org/10.1371/journal.pone.0172306] [PMID: 28222100]
[8]
Urtti, A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Deliv. Rev., 2006, 58(11), 1131-1135.
[http://dx.doi.org/10.1016/j.addr.2006.07.027] [PMID: 17097758]
[9]
Makwana, S.B.; Patel, V.A.; Parmar, S.J. Development and characterization of in situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma. Sci., 2015, 6, 1-6.
[http://dx.doi.org/10.1016/j.rinphs.2015.06.001] [PMID: 26949596]
[10]
Wu, Y.; Liu, Y.; Li, X.; Kebebe, D.; Zhang, B.; Ren, J.; Lu, J.; Li, J.; Du, S.; Liu, Z. Research progress of in situ gelling ophthalmic drug delivery system. Asian J. Pharm. Sci., 2019, 14(1), 1-15.
[http://dx.doi.org/10.1016/j.ajps.2018.04.008] [PMID: 32104434]
[11]
Kaur, I.P.; Smitha, R. Penetration enhancers and ocular bioadhesives: Two new avenues for ophthalmic drug delivery. Drug Dev. Ind. Pharm., 2002, 28(4), 353-369.
[http://dx.doi.org/10.1081/DDC-120002997] [PMID: 12056529]
[12]
Lee, V.H. Mechanisms and facilitation of corneal drug penetration. J. Control. Release, 1990, 11(1-3), 79-90.
[http://dx.doi.org/10.1016/0168-3659(90)90122-A]
[13]
Addo, R.T., Ed.; Ocular drug delivery: Advances, challenges and applications; Springer, 2016.
[http://dx.doi.org/10.1007/978-3-319-47691-9]
[14]
Thrimawithana, T.R.; Young, S.; Bunt, C.R.; Green, C.; Alany, R.G. Drug delivery to the posterior segment of the eye. Drug Discov. Today, 2011, 16(5-6), 270-277.
[http://dx.doi.org/10.1016/j.drudis.2010.12.004] [PMID: 21167306]
[15]
Weng, Y.; Liu, J.; Jin, S.; Guo, W.; Liang, X.; Hu, Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm. Sin. B, 2017, 7(3), 281-291.
[http://dx.doi.org/10.1016/j.apsb.2016.09.001] [PMID: 28540165]
[16]
Liu, R.; Wang, S.; Fang, S.; Wang, J.; Chen, J.; Huang, X.; He, X.; Liu, C. Liquid crystalline nanoparticles as an ophthalmic delivery system for tetrandrine: Development, characterization, and in vitro and in vivo evaluation. Nanoscale Res. Lett., 2016, 11(1), 254.
[http://dx.doi.org/10.1186/s11671-016-1471-0] [PMID: 27188974]
[17]
Diebold, Y.; Calonge, M. Applications of nanoparticles in ophthalmology. Prog. Retin. Eye Res., 2010, 29(6), 596-609.
[http://dx.doi.org/10.1016/j.preteyeres.2010.08.002] [PMID: 20826225]
[18]
Andrei, G.; Peptu, C.A.; Popa, M.; Desbrieres, J.; Peptu, C.; Gardikiotis, F.; Costuleanu, M.; Costin, D.; Dupin, J.C.; Uhart, A.; Tamba, B.I. Formulation and evaluation of cefuroxim loaded submicron particles for ophthalmic delivery. Int. J. Pharm., 2015, 493(1-2), 16-29.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.053] [PMID: 26211903]
[19]
Carbone, C.; Cupri, S.; Leonardi, A.; Puglisi, G.; Pignatello, R. Lipid-based nanocarriers for drug delivery and targeting: A patent survey of methods of production and characterization. Pharm. Pat. Anal., 2013, 2(5), 665-677.
[http://dx.doi.org/10.4155/ppa.13.43] [PMID: 24237173]
[20]
Souto, E.B.; Doktorovova, S.; Gonzalez-Mira, E.; Egea, M.A.; Garcia, M.L. Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Curr. Eye Res., 2010, 35(7), 537-552.
[http://dx.doi.org/10.3109/02713681003760168] [PMID: 20597640]
[21]
Agarwal, R.; Iezhitsa, I.; Agarwal, P.; Abdul Nasir, N.A.; Razali, N.; Alyautdin, R.; Ismail, N.M. Liposomes in topical ophthalmic drug delivery: An update. Drug Deliv., 2016, 23(4), 1075-1091.
[http://dx.doi.org/10.3109/10717544.2014.943336] [PMID: 25116511]
[22]
Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 2018, 103, 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[23]
Sánchez-López, E.; Espina, M.; Doktorovova, S.; Souto, E.B.; García, M.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye - Part II - Ocular drug-loaded lipid nanoparticles. Eur. J. Pharm. Biopharm., 2017, 110, 58-69.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.013] [PMID: 27789359]
[24]
Gan, L.; Wang, J.; Jiang, M.; Bartlett, H.; Ouyang, D.; Eperjesi, F.; Liu, J.; Gan, Y. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov., 2013, 18(5-6), 290-297.
[http://dx.doi.org/10.1016/j.drudis.2012.10.005] [PMID: 23092895]
[25]
Patel, A.; Cholkar, K.; Agrahari, V.; Mitra, A.K. Ocular drug delivery systems: An overview. World J. Pharmacol., 2013, 2(2), 47-64.
[http://dx.doi.org/10.5497/wjp.v2.i2.47] [PMID: 25590022]
[26]
Huang, D.; Chen, Y.S.; Rupenthal, I.D. Overcoming ocular drug delivery barriers through the use of physical forces. Adv. Drug Deliv. Rev., 2018, 126, 96-112.
[http://dx.doi.org/10.1016/j.addr.2017.09.008] [PMID: 28916492]
[27]
Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J., 2010, 12(3), 348-360.
[http://dx.doi.org/10.1208/s12248-010-9183-3] [PMID: 20437123]
[28]
Zhang, J.; Liu, Z.; Tao, C.; Lin, X.; Zhang, M.; Zeng, L.; Chen, X.; Song, H. Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus. Eur. J. Pharm. Sci., 2020, 144, 105229.
[http://dx.doi.org/10.1016/j.ejps.2020.105229] [PMID: 31958581]
[29]
Barar, J.; Javadzadeh, A.R.; Omidi, Y. Ocular novel drug delivery: Impacts of membranes and barriers. Expert Opin. Drug Deliv., 2008, 5(5), 567-581.
[http://dx.doi.org/10.1517/17425247.5.5.567] [PMID: 18491982]
[30]
Silverthorn, D.U.; Ober, W.C.; Garrison, C.W.; Silverthorn, A.C.; Johnson, B.R. Human physiology: An integrated approach; Pearson/Benjamin Cummings: San Francisco, 2010.
[31]
Pathak, Y.; Sutariya, V.; Hirani, A.A. Nano-biomaterials for ophthalmic drug delivery; Springer International Publishing: Switzerland, 2016.
[http://dx.doi.org/10.1007/978-3-319-29346-2]
[32]
Shen, J.; Sun, M.; Ping, Q.; Ying, Z.; Liu, W. Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement. Nanotechnology, 2010, 21(2), 025101.
[http://dx.doi.org/10.1088/0957-4484/21/2/025101] [PMID: 19955616]
[33]
Tapeinos, C.; Battaglini, M.; Ciofani, G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J. Control. Release, 2017, 264, 306-332.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.033] [PMID: 28844756]
[34]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[35]
Okur, N.U.; Gokce, E.H. OPHTHALMIC APPLICATIONS of SLN and NLC. Curr. Pharm. Des., 2017, 23(43), 6676-6683.
[http://dx.doi.org/10.2174/1381612823666171115113101] [PMID: 29141537]
[36]
Wu, M.; Fan, Y.; Lv, S.; Xiao, B.; Ye, M.; Zhu, X. Vincristine and temozolomide combined chemotherapy for the treatment of glioma: A comparison of solid lipid nanoparticles and nanostructured lipid carriers for dual drugs delivery. Drug Deliv., 2016, 23(8), 2720-2725.
[http://dx.doi.org/10.3109/10717544.2015.1058434] [PMID: 26203691]
[37]
Salvi, V.R.; Pawar, P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol., 2019, 51, 255-267.
[http://dx.doi.org/10.1016/j.jddst.2019.02.017]
[38]
Azar, F.A.; Pezeshki, A.; Ghanbarzadeh, B.; Hamishehkar, H.; Mohammadi, M. Nanostructured lipid carriers: Promising delivery systems for encapsulation of food ingredients. J. Agric. Food Res., 2020, 2, 100084.
[http://dx.doi.org/10.1016/j.jafr.2020.100084]
[39]
Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[40]
Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol., 2013, 19, 29-43.
[http://dx.doi.org/10.1016/j.ifset.2013.03.002]
[41]
Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics, 2020, 12(3), 288.
[http://dx.doi.org/10.3390/pharmaceutics12030288] [PMID: 32210127]
[42]
Soni, K.; Kukereja, B.K.; Kapur, M.; Kohli, K. Lipid nanoparticles: Future of oral drug delivery and their current trends and regulatory issues. Int. J. Curr. Pharm. Rew Res., 2015, 7(1), 1-8.
[43]
Sobczyński, J.; Bielecka, G. Nanostructure lipid carriers. In: Nanoparticles in Pharmacotherapy; William Andrew Publishing: New York, 2019; pp. 275-309.
[http://dx.doi.org/10.1016/B978-0-12-816504-1.00006-5]
[44]
Jaiswal, P.; Gidwani, B.; Vyas, A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 27-40.
[http://dx.doi.org/10.3109/21691401.2014.909822] [PMID: 24813223]
[45]
Liu, D.; Li, J.; Pan, H.; He, F.; Liu, Z.; Wu, Q.; Bai, C.; Yu, S.; Yang, X. Potential advantages of a novel chitosan-N-acetylcysteine surface modified nanostructured lipid carrier on the performance of ophthalmic delivery of curcumin. Sci. Rep., 2016, 6, 28796.
[http://dx.doi.org/10.1038/srep28796] [PMID: 27350323]
[46]
Luo, Q.; Zhao, J.; Zhang, X.; Pan, W. Nanostructured lipid carrier (NLC) coated with Chitosan Oligosaccharides and its potential use in ocular drug delivery system. Int. J. Pharm., 2011, 403(1-2), 185-191.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.013] [PMID: 20951778]
[47]
Ustündağ-Okur, N.; Gökçe, E.H.; Bozbıyık, D.I.; Eğrilmez, S.; Özer, O.; Ertan, G. Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur. J. Pharm. Sci., 2014, 63, 204-215.
[http://dx.doi.org/10.1016/j.ejps.2014.07.013] [PMID: 25111119]
[48]
Araújo, J.; Gonzalez-Mira, E.; Egea, M.A.; Garcia, M.L.; Souto, E.B. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int. J. Pharm., 2010, 393(1-2), 167-175.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.034] [PMID: 20362042]
[49]
Liu, R.; Liu, Z.; Zhang, C.; Zhang, B. Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: Improving in vivo ocular bioavailability. J. Pharm. Sci., 2012, 101(10), 3833-3844.
[http://dx.doi.org/10.1002/jps.23251] [PMID: 22767401]
[50]
Cortesi, R.; Argnani, R.; Esposito, E.; Dalpiaz, A.; Scatturin, A.; Bortolotti, F.; Lufino, M.; Guerrini, R.; Cavicchioni, G.; Incorvaia, C.; Menegatti, E.; Manservigi, R. Cationic liposomes as potential carriers for ocular administration of peptides with anti-herpetic activity. Int. J. Pharm., 2006, 317(1), 90-100.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.050] [PMID: 16600535]
[51]
Balguri, S.P.; Adelli, G.R.; Majumdar, S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur. J. Pharm. Biopharm., 2016, 109, 224-235.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.015] [PMID: 27793755]
[52]
Selvaraj, K.; Kuppusamy, G.; Krishnamurthy, J.; Mahalingam, R.; Singh, S.K.; Gulati, M. Repositioning of itraconazole for the management of ocular neovascularization through surface-modified nanostructured lipid carriers. Assay Drug Dev. Technol., 2019, 17(4), 178-190.
[http://dx.doi.org/10.1089/adt.2018.898] [PMID: 30835139]
[53]
Shrivastava, N.; Khan, S.; Baboota, S.; Ali, J. Fabrication and characterization of timolol maleate and brinzolamide loaded nanostructured lipid carrier system for ocular drug delivery. Curr. Drug Deliv., 2018, 15(6), 829-839.
[http://dx.doi.org/10.2174/1566523218666171129205626] [PMID: 29189155]
[54]
El-Salamouni, N.S.; Farid, R.M.; El-Kamel, A.H.; El-Gamal, S.S. Nanostructured lipid carriers for intraocular brimonidine localisation: Development, in vitro and in vivo evaluation. J. Microencapsul., 2018, 35(1), 102-113.
[http://dx.doi.org/10.1080/02652048.2018.1425753] [PMID: 29310481]
[55]
Zhang, W.; Liu, J.; Zhang, Q.; Li, X.; Yu, S.; Yang, X.; Kong, J.; Pan, W. Enhanced cellular uptake and anti-proliferating effect of chitosan hydrochlorides modified genistein loaded NLC on human lens epithelial cells. Int. J. Pharm., 2014, 471(1-2), 118-126.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.030] [PMID: 24858387]
[56]
Iqbal, M.A.; Md, S.; Sahni, J.K.; Baboota, S.; Dang, S.; Ali, J. Nanostructured lipid carriers system: Recent advances in drug delivery. J. Drug Target., 2012, 20(10), 813-830.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[57]
Das, S.; Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 2011, 12(1), 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[58]
Xia, Q.; Hao, X.; Lu, Y.; Xu, W.; Wei, H.; Ma, Q.; Gu, N. Production of drug-loaded lipid nanoparticles based on phase behaviors of special hot microemulsions. Colloids Surf., 2008, 313, 27-30.
[http://dx.doi.org/10.1016/j.colsurfa.2007.04.067]
[59]
Joshi, M.; Patravale, V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int. J. Pharm., 2008, 346(1-2), 124-132.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.060] [PMID: 17651933]
[60]
Shah, N.V.; Seth, A.K.; Balaraman, R.; Aundhia, C.J.; Maheshwari, R.A.; Parmar, G.R. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study. J. Adv. Res., 2016, 7(3), 423-434.
[http://dx.doi.org/10.1016/j.jare.2016.03.002] [PMID: 27222747]
[61]
Zhang, K.; Lv, S.; Li, X.; Feng, Y.; Li, X.; Liu, L.; Li, S.; Li, Y. Preparation, characterization, and in vivo pharmacokinetics of nanostructured lipid carriers loaded with oleanolic acid and gentiopicrin. Int. J. Nanomedicine, 2013, 8, 3227-3239.
[http://dx.doi.org/10.2147/IJN.S45031] [PMID: 24009420]
[62]
Fang, C.L.; Al-Suwayeh, S.A.; Fang, J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol., 2013, 7(1), 41-55.
[http://dx.doi.org/10.2174/187221013804484827] [PMID: 22946628]
[63]
Rizwanullah, M; Amin, S; Ahmad, J Improved pharmacokinetics and antihyperlipidemic efficacy of rosuvastatin-loaded nanostructured lipid carriers. J. Drug Target, 2017, 25(1), 58-74.
[64]
Gaba, B.; Fazil, M.; Khan, S.; Ali, A.; Baboota, S.; Ali, J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull. Fac. Pharm. Cairo Univ., 2015, 53(2), 147-159.
[http://dx.doi.org/10.1016/j.bfopcu.2015.10.001]
[65]
Lin, W.J.; Duh, Y.S. Nanostructured lipid carriers for transdermal delivery of acid labile lansoprazole. Eur. J. Pharm. Biopharm., 2016, 108, 297-303.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.015] [PMID: 27449633]
[66]
Fang, G.; Tang, B.; Chao, Y.; Xu, H.; Gou, J.; Zhang, Y.; Xu, H.; Tang, X. Cysteine-functionalized nanostructured lipid carriers for oral delivery of docetaxel: A permeability and pharmacokinetic study. Mol. Pharm., 2015, 12(7), 2384-2395.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00081] [PMID: 25974386]
[67]
Elmowafy, M.; Shalaby, K.; Badran, M.M.; Ali, H.M.; Abdel-Bakky, M.S.; Ibrahim, H.M. Multifunctional carbamazepine loaded nanostructured lipid carrier (NLC) formulation. Int. J. Pharm., 2018, 550(1-2), 359-371.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.062] [PMID: 30179701]
[68]
Li, X.; Nie, S.F.; Kong, J.; Li, N.; Ju, C.Y.; Pan, W.S. A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Int. J. Pharm., 2008, 363(1-2), 177-182.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.017] [PMID: 18706987]
[69]
Araújo, J.; Nikolic, S.; Egea, M.A.; Souto, E.B.; Garcia, M.L. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf. B Biointerfaces, 2011, 88(1), 150-157.
[http://dx.doi.org/10.1016/j.colsurfb.2011.06.025] [PMID: 21764568]
[70]
Wilhelmus, K.R. The Draize eye test. Surv. Ophthalmol., 2001, 45(6), 493-515.
[http://dx.doi.org/10.1016/S0039-6257(01)00211-9] [PMID: 11425356]
[71]
Luepke, N.P.; Kemper, F.H. The HET-CAM test: An alternative to the Draize eye test. Food Chem. Toxicol., 1986, 24(6-7), 495-496.
[http://dx.doi.org/10.1016/0278-6915(86)90099-2]
[72]
Baig, M.S.; Ahad, A.; Aslam, M.; Imam, S.S.; Aqil, M.; Ali, A. Application of Box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity. Int. J. Biol. Macromol., 2016, 85, 258-270.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.077] [PMID: 26740466]
[73]
Uner, M.; Damgalı, S.; Ozdemir, S.; Celik, B. Therapeutic potential of drug delivery by means of lipid nanoparticles: Reality or illusion? Curr. Pharm. Des., 2017, 23(43), 6573-6591.
[http://dx.doi.org/10.2174/1381612823666171122110638] [PMID: 29173153]
[74]
Niamprem, P.; Srinivas, S.P.; Tiyaboonchai, W. Optimization of indomethacin loaded nanostructured lipid carriers. Asian J. Pharm. Sci., 2016, 11, 174-175.
[http://dx.doi.org/10.1016/j.ajps.2015.11.053]
[75]
Araújo, J.; Garcia, M.L.; Mallandrich, M.; Souto, E.B.; Calpena, A.C. Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): In vitro and ex vivo studies. Nanomedicine, 2012, 8(6), 1034-1041.
[http://dx.doi.org/10.1016/j.nano.2011.10.015] [PMID: 22115598]
[76]
Lakhani, P.; Patil, A.; Taskar, P.; Ashour, E.; Majumdar, S. Curcumin-loaded nanostructured lipid carriers for ocular drug delivery: Design optimization and characterization. J. Drug Deliv. Sci. Technol., 2018, 47, 159-166.
[http://dx.doi.org/10.1016/j.jddst.2018.07.010] [PMID: 32601526]
[77]
Seyfoddin, A.; Al-Kassas, R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev. Ind. Pharm., 2013, 39(4), 508-519.
[http://dx.doi.org/10.3109/03639045.2012.665460] [PMID: 22424312]
[78]
Gonzalez-Mira, E.; Egea, M.A.; Souto, E.B.; Calpena, A.C.; García, M.L. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery. Nanotechnology, 2011, 22(4), 045101.
[http://dx.doi.org/10.1088/0957-4484/22/4/045101] [PMID: 21169662]
[79]
Wu, J.Y.; Xia, Q. Preparation and characterization of azithromycin-loaded nanostructured lipid carriers. In: Advanced Materials Research; Trans Tech Publications Ltd: Switzerland, 2011; pp. 2917-2920.
[80]
Zhang, W.; Li, X.; Ye, T.; Chen, F.; Sun, X.; Kong, J.; Yang, X.; Pan, W.; Li, S. Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology. Int. J. Pharm., 2013, 454(1), 354-366.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.032] [PMID: 23876384]
[81]
Sharif Makhmal Zadeh, B.; Niro, H.; Rahim, F.; Esfahani, G. Ocular delivery system for propranolol hydrochloride based on nanostructured lipid carrier. Sci. Pharm., 2018, 86(2), 16.
[http://dx.doi.org/10.3390/scipharm86020016] [PMID: 29677103]
[82]
Gonzalez-Mira, E.; Nikolić, S.; Calpena, A.C.; Egea, M.A.; Souto, E.B.; García, M.L. Improved and safe transcorneal delivery of flurbiprofen by NLC and NLC-based hydrogels. J. Pharm. Sci., 2012, 101(2), 707-725.
[http://dx.doi.org/10.1002/jps.22784] [PMID: 22012873]
[83]
Almeida, H.; Lobao, P.; Frigerio, C.; Fonseca, J.; Silva, R.; Quaresma, P.; Lobo, J.M.; Amaral, M.H. Development of mucoadhesive and thermosensitive eye drops to improve the ophthalmic bioavailability of ibuprofen. J. Drug Deliv. Sci. Technol., 2016, 35, 69-80.
[http://dx.doi.org/10.1016/j.jddst.2016.04.010]
[84]
Mo, Z.; Ban, J.; Zhang, Y.; Du, Y.; Wen, Y.; Huang, X.; Xie, Q.; Shen, L.; Zhang, S.; Deng, H.; Hou, D.; Chen, Y.; Lu, Z. Nanostructured lipid carriers-based thermosensitive eye drops for enhanced, sustained delivery of dexamethasone. Nanomedicine (Lond.), 2018, 13(11), 1239-1253.
[http://dx.doi.org/10.2217/nnm-2017-0318] [PMID: 29949466]
[85]
Cheng, Y.H.; Ko, Y.C.; Chang, Y.F.; Huang, S.H.; Liu, C.J. Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment. Exp. Eye Res., 2019, 179, 179-187.
[http://dx.doi.org/10.1016/j.exer.2018.11.017] [PMID: 30471279]
[86]
Yu, S.; Li, Q.; Li, Y.; Wang, H.; Liu, D.; Yang, X.; Pan, W. A novel hydrogel with dual temperature and pH responsiveness based on a nanostructured lipid carrier as an ophthalmic delivery system: Enhanced trans-corneal permeability and bioavailability of nepafenac. New J. Chem., 2017, 41(10), 3920-3929.
[http://dx.doi.org/10.1039/C7NJ00112F]
[87]
Niamprem, P.; Milla, T.J.; Schuett, B.S.; Srinivas, S.P.; Tiyaboonchai, W. Interaction of nanostructured lipid carriers with human meibum. Int J App Pharm., 2019, 11(3), 35-42.
[http://dx.doi.org/10.22159/ijap.2019v11i3.29158]
[88]
de la Fuente, M.; Raviña, M.; Paolicelli, P.; Sanchez, A.; Seijo, B.; Alonso, M.J. Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Adv. Drug Deliv. Rev., 2010, 62(1), 100-117.
[http://dx.doi.org/10.1016/j.addr.2009.11.026] [PMID: 19958805]
[89]
Alany, R.G.; Rades, T.; Nicoll, J.; Tucker, I.G.; Davies, N.M. W/O microemulsions for ocular delivery: Evaluation of ocular irritation and precorneal retention. J. Control. Release, 2006, 111(1-2), 145-152.
[http://dx.doi.org/10.1016/j.jconrel.2005.11.020] [PMID: 16426694]
[90]
Jiao, J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv. Drug Deliv. Rev., 2008, 60(15), 1663-1673.
[http://dx.doi.org/10.1016/j.addr.2008.09.002] [PMID: 18845195]
[91]
Katragadda, S.; Talluri, R.S.; Mitra, A.K. Modulation of P-glycoprotein-mediated efflux by prodrug derivatization: An approach involving peptide transporter-mediated influx across rabbit cornea. J. Ocul. Pharmacol. Ther., 2006, 22(2), 110-120.
[http://dx.doi.org/10.1089/jop.2006.22.110] [PMID: 16722797]
[92]
Pai, R.V.; Monpara, J.D.; Vavia, P.R. Exploring molecular dynamics simulation to predict binding with ocular mucin: An in silico approach for screening mucoadhesive materials for ocular retentive delivery systems. J. Control. Release, 2019, 309, 190-202.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.037] [PMID: 31356839]
[93]
Lallemand, F.; Daull, P.; Benita, S.; Buggage, R.; Garrigue, J.S. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J. Drug Deliv., 2012, 2012, 604204.
[http://dx.doi.org/10.1155/2012/604204] [PMID: 22506123]
[94]
Teixeira, M.C.; Carbone, C.; Souto, E.B. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog. Lipid Res., 2017, 68, 1-11.
[http://dx.doi.org/10.1016/j.plipres.2017.07.001] [PMID: 28778472]
[95]
Fangueiro, J.F.; Andreani, T.; Egea, M.A.; Garcia, M.L.; Souto, S.B.; Silva, A.M.; Souto, E.B. Design of cationic lipid nanoparticles for ocular delivery: Development, characterization and cytotoxicity. Int. J. Pharm., 2014, 461(1-2), 64-73.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.025] [PMID: 24275449]
[96]
Fangueiro, J.F.; Andreani, T.; Fernandes, L.; Garcia, M.L.; Egea, M.A.; Silva, A.M.; Souto, E.B. Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. Colloids Surf. B Biointerfaces, 2014, 123, 452-460.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.042] [PMID: 25303852]
[97]
Fangueiro, J.F.; Calpena, A.C.; Clares, B.; Andreani, T.; Egea, M.A.; Veiga, F.J.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo, in vitro and ex vivo studies. Int. J. Pharm., 2016, 502(1-2), 161-169.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.039] [PMID: 26921515]
[98]
Youshia, J.; Kamel, A.O.; El Shamy, A.; Mansour, S. Design of cationic nanostructured heterolipid matrices for ocular delivery of methazolamide. Int. J. Nanomedicine, 2012, 7, 2483-2496.
[PMID: 22679362]
[99]
Hallan, S.S.; Kaur, P.; Kaur, V.; Mishra, N.; Vaidya, B. Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 334-349.
[http://dx.doi.org/10.3109/21691401.2014.951721] [PMID: 25237838]
[100]
Zhang, R.X.; Ahmed, T.; Li, L.Y.; Li, J.; Abbasi, A.Z.; Wu, X.Y. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale, 2017, 9(4), 1334-1355.
[http://dx.doi.org/10.1039/C6NR08486A] [PMID: 27973629]
[101]
Pai, R.V.; Vavia, P.R. Chitosan oligosaccharide enhances binding of nanostructured lipid carriers to ocular mucins: Effect on ocular disposition. Int. J. Pharm., 2020, 577, 119095.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119095] [PMID: 32004680]
[102]
Tian, C.; Asghar, S.; Wu, Y.; Kambere Amerigos, D.; Chen, Z.; Zhang, M.; Yin, L.; Huang, L.; Ping, Q.; Xiao, Y. N-acetyl-L-cysteine functionalized nanostructured lipid carrier for improving oral bioavailability of curcumin: Preparation, in vitro and in vivo evaluations. Drug Deliv., 2017, 24(1), 1605-1616.
[http://dx.doi.org/10.1080/10717544.2017.1391890] [PMID: 29063815]
[103]
Shen, J.; Deng, Y.; Jin, X.; Ping, Q.; Su, Z.; Li, L. Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for cyclosporine A: Improving in vivo ocular distribution. Int. J. Pharm., 2010, 402(1-2), 248-253.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.008] [PMID: 20934499]
[104]
Jiang, W.; Wang, J.; Yang, L.; Jiang, X.; Bai, Z.; Wang, Z.; He, Y.; Wang, D. Nanostructured lipid carriers modified with PEGylated carboxymethylcellulose polymers for effective delivery of docetaxel. RSC Advances, 2015, 5(110), 90386-90395.
[http://dx.doi.org/10.1039/C5RA13642C]
[105]
Zhang, X.; Gan, Y.; Gan, L.; Nie, S.; Pan, W. PEGylated nanostructured lipid carriers loaded with 10-hydroxycamptothecin: An efficient carrier with enhanced anti-tumour effects against lung cancer. J. Pharm. Pharmacol., 2008, 60(8), 1077-1087.
[http://dx.doi.org/10.1211/jpp.60.8.0014] [PMID: 18644200]
[106]
Patil, A.; Lakhani, P.; Taskar, P.; Wu, K.W.; Sweeney, C.; Avula, B.; Wang, Y.H.; Khan, I.A.; Majumdar, S. Formulation development, optimization, and in vitroin vivo characterization of natamycin-loaded pegylated nano-lipid carriers for ocular applications. J. Pharm. Sci., 2018, 107(8), 2160-2171.
[http://dx.doi.org/10.1016/j.xphs.2018.04.014] [PMID: 29698725]
[107]
Balguri, S.P.; Adelli, G.R.; Janga, K.Y.; Bhagav, P.; Majumdar, S. Ocular disposition of ciprofloxacin from topical, PEGylated nanostructured lipid carriers: Effect of molecular weight and density of poly (ethylene) glycol. Int. J. Pharm., 2017, 529(1-2), 32-43.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.042] [PMID: 28634139]
[108]
Li, J.; Liu, D.; Tan, G.; Zhao, Z.; Yang, X.; Pan, W. A comparative study on the efficiency of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan surface modified nanostructured lipid carrier for ophthalmic delivery of curcumin. Carbohydr. Polym., 2016, 146, 435-444.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.079] [PMID: 27112894]
[109]
Liu, R.; Wang, S.; Sun, L.; Fang, S.; Wang, J.; Huang, X.; You, Z.; He, X.; Liu, C. A novel cationic nanostructured lipid carrier for improvement of ocular bioavailability: Design, optimization, in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol., 2016, 33, 28-36.
[http://dx.doi.org/10.1016/j.jddst.2016.03.009]
[110]
Zhang, W.; Li, X.; Ye, T.; Chen, F.; Yu, S.; Chen, J.; Yang, X.; Yang, N.; Zhang, J.; Liu, J.; Pan, W.; Kong, J. Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions. Int. J. Nanomedicine, 2014, 9, 4305-4315.
[PMID: 25246787]
[111]
Almeida, H.; Lobão, P.; Frigerio, C.; Fonseca, J.; Silva, R.; Sousa Lobo, J.M.; Amaral, M.H. Preparation, characterization and biocompatibility studies of thermoresponsive eyedrops based on the combination of nanostructured lipid carriers (NLC) and the polymer Pluronic F-127 for controlled delivery of ibuprofen. Pharm. Dev. Technol., 2017, 22(3), 336-349.
[http://dx.doi.org/10.3109/10837450.2015.1125922] [PMID: 28240141]
[112]
Liu, R.; Sun, L.; Fang, S.; Wang, S.; Chen, J.; Xiao, X.; Liu, C. Thermosensitive in situ nanogel as ophthalmic delivery system of curcumin: Development, characterization, in vitro permeation and in vivo pharmacokinetic studies. Pharm. Dev. Technol., 2016, 21(5), 576-582.
[http://dx.doi.org/10.3109/10837450.2015.1026607] [PMID: 26024239]
[113]
Yu, S.; Tan, G.; Liu, D.; Yang, X.; Pan, W. Nanostructured lipid carrier (NLC)-based novel hydrogels as potential carriers for nepafenac applied after cataract surgery for the treatment of inflammation: Design, characterization and in vitro cellular inhibition and uptake studies. RSC Advances, 2017, 7(27), 16668-16677.
[http://dx.doi.org/10.1039/C7RA00552K]
[114]
Desfrançois, C.; Auzély, R.; Texier, I. Lipid nanoparticles and their hydrogel composites for drug delivery: A review. Pharmaceuticals (Basel), 2018, 11(4), 118.
[http://dx.doi.org/10.3390/ph11040118] [PMID: 30388738]
[115]
Yu, Y.; Feng, R.; Yu, S.; Li, J.; Wang, Y.; Song, Y.; Yang, X.; Pan, W.; Li, S. Nanostructured lipid carrier-based pH and temperature dual-responsive hydrogel composed of carboxymethyl chitosan and poloxamer for drug delivery. Int. J. Biol. Macromol., 2018, 114, 462-469.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.117] [PMID: 29578017]
[116]
Tan, G.; Yu, S.; Li, J.; Pan, W. Development and characterization of nanostructured lipid carriers based chitosan thermosensitive hydrogel for delivery of dexamethasone. Int. J. Biol. Macromol., 2017, 103, 941-947.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.132] [PMID: 28545971]
[117]
Gonzalez-Mira, E.; Egea, M.A.; Garcia, M.L.; Souto, E.B. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf. B Biointerfaces, 2010, 81(2), 412-421.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.029] [PMID: 20719479]
[118]
Liu, D. Nanostructured lipid carrier) with surface modified by TCS (thiolated chitosan) and preparation method of NLC. CN105769817A, 2016.
[119]
Wei, G. Ophthalmic composition, method for preparing the same, and use of the same. US20160074321A1, 2016.
[120]
Behl, G. Ocular Drug Delivery. WO2019123420A1, 2019.
[121]
Qiang, X. Azithromycin nanostructured lipid carrier and preparation method thereof. CN101658493B, 2010.
[122]
Blanco, A.R. Nanostructured formulations for the delivery of silibinin and other active ingredients for treating ocular diseases. JP2017530989A, 2017.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy