Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Contrast-induced Nephropathy in Non-cardiac Vascular Procedures, A Narrative Review: Part 1

Author(s): Juliette Raffort, Fabien Lareyre, Niki Katsiki* and Dimitri P. Mikhailidis

Volume 20, Issue 1, 2022

Published on: 08 July, 2021

Page: [3 - 15] Pages: 13

DOI: 10.2174/1570161119666210708165119

Price: $65

Abstract

Contrast-induced Nephropathy (CIN) is animportant complication of iodinated Contrast Medium (CM) administration, being associated with both short- and long-term adverse outcomes (e.g., cardiorenal events, longer hospital stay and mortality). CIN has been mainly studied in relation to cardiac procedures but it can also occur following non-cardiac vascular interventions. This is Part 1 of a narrative review summarizing the available literature on CIN after non-cardiac vascular diagnostic or therapeutic procedures for aortic aneurysm and carotid stenosis. We discuss the definition, pathophysiology, incidence, risk factors, biomarkers and consequences of CIN in these settings, as well as preventive strategies and alternatives to limit iodinated CM use. Physicians and vascular surgeons should be aware of CM-related adverse events and the potential strategies to avoid it. Clearly, more research in this important field is required.

Keywords: Contrast-induced nephropathy, contrast-induced acute kidney injury, non-cardiac vascular procedure, aortic aneurysm, carotid stenosis, contrast medium.

Graphical Abstract

[1]
Walsh SR, Tang T, Gaunt ME, Boyle JR. Contrast-induced nephropathy. J Endovasc Ther 2007; 14(1): 92-100.
[http://dx.doi.org/10.1583/06-2035.1] [PMID: 17291156]
[2]
Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis 2002; 39(5): 930-6.
[http://dx.doi.org/10.1053/ajkd.2002.32766] [PMID: 11979336]
[3]
McCullough PA, Soman SS. Contrast-induced nephropathy. Crit Care Clin 2005; 21(2): 261-80.
[http://dx.doi.org/10.1016/j.ccc.2004.12.003] [PMID: 15781162]
[4]
James MT, Samuel SM, Manning MA, et al. Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography: A systematic review and meta-analysis. Circ Cardiovasc Interv 2013; 6(1): 37-43.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.112.974493] [PMID: 23322741]
[5]
McCullough PA. Contrast-induced nephropathy: Definitions, epidemiology, and implications. Interv Cardiol Clin 2014; 3(3): 357-62.
[PMID: 28582220]
[6]
McCullough PA. Contrast-induced acute kidney injury. J Am Coll Cardiol 2008; 51(15): 1419-28.
[http://dx.doi.org/10.1016/j.jacc.2007.12.035] [PMID: 18402894]
[7]
Katsiki N, Athyros VG, Karagiannis A, Mikhailidis DP. Contrast-induced nephropathy: An “all or none” phenomenon? Angiology 2015; 66(6): 508-13.
[http://dx.doi.org/10.1177/0003319714550309] [PMID: 25225196]
[8]
Uzunhasan I, Yildiz A, Arslan S, et al. Contrast-induced acute kidney injury is associated with long-term adverse events in patients with acute coronary syndrome. Angiology 2017; 68(7): 621-6.
[http://dx.doi.org/10.1177/0003319716676173] [PMID: 28660805]
[9]
Sun G, Chen P, Wang K, et al. Contrast-induced nephropathy and long-term mortality after percutaneous coronary intervention in patients with acute myocardial infarction. Angiology 2019; 70(7): 621-6.
[http://dx.doi.org/10.1177/0003319718803677] [PMID: 30317864]
[10]
Azzalini L, Kalra S. Contrast-induced acute kidney injury-definitions, epidemiology, and implications. Interv Cardiol Clin 2020; 9(3): 299-309.
[PMID: 32471671]
[11]
McCullough PA, Choi JP, Feghali GA, et al. Contrast-induced acute kidney injury. J Am Coll Cardiol 2016; 68(13): 1465-73.
[http://dx.doi.org/10.1016/j.jacc.2016.05.099] [PMID: 27659469]
[12]
Seeliger E, Sendeski M, Rihal CS, Persson PB. Contrast-induced kidney injury: Mechanisms, risk factors, and prevention. Eur Heart J 2012; 33(16): 2007-15.
[http://dx.doi.org/10.1093/eurheartj/ehr494] [PMID: 22267241]
[13]
European society of urogenital radiology. ESUR guidelines on contrast media. 2018; 10. Available from:http://www.esur.org/esur-guidelines/
[14]
Paraskevas KI, Mikhailidis DP. Contrast-induced acute kidney injury in patients undergoing carotid artery stenting: An underestimated issue. Angiology 2017; 68(9): 752-6.
[http://dx.doi.org/10.1177/0003319716668934] [PMID: 27645233]
[15]
Raffort J, Lareyre F, Katsiki N, Mikhailidis DP. Contrast-induced nephropathy in non-cardiac vascular procedures, a narrative review: Part 2. Curr Vasc Pharmacol 2021.
[16]
Mehran R, Aymong ED, Nikolsky E, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation. J Am Coll Cardiol 2004; 44(7): 1393-9.
[http://dx.doi.org/10.1016/j.jacc.2004.06.068] [PMID: 15464318]
[17]
Stacul F, van der Molen AJ, Reimer P, et al. Contrast induced nephropathy: Updated ESUR contrast media safety committee guidelines. Eur Radiol 2011; 21(12): 2527-41.
[http://dx.doi.org/10.1007/s00330-011-2225-0] [PMID: 21866433]
[18]
Slocum NK, Grossman PM, Moscucci M, et al. The changing definition of contrast-induced nephropathy and its clinical implications: Insights from the blue cross blue shield of michigan cardiovascular consortium (BMC2). Am Heart J 2012; 163(5): 829-34.
[http://dx.doi.org/10.1016/j.ahj.2012.02.011] [PMID: 22607861]
[19]
Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: The second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit Care 2004; 8(4): R204-12.
[http://dx.doi.org/10.1186/cc2872] [PMID: 15312219]
[20]
Mehta RL, Kellum JA, Shah SV, et al. Acute kidney injury network: Report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007; 11(2): R31.
[http://dx.doi.org/10.1186/cc5713] [PMID: 17331245]
[21]
Saratzis AN, Goodyear S, Sur H, Saedon M, Imray C, Mahmood A. Acute kidney injury after endovascular repair of abdominal aortic aneurysm. J Endovasc Ther 2013; 20(3): 315-30.
[http://dx.doi.org/10.1583/12-4104MR2.1] [PMID: 23731304]
[22]
Hoke M, Amighi J, Mlekusch W, et al. Cystatin C and the risk for cardiovascular events in patients with asymptomatic carotid atherosclerosis. Stroke 2010; 41(4): 674-9.
[http://dx.doi.org/10.1161/STROKEAHA.109.573162] [PMID: 20150544]
[23]
Andreucci M, Faga T, Pisani A, Sabbatini M, Michael A. Acute kidney injury by radiographic contrast media: Pathogenesis and prevention. Biomed Res Int 2014; 2014: 362725.
[http://dx.doi.org/10.1155/2014/362725] [PMID: 25197639]
[24]
Bansal S, Patel RN. Pathophysiology of contrast-induced acute kidney injury. Interv Cardiol Clin 2020; 9(3): 293-8.
[PMID: 32471670]
[25]
Sendeski MM. Pathophysiology of renal tissue damage by iodinated contrast media. Clin Exp Pharmacol Physiol 2011; 38(5): 292-9.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05503.x] [PMID: 21348890]
[26]
Mehran R, Dangas GD, Weisbord SD. Contrast-associated acute kidney injury. N Engl J Med 2019; 380(22): 2146-55.
[http://dx.doi.org/10.1056/NEJMra1805256] [PMID: 31141635]
[27]
Hsu YC, Nomura S, Krusé CW. Some bactericidal and virucidal properties of iodine not affecting infectious RNA and DNA. Am J Epidemiol 1965; 82(3): 317-28.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a120552] [PMID: 4285343]
[28]
Seeliger E, Flemming B, Wronski T, et al. Viscosity of contrast media perturbs renal hemodynamics. J Am Soc Nephrol 2007; 18(11): 2912-20.
[http://dx.doi.org/10.1681/ASN.2006111216] [PMID: 17942967]
[29]
Wong PC, Li Z, Guo J, Zhang A. Pathophysiology of contrast-induced nephropathy. Int J Cardiol 2012; 158(2): 186-92.
[http://dx.doi.org/10.1016/j.ijcard.2011.06.115] [PMID: 21784541]
[30]
Heyman SN, Khamaisi M, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am J Nephrol 2008; 28(6): 998-1006.
[http://dx.doi.org/10.1159/000146075] [PMID: 18635927]
[31]
Yun AJ, Doux JD, Lee PY. Contrast nephropathy may be partly mediated by autonomic dysfunction: Renal failure considered as a modern maladaptation of the prehistoric trauma response. Med Hypotheses 2006; 66(4): 776-83.
[http://dx.doi.org/10.1016/j.mehy.2005.10.019] [PMID: 16330157]
[32]
Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 2014; 20(7): 1126-67.
[http://dx.doi.org/10.1089/ars.2012.5149] [PMID: 23991888]
[33]
Kusirisin P, Chattipakorn SC, Chattipakorn N. Contrast-induced nephropathy and oxidative stress: Mechanistic insights for better interventional approaches. J Transl Med 2020; 18(1): 400.
[http://dx.doi.org/10.1186/s12967-020-02574-8] [PMID: 33081797]
[34]
Yildirim E, Ermis E, Cengiz M. Inflammatory markers of contrast-induced nephropathy in patients with acute coronary syndrome. Coron Artery Dis 2020; 31(3): 279-83.
[http://dx.doi.org/10.1097/MCA.0000000000000823] [PMID: 31658143]
[35]
Zorlu C, Koseoglu C. Comparison of the relationship between inflammatory markers and contrast-induced nephropathy in patients with acute coronary syndrome after coronary angiography. Angiology 2020; 71(3): 249-55.
[http://dx.doi.org/10.1177/0003319719892160] [PMID: 31808357]
[36]
Oweis AO, Alshelleh SA, Daoud AK, Smadi MM, Alzoubi KH. Inflammatory milieu in contrast-induced nephropathy: A prospective single-center study. Int J Nephrol Renovasc Dis 2018; 11: 211-5.
[http://dx.doi.org/10.2147/IJNRD.S171930] [PMID: 30147351]
[37]
Yuan Y, Qiu H, Hu X, et al. Predictive value of inflammatory factors on contrast-induced acute kidney injury in patients who underwent an emergency percutaneous coronary intervention. Clin Cardiol 2017; 40(9): 719-25.
[http://dx.doi.org/10.1002/clc.22722] [PMID: 28543803]
[38]
Rajendran K, Devarajan N, Ganesan M, Ragunathan M. Obesity, inflammation and acute myocardial infarction - expression of leptin, IL-6 and high sensitivity-CRP in Chennai based population. Thromb J 2012; 10(1): 13.
[http://dx.doi.org/10.1186/1477-9560-10-13] [PMID: 22891684]
[39]
Katsiki N, Fonseca V, Mikhailidis DP. Contrast-induced acute kidney injury in diabetes mellitus: Clinical relevance and predisposing factors. Could statins be of benefit? J Diabetes Complications 2018; 32(11): 982-4.
[http://dx.doi.org/10.1016/j.jdiacomp.2018.08.008] [PMID: 30131213]
[40]
Kabeer MA, Cross J, Hamilton G, Rashid ST. Obesity as a risk factor for radiographic contrast-induced nephropathy. Angiology 2021; 72(3): 274-78.
[PMID: 33228378]
[41]
Atanda AC, Olafiranye O. Contrast-induced acute kidney injury in interventional cardiology: Emerging evidence and unifying mechanisms of protection by remote ischemic conditioning. Cardiovasc Revasc Med 2017; 18(7): 549-53.
[http://dx.doi.org/10.1016/j.carrev.2017.06.001] [PMID: 28610773]
[42]
Bartholomew BA, Harjai KJ, Dukkipati S, et al. Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am J Cardiol 2004; 93(12): 1515-9.
[http://dx.doi.org/10.1016/j.amjcard.2004.03.008] [PMID: 15194023]
[43]
Zungur M, Gul I, Tastan A, Damar E, Tavli T. Predictive value of the mehran score for contrast-induced nephropathy after transcatheter aortic valve implantation in patients with aortic stenosis. Cardiorenal Med 2016; 6(4): 279-88.
[http://dx.doi.org/10.1159/000443936] [PMID: 27648009]
[44]
Abaci O, Harmankaya O, Kocas B, et al. Long-term follow-up of patients at high risk for nephropathy after contrast exposure. Angiology 2015; 66(6): 514-8.
[http://dx.doi.org/10.1177/0003319714546527] [PMID: 25115554]
[45]
Chaikof EL, Dalman RL, Eskandari MK, et al. The society for vascular surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg 2018; 67(1): 2-77.
[46]
Wanhainen A, Verzini F, Van Herzeele I, et al. Editor’s choice - European society for vascular surgery (ESVS) 2019 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur J Vasc Endovasc Surg 2019; 57(1): 8-93.
[http://dx.doi.org/10.1016/j.ejvs.2018.09.020] [PMID: 30528142]
[47]
Donas KP, Lee JT, Lachat M, Torsello G, Veith FJ. Collected world experience about the performance of the snorkel/chimney endovascular technique in the treatment of complex aortic pathologies: The PERICLES registry. Ann Surg 2015; 262(3): 546-53.
[http://dx.doi.org/10.1097/SLA.0000000000001405] [PMID: 26258324]
[48]
Greenberg RK, Clair D, Srivastava S, et al. Should patients with challenging anatomy be offered endovascular aneurysm repair? J Vasc Surg 2003; 38(5): 990-6.
[http://dx.doi.org/10.1016/S0741-5214(03)00896-6] [PMID: 14603205]
[49]
Graves HL, Jackson BM. The current state of fenestrated and branched devices for abdominal aortic aneurysm repair. Semin Intervent Radiol 2015; 32(3): 304-10.
[http://dx.doi.org/10.1055/s-0035-1558707] [PMID: 26327749]
[50]
Oderich GS, Correa MP, Mendes BC. Technical aspects of repair of juxtarenal abdominal aortic aneurysms using the Zenith fenestrated endovascular stent graft. J Vasc Surg 2014; 59(5): 1456-61.
[http://dx.doi.org/10.1016/j.jvs.2013.10.060] [PMID: 24767275]
[51]
Wang SK, Lemmon GW, Gupta AK, et al. Fenestrated endovascular aneurysm repair-induced acute kidney injury does not result in chronic renal dysfunction. J Vasc Surg 2019; 69(6): 1679-84.
[http://dx.doi.org/10.1016/j.jvs.2018.09.044] [PMID: 30591295]
[52]
Kawatani Y, Nakamura Y, Mochida Y, et al. Contrast medium induced nephropathy after endovascular stent graft placement: An examination of its prevalence and risk factors. Radiol Res Pract 2016; 2016: 5950986.
[http://dx.doi.org/10.1155/2016/5950986] [PMID: 27069685]
[53]
Kawatani Y, Kurobe H, Nakamura Y, Hori T, Kitagawa T. The ratio of contrast medium volume to estimated glomerular filtration rate as a predictor of contrast-induced nephropathy after endovascular aortic repair. J Med Invest 2018; 65(1.2): 116-21.
[54]
Guneyli S, Bozkaya H, Cinar C, et al. The incidence of contrast medium-induced nephropathy following endovascular aortic aneurysm repair: Assessment of risk factors. Jpn J Radiol 2015; 33(5): 253-9.
[http://dx.doi.org/10.1007/s11604-015-0408-3] [PMID: 25749831]
[55]
Cheng EL, Hong Q, Yong E, Chandrasekar S, Tan GWL, Lo ZJ. Validating the use of contrast-induced nephropathy prediction models in endovascular aneurysm repairs. J Vasc Surg 2020; 71(5): 1546-53.
[http://dx.doi.org/10.1016/j.jvs.2019.07.093] [PMID: 31648760]
[56]
Li X, Zhang W, Liu J, et al. Contrast-induced kidney nephropathy in thoracic endovascular aortic repair: A 2-year retrospective study in 470 patients. Angiology 2020; 71(3): 242-8.
[http://dx.doi.org/10.1177/0003319719893578] [PMID: 31829038]
[57]
Brulotte V, Leblond FA, Elkouri S, Thérasse E, Pichette V, Beaulieu P. Bicarbonates for the prevention of postoperative renal failure in endovascular aortic aneurysm repair: A randomized pilot trial. Anesthesiol Res Pract 2013; 2013: 467326.
[http://dx.doi.org/10.1155/2013/467326] [PMID: 23840204]
[58]
Radak D, Neskovic M, Otasevic P, Isenovic ER. Renal dysfunction following elective endovascular aortic aneurysm repair. Curr Vasc Pharmacol 2019; 17(2): 133-40.
[http://dx.doi.org/10.2174/1570161115666171116163203] [PMID: 29149818]
[59]
Jhaveri KD, Saratzis AN, Wanchoo R, Sarafidis PA. Endovascular aneurysm repair (EVAR)- and transcatheter aortic valve replacement (TAVR)-associated acute kidney injury. Kidney Int 2017; 91(6): 1312-23.
[http://dx.doi.org/10.1016/j.kint.2016.11.030] [PMID: 28318632]
[60]
Urbanek T, Biolik G, Zelawski W, Hapeta B, Jusko M, Kuczmik W. The risk of renal function deterioration in abdominal aortic stent graft patients with and without previous kidney function failure - an analysis of risk factors. Pol J Radiol 2020; 85: e643-9.
[http://dx.doi.org/10.5114/pjr.2020.102194] [PMID: 33552316]
[61]
Statius van Eps RG, Nemeth B, Mairuhu RTA, et al. Determinants of acute kidney injury and renal function decline after endovascular abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg 2017; 54(6): 712-20.
[http://dx.doi.org/10.1016/j.ejvs.2017.09.011] [PMID: 29110930]
[62]
Bostock IC, Zarkowsky DS, Hicks CW, et al. Outcomes of endovascular aortic aneurysm repair in kidney transplant recipients: Results from a national quality initiative. Am J Transplant 2016; 16(8): 2395-400.
[http://dx.doi.org/10.1111/ajt.13733] [PMID: 26813253]
[63]
Gutiérrez Castillo D, San Norberto García EM, Fidalgo Domingos L, Fuente Garrido R, Estévez Fernández I, Vaquero Puerta C. Incidence of contrast induced nephropathy in patients who underwent an aortic endovascular repair. Rev Port Cir Cardiotorac Vasc 2015; 22(2): 101-7.
[PMID: 27927003]
[64]
Lau LL, Hakaim AG, Oldenburg WA, et al. Effect of suprarenal versus infrarenal aortic endograft fixation on renal function and renal artery patency: A comparative study with intermediate follow-up. J Vasc Surg 2003; 37(6): 1162-8.
[http://dx.doi.org/10.1016/S0741-5214(03)00083-1] [PMID: 12764259]
[65]
Lareyre F, Panthier F, Jean-Baptiste E, Hassen-Khodja R, Raffort J. Coverage of accessory renal arteries during endovascular aortic aneurysm repair: What are the consequences and the implications for clinical practice? Angiology 2019; 70(1): 12-9.
[http://dx.doi.org/10.1177/0003319718771249] [PMID: 29682989]
[66]
Sattah AP, Secrist MH, Sarin S. Complications and perioperative management of patients undergoing thoracic endovascular aortic repair. J Intensive Care Med 2018; 33(7): 394-406.
[http://dx.doi.org/10.1177/0885066617730571] [PMID: 28946776]
[67]
Walsh SR, Tang TY, Boyle JR. Renal consequences of endovascular abdominal aortic aneurysm repair. J Endovasc Ther 2008; 15(1): 73-82.
[http://dx.doi.org/10.1583/07-2299.1] [PMID: 18254679]
[68]
Noorani A, Sadat U, Rollins KE, et al. Assessment of renal injury in patients undergoing elective EVAR using urinary neutrophil gelatin-associated lipocalin, interleukin 18, and retinol-binding protein. Angiology 2017; 68(6): 547-52.
[http://dx.doi.org/10.1177/0003319716672524] [PMID: 27707982]
[69]
Kaya A, Kaya Y, Topçu S, et al. Neutrophil-to-lymphocyte ratio predicts contrast-induced nephropathy in patients undergoing primary percutaneous coronary intervention. Angiology 2014; 65(1): 51-6.
[http://dx.doi.org/10.1177/0003319713484789] [PMID: 23620308]
[70]
Kocas C, Yildiz A, Abaci O, et al. Platelet-to-lymphocyte ratio predicts contrast-induced nephropathy in patients with non-ST-segment elevation acute coronary syndrome. Angiology 2015; 66(10): 964-8.
[http://dx.doi.org/10.1177/0003319715578057] [PMID: 25852211]
[71]
Kurtul A, Yarlioglues M, Murat SN, et al. Red cell distribution width predicts contrast-induced nephropathy in patients undergoing percutaneous coronary intervention for acute coronary syndrome. Angiology 2015; 66(5): 433-40.
[http://dx.doi.org/10.1177/0003319714535238] [PMID: 24834929]
[72]
Spanos K, Matsagkas M, Giannoukas AD. Full blood count as a potential predicting factor of contrast-induced nephropathy after endovascular aortic aneurysm repair. Angiology 2016; 67(9): 882.
[http://dx.doi.org/10.1177/0003319716650962] [PMID: 27207844]
[73]
Weisbord SD, Palevsky PM. Prevention of contrast-induced nephropathy with volume expansion. Clin J Am Soc Nephrol 2008; 3(1): 273-80.
[http://dx.doi.org/10.2215/CJN.02580607] [PMID: 17989201]
[74]
Wong GT, Lee EY, Irwin MG. Contrast induced nephropathy in vascular surgery. Br J Anaesth 2016; 117(Suppl. 2): ii63-73.
[http://dx.doi.org/10.1093/bja/aew213] [PMID: 27566809]
[75]
Ali-Hasan-Al-Saegh S, Mirhosseini SJ, Ghodratipour Z, et al. Strategies preventing contrast-induced nephropathy after coronary angiography: A comprehensive meta-analysis and systematic review of 125 randomized controlled trials. Angiology 2017; 68(5): 389-413.
[http://dx.doi.org/10.1177/0003319716661445] [PMID: 27485363]
[76]
Fu N, Liang M, Yang S. High loading dose of atorvastatin for the prevention of serum creatinine and cystatin C-based contrast-induced nephropathy following percutaneous coronary intervention. Angiology 2018; 69(8): 692-9.
[http://dx.doi.org/10.1177/0003319717750903] [PMID: 29343076]
[77]
Zhan B, Huang X, Jiang L, Bao H, Cheng X. Effect of nicorandil administration on preventing contrast-induced nephropathy: A meta-analysis. Angiology 2018; 69(7): 568-73.
[http://dx.doi.org/10.1177/0003319717732237] [PMID: 28950711]
[79]
Birck R, Krzossok S, Markowetz F, Schnülle P, van der Woude FJ, Braun C. Acetylcysteine for prevention of contrast nephropathy: Meta-analysis. Lancet 2003; 362(9384): 598-603.
[http://dx.doi.org/10.1016/S0140-6736(03)14189-X] [PMID: 12944058]
[80]
Xie W, Liang X, Lin Z, Liu M, Ling Z. Latest clinical evidence about effect of acetylcysteine on preventing contrast-induced nephropathy in patients undergoing angiography: A meta-analysis. Angiology 2021; 72(2): 105-21.
[http://dx.doi.org/10.1177/0003319720950162] [PMID: 32830526]
[81]
Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: Executive summary: A report of the American college of cardiology foundation/American heart association task force on practice guidelines and the society for cardiovascular angiography and interventions. Circulation 2011; 124(23): 2574-609.
[http://dx.doi.org/10.1161/CIR.0b013e31823a5596] [PMID: 22064598]
[82]
Moore NN, Lapsley M, Norden AG, et al. Does N-acetylcysteine prevent contrast-induced nephropathy during endovascular AAA repair? A randomized controlled pilot study. J Endovasc Ther 2006; 13(5): 660-6.
[http://dx.doi.org/10.1583/06-1833.1] [PMID: 17042662]
[83]
Weisbord SD, Palevsky PM. Strategies for the prevention of contrast-induced acute kidney injury. Curr Opin Nephrol Hypertens 2010; 19(6): 539-49.
[http://dx.doi.org/10.1097/MNH.0b013e32833d42e3] [PMID: 20625289]
[84]
Katsiki N, Mikhailidis DP. Management of patients with type 2 diabetes mellitus and acute coronary syndrome: Better be safe than sorry! J Diabetes Complications 2019; 33(7): 465-7.
[http://dx.doi.org/10.1016/j.jdiacomp.2019.04.011] [PMID: 31126705]
[85]
Katsiki N, Triposkiadis F, Giannoukas AD, Mikhailidis DP. Statin loading in cardiovascular surgery: Never too early to treat. Curr Opin Cardiol 2018; 33(4): 436-43.
[http://dx.doi.org/10.1097/HCO.0000000000000519] [PMID: 29601328]
[86]
Zhou X, Dai J, Xu X, et al. Comparative efficacy of statins for prevention of contrast-induced acute kidney injury in patients with chronic kidney disease: A network meta-analysis. Angiology 2019; 70(4): 305-16.
[http://dx.doi.org/10.1177/0003319718801246] [PMID: 30261736]
[87]
Xie J, Jiang M, Lin Y, Deng H, Li L. Effect of alprostadil on the prevention of contrast-induced nephropathy: A meta-analysis of 36 randomized controlled trials. Angiology 2019; 70(7): 594-612.
[http://dx.doi.org/10.1177/0003319719825597] [PMID: 30669852]
[88]
Huang Q, Yang H, Lin Q, Hu M, Meng Y, Qin X. Effect of statin therapy on survival after abdominal aortic aneurysm repair: A systematic review and meta-analysis. World J Surg 2018; 42(10): 3443-50.
[http://dx.doi.org/10.1007/s00268-018-4586-x] [PMID: 29564515]
[89]
Liu J, Lv PJ, Wu R, et al. Aortic dual-energy CT angiography with low contrast medium injection rate. J XRay Sci Technol 2014; 22(5): 689-96.
[http://dx.doi.org/10.3233/XST-140454] [PMID: 25265927]
[90]
Lehti L, Nyman U, Söderberg M, Björses K, Gottsäter A, Wassélius J. 80-kVp CT angiography for endovascular aneurysm repair follow-up with halved contrast medium dose and preserved diagnostic quality. Acta Radiol 2016; 57(3): 279-86.
[http://dx.doi.org/10.1177/0284185115577251] [PMID: 25829479]
[91]
Horinouchi H, Sofue K, Nishii T, et al. CT angiography with 15 mL contrast material injection on time-resolved imaging for endovascular abdominal aortic aneurysm repair. Eur J Radiol 2020; 126: 108861.
[http://dx.doi.org/10.1016/j.ejrad.2020.108861] [PMID: 32179423]
[92]
Seehofnerová A, Kok M, Mihl C, et al. Feasibility of low contrast media volume in CT angiography of the aorta. Eur J Radiol Open 2015; 2: 58-65.
[http://dx.doi.org/10.1016/j.ejro.2015.03.001] [PMID: 26937437]
[93]
Araki K, Yoshizako T, Yoshida R, Tada K, Kitagaki H. Low-voltage (80-kVp) abdominopelvic computed tomography allows 60% contrast dose reduction in patients at risk of contrast-induced nephropathy. Clin Imaging 2018; 51: 352-5.
[http://dx.doi.org/10.1016/j.clinimag.2018.05.027] [PMID: 29982133]
[94]
Navin P, Murray AM, Nandikumar K, Waldron R, Tuohy B, Casey M. Shaped-bolus protocol reduces contrast medium volume in abdominal CT while maintaining image quality. Clin Radiol 2017; 72(3): 265 e1- e5.
[http://dx.doi.org/10.1016/j.crad.2016.10.011]
[95]
Formosa A, Santos DM, Marcuzzi D, Common AA, Prabhudesai V. Low contrast dose catheter-directed CT angiography (CCTA). Cardiovasc Intervent Radiol 2016; 39(4): 606-10.
[http://dx.doi.org/10.1007/s00270-015-1232-y] [PMID: 26514834]
[96]
Masana Llimona M, Altes Mas P, Martinez Carnovale L, Llagostera Pujol S. Feasibility of intraoperative fusion imaging using non-contrast CT scan for EVAR in ruptured abdominal aortic aneurysm. EJVES Vasc Forum 2020; 47: 35-7.
[http://dx.doi.org/10.1016/j.ejvsvf.2020.03.001]
[97]
Hawkins IF, Cho KJ, Caridi JG. Carbon dioxide in angiography to reduce the risk of contrast-induced nephropathy. Radiol Clin North Am 2009; 47(5): 813-825, v-vi.
[http://dx.doi.org/10.1016/j.rcl.2009.07.002] [PMID: 19744596]
[98]
Takeuchi Y, Morikage N, Matsuno Y, et al. Midterm outcomes of endovascular aortic aneurysm repair with carbon dioxide-guided angiography. Ann Vasc Surg 2018; 51: 170-6.
[http://dx.doi.org/10.1016/j.avsg.2018.02.036] [PMID: 29772311]
[99]
Criado E, Kabbani L, Cho K. Catheter-less angiography for endovascular aortic aneurysm repair: A new application of carbon dioxide as a contrast agent. J Vasc Surg 2008; 48(3): 527-34.
[http://dx.doi.org/10.1016/j.jvs.2008.04.061] [PMID: 18632243]
[100]
Tantawy TG, Seriki D, Rogers S, Katsogridakis E, Ghosh J. Endovascular aneurysm repair assisted by CO2 digital subtraction angiography and intraoperative contrast-enhanced ultrasonography: Single-center experience. Ann Vasc Surg 2021; 10: 459-66.
[101]
Gallitto E, Faggioli G, Vacirca A, et al. The benefit of combined carbon dioxide automated angiography and fusion imaging in preserving perioperative renal function in fenestrated endografting. J Vasc Surg 2020; 72(6): 1906-16.
[http://dx.doi.org/10.1016/j.jvs.2020.02.051] [PMID: 32276017]
[102]
Cuen-Ojeda C, Anaya-Ayala JE, Lizola R, et al. Percutaneous endovascular aortic aneurysm repair with INCRAFT endograft guided by CO2 digital subtraction angiography in patients with renal insufficiency. Vasc Spec Int 2020; 36(1): 28-32.
[http://dx.doi.org/10.5758/vsi.2020.36.1.28] [PMID: 32292766]
[103]
Nadolski GJ, Stavropoulos SW. Contrast alternatives for iodinated contrast allergy and renal dysfunction: Options and limitations. J Vasc Surg 2013; 57(2): 593-8.
[http://dx.doi.org/10.1016/j.jvs.2012.10.009] [PMID: 23246079]
[104]
Ertas F, Avci E, Kiris T. The ratio of fibrinogen to albumin as a predictor of contrast-induced nephropathy after carotid angiography. Angiology 2019; 70(5): 458-64.
[http://dx.doi.org/10.1177/0003319718809200] [PMID: 30373374]
[105]
Kato T, Sakai H, Tsujimoto M, Nishimura Y. Prolonged carotid sinus reflex is a risk factor for contrast-induced nephropathy following carotid artery stenting. AJNR Am J Neuroradiol 2011; 32(3): 441-5.
[http://dx.doi.org/10.3174/ajnr.A2344] [PMID: 21273355]
[106]
Donahue M, Visconti G, Focaccio A, et al. Acute kidney injury in patients with chronic kidney disease undergoing internal carotid artery stent implantation. JACC Cardiovasc Interv 2015; 8(11): 1506-14.
[http://dx.doi.org/10.1016/j.jcin.2015.05.021] [PMID: 26298226]
[107]
Pucciarelli A, Arcari A, Popusoi G, et al. Incidence and predictors of acute kidney injury in patients undergoing proximal protected carotid artery stenting. EuroIntervention 2018; 14(3): e360-6.
[http://dx.doi.org/10.4244/EIJ-D-17-00308] [PMID: 29633937]
[108]
Nolz R, Schernthaner RE, Cejna M, Schernthaner M, Lammer J, Schoder M. Carotid artery stenting: Single-center experience over 11 years. Cardiovasc Intervent Radiol 2010; 33(2): 251-9.
[http://dx.doi.org/10.1007/s00270-009-9673-9] [PMID: 19669832]
[109]
AbuRahma AF, Srivastava M, Stone PA, et al. The effect of chronic renal insufficiency by use of glomerular filtration rate versus serum creatinine level on late clinical outcome of carotid endarterectomy. J Vasc Surg 2015; 61(3): 675-82.
[http://dx.doi.org/10.1016/j.jvs.2014.10.019] [PMID: 25499714]
[110]
Katsiki N, Mikhailidis DP. Diabetes and carotid artery disease: A narrative review. Ann Transl Med 2020; 8(19): 1280.
[http://dx.doi.org/10.21037/atm.2019.12.153] [PMID: 33178812]
[111]
Paraskevas KI, Veith FJ, Eckstein HH, Ricco JB, Mikhailidis DP. Cholesterol, carotid artery disease and stroke: What the vascular specialist needs to know. Ann Transl Med 2020; 8(19): 1265.
[http://dx.doi.org/10.21037/atm.2020.02.176] [PMID: 33178797]
[112]
Patti G, Tomai F, Melfi R, et al. Strategies of clopidogrel load and atorvastatin reload to prevent ischemic cerebral events in patients undergoing protected carotid stenting. Results of the randomized ARMYDA-9 CAROTID (Clopidogrel and Atorvastatin Treatment During Carotid Artery Stenting) study. J Am Coll Cardiol 2013; 61(13): 1379-87.
[http://dx.doi.org/10.1016/j.jacc.2013.01.015] [PMID: 23490041]
[113]
Reiff T, Amiri H, Rohde S, Hacke W, Ringleb PA. Statins reduce peri-procedural complications in carotid stenting. Eur J Vasc Endovasc Surg 2014; 48(6): 626-32.
[http://dx.doi.org/10.1016/j.ejvs.2014.08.010] [PMID: 25240903]
[114]
Hong JH, Sohn SI, Kwak J, et al. Dose-dependent effect of statin pretreatment on preventing the periprocedural complications of carotid artery stenting. Stroke 2017; 48(7): 1890-4.
[http://dx.doi.org/10.1161/STROKEAHA.117.016680] [PMID: 28626049]
[115]
Fu M, Dai W, Ye Y, Lu Q, He W. High dose of atorvastatin for the treatment of contrast-induced nephropathy after carotid artery stenting. Am J Ther 2017; 24(6): e718-22.
[http://dx.doi.org/10.1097/MJT.0000000000000407] [PMID: 26720167]
[116]
Athyros VG, Katsiki N, Karagiannis A, Mikhailidis DP. Statins can improve proteinuria and glomerular filtration rate loss in chronic kidney disease patients, further reducing cardiovascular risk. Fact or fiction? Expert Opin Pharmacother 2015; 16(10): 1449-61.
[http://dx.doi.org/10.1517/14656566.2015.1053464] [PMID: 26037614]
[117]
Varcoe RL, Nammuni I, Lennox AF, Yang JL, Crowe P, Walsh WR. Adjunctive ultrasonography to minimize iodinated contrast administration during carotid artery stenting: A randomized trial. J Endovasc Ther 2012; 19(5): 638-47.
[http://dx.doi.org/10.1583/JEVT-12-3918R.1] [PMID: 23046330]
[118]
Nammuni I, Batt P, Erlich J, Varcoe RL. Adjunctive ultrasonography during carotid artery stenting to minimize iodine contrast use. J Clin Ultrasound 2013; 41(5): 323-6.
[http://dx.doi.org/10.1002/jcu.21902] [PMID: 22434690]
[119]
Okawa M, Higashi T, Fukuda K, Ogata T, Yoshioka T, Inoue T. Safety and feasibility of carotid artery stenting with dual-echo technique to minimize iodinated contrast dose. J Stroke Cerebrovasc Dis 2018; 27(4): 825-30.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.08.030] [PMID: 29395639]
[120]
Mizowaki T, Fujita A, Imahori T, et al. Duplex-assisted carotid artery stenting without administration of contrast medium for patients with chronic kidney disease or allergic reaction. Neuroradiology 2016; 58(7): 679-86.
[http://dx.doi.org/10.1007/s00234-016-1678-x] [PMID: 27067204]
[121]
Kocak B, Kizilkilic O, Korkmazer B, Tureci E, Kocer N, Islak C. Carotid stenting with low-dose contrast medium for patients with moderate-to-severe chronic renal insufficiency: Keyhole carotid stenting. Eur J Radiol 2013; 82(3): 508-11.
[http://dx.doi.org/10.1016/j.ejrad.2012.08.025] [PMID: 23084877]
[122]
Yaganti V, Alani F, Yaganti S, Goldberg S, McCormick D. Use of gadolinium for carotid artery angiography and stenting in patients with renal insufficiency. J Ren Care 2009; 35(4): 211-8.
[http://dx.doi.org/10.1111/j.1755-6686.2009.00120.x] [PMID: 19909415]
[123]
Inoue A, Tagawa M, Kumon Y, et al. Usefulness of the fusion imaging of 3D-CT and MRA for carotid artery stenting with minimum use of contrast medium in patient with renal dysfunction. Interv Neuroradiol 2015; 21(2): 277-81.
[http://dx.doi.org/10.1177/1591019915581941] [PMID: 25934657]
[124]
Debrey SM, Yu H, Lynch JK, et al. Diagnostic accuracy of magnetic resonance angiography for internal carotid artery disease: A systematic review and meta-analysis. Stroke 2008; 39(8): 2237-48.
[http://dx.doi.org/10.1161/STROKEAHA.107.509877] [PMID: 18556586]
[125]
Lin J, Li D, Yan F. High-resolution 3D contrast-enhanced MRA with parallel imaging techniques before endovascular interventional treatment of arterial stenosis. Vasc Med 2009; 14(4): 305-11.
[http://dx.doi.org/10.1177/1358863X09104224] [PMID: 19808715]
[126]
Schneider G, Ballarati C, Grazioli L, et al. Gadobenate dimeglumine-enhanced MR angiography: Diagnostic performance of four doses for detection and grading of carotid, renal, and aorto-iliac stenoses compared to digital subtraction angiography. J Magn Reson Imaging 2007; 26(4): 1020-32.
[http://dx.doi.org/10.1002/jmri.21127] [PMID: 17896354]
[127]
Nomura S, Hayashi M, Ishikawa T, Yamaguchi K, Kawamata T. Development of a preoperative simulation technique for carotid endarterectomy in patients with contrast contraindications. World Neurosurg 2018; 116: e738-43.
[http://dx.doi.org/10.1016/j.wneu.2018.05.081] [PMID: 29787872]
[128]
Schermerhorn ML, Liang P, Dakour-Aridi H, et al. In-hospital outcomes of transcarotid artery revascularization and carotid endarterectomy in the Society for Vascular Surgery Vascular Quality Initiative. J Vasc Surg 2020; 71(1): 87-95.
[http://dx.doi.org/10.1016/j.jvs.2018.11.029] [PMID: 31227410]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy