Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

A Review on Nuclear Imaging as a Promising Modality for Efficient Diagnosis of Tuberculosis

Author(s): Asma Rafique, Rashid Rasheed, Saba Shamim, Munazza Ijaz and Ghulam Murtaza*

Volume 18, Issue 1, 2022

Published on: 10 December, 2021

Article ID: e070721194580 Pages: 14

DOI: 10.2174/1573405617666210707150811

Price: $65

Abstract

Tuberculosis (TB) is an infectious disease, which has been declared as a global health issue by the World Health Organization in 1993. Due to the complex pathophysiology of Mycobacterium tuberculosis, it remains a global threat. This article reviews the conventional diagnostic modalities for tuberculosis, their limitations to detect latent TB, multiple drug resistant-TB, human immunodeficiency virus co-infected TB lesions, and TB in children. Moreover, this review illustrates the importance of nuclear medicine imaging for early, non-invasive diagnosis of TB, to detect disease stages and to monitor therapy response. Single-photon emission computed tomography and positron emission tomography with their particular radionuclides are now extensively being used for a thorough assessment of TB.

Keywords: Diagnostics, latent tuberculosis, multiple drug-resistant tuberculosis, nuclear medicine, single-photon emission computed tomography, positron emission tomography.

Graphical Abstract

[1]
Knechel NA. Tuberculosis: Pathophysiology, clinical features, and diagnosis. Crit Care Nurse 2009; 29(2): 34-43.
[http://dx.doi.org/10.4037/ccn2009968] [PMID: 19339446]
[2]
Waitt CJ, Squire SB. A systematic review of risk factors for death in adults during and after tuberculosis treatment. Int J Tuberc Lung Dis 2011; 15(7): 871-85.
[http://dx.doi.org/10.5588/ijtld.10.0352] [PMID: 21496360]
[3]
Wallis RS, Pai M, Menzies D, et al. Biomarkers and diagnostics for tuberculosis: Progress, needs, and translation into practice. Lancet 2010; 375(9729): 1920-37.
[http://dx.doi.org/10.1016/S0140-6736(10)60359-5] [PMID: 20488517]
[4]
Pfaller MA. Application of new technology to the detection, identification, and antimicrobial susceptibility testing of mycobacteria. Am J Clin Pathol 1994; 101(3): 329-37.
[http://dx.doi.org/10.1093/ajcp/101.3.329] [PMID: 7510928]
[5]
Liu Q, Liu Z, Yong S, Jia K, Razmjooy N. Computer-aided breast cancer diagnosis based on image segmentation and interval analysis. Automatika (Zagreb) 2020; 61(3): 496-506.
[http://dx.doi.org/10.1080/00051144.2020.1785784]
[6]
Estrela VV. “Why Software-Defined Radio (SDR) Matters in Healthcare?” High Perf Comput 2019; 3(3): 421-9.
[7]
Estrela VV, Monteiro ACB, França RP, Iano Y. Khelassi A., Razmjooy N. Health 4.0: Applications, Management, Technologies and Review. Med Technol J 2019; 2(4): 262-76.
[http://dx.doi.org/10.26415/2572-004X-vol2iss4p262-276]
[8]
Bonekamp D, Hammoud DA, Martin G, Pomper MG. Molecular imaging: Techniques and current clinical applications. Appl Radiol 2010; 87: 10-21.
[9]
World Health Organization. Global tuberculosis report 2015World Health Organization. 2015.
[10]
Cheon SA, Cho HH, Kim J, Lee J, Kim HJ, Park TJ. Recent tuberculosis diagnosis toward the end TB strategy. J Microbiol Methods 2016; 123: 51-61.
[http://dx.doi.org/10.1016/j.mimet.2016.02.007] [PMID: 26853124]
[11]
Phillips M, Basa-Dalay V, Blais J, et al. Point-of-care breath test for biomarkers of active pulmonary tuberculosis. Tuberculosis (Edinb) 2012; 92(4): 314-20.
[http://dx.doi.org/10.1016/j.tube.2012.04.002] [PMID: 22647661]
[12]
Jensen PA, Lambert LA, Iademarco MF, Ridzon R. Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings, 2005. MMWR Recomm Rep 2005; 54(RR-17): 1-141.
[PMID: 16382216]
[13]
Dinnes J, Deeks J, Kunst H, et al. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol Assess 2007; 11(3): 1-196.
[http://dx.doi.org/10.3310/hta11030] [PMID: 17266837]
[14]
Lange C, Mori T. Advances in the diagnosis of tuberculosis. Respirology 2010; 15(2): 220-40.
[http://dx.doi.org/10.1111/j.1440-1843.2009.01692.x] [PMID: 20199641]
[15]
James A, Uba AS, Ibrahim A, et al. Improving the case detection of pulmonary tuberculosis by bleach microscopy method in the north West of Nigeria. J Med Lab Diagnos 2013; 4(3): 34-7.
[http://dx.doi.org/10.5897/JMLD2013-0066]
[16]
Kidenya BR, Kabangila R, Peck RN, et al. Early and efficient detection of Mycobacterium tuberculosis in sputum by microscopic observation of broth cultures. PLoS One 2013; 8(2): e57527.
[http://dx.doi.org/10.1371/journal.pone.0057527] [PMID: 23469014]
[17]
Yang H, Kruh-Garcia NA, Dobos KM. Purified protein derivatives of tuberculin- past, present, and future. FEMS Immunol Med Microbiol 2012; 66(3): 273-80.
[http://dx.doi.org/10.1111/j.1574-695X.2012.01002.x] [PMID: 22762692]
[18]
Trajman A, Steffen RE, Menzies D. Interferon-gamma release assays versus tuberculin skin testing for the diagnosis of latent tuberculosis infection: An overview of the evidence. Pulmon Med 2013; 2013: 601737.
[19]
Piccazzo R, Paparo F, Garlaschi G. Diagnostic accuracy of chest radiography for the diagnosis of tuberculosis (TB) and its role in the detection of latent TB infection: a systematic review. J Rheumatol Suppl 2014; 91: 32-40.
[http://dx.doi.org/10.3899/jrheum.140100] [PMID: 24788998]
[20]
Zhang GP, Zhang HJ, Chen TF, Hou HP, Su P, Gao YH. Screening and identifying hepatotoxic components in Polygoni multiflori Radix and Polygoni multiflori Radix Praeparata. World J Tradit Chin Med 2019; 3: 164-70.
[21]
O’Grady J, Maeurer M, Mwaba P, et al. New and improved diagnostics for detection of drug-resistant pulmonary tuberculosis. Curr Opin Pulm Med 2011; 17(3): 134-41.
[http://dx.doi.org/10.1097/MCP.0b013e3283452346] [PMID: 21415753]
[22]
Banday KM, Pasikanti KK, Chan ECY, et al. Use of urine volatile organic compounds to discriminate tuberculosis patients from healthy subjects. Anal Chem 2011; 83(14): 5526-34.
[http://dx.doi.org/10.1021/ac200265g] [PMID: 21619052]
[23]
Pasqua AJD, Mishler RE, Shi IIY, Dabrowiak JC, Asefa T. Preparation of antibody-conjugated gold nanoparticles. Mater Lett 2009; 63(21): 1876-9.
[http://dx.doi.org/10.1016/j.matlet.2009.05.070]
[24]
Baptista PV, Koziol-Montewka M, Paluch-Oles J, Doria G, Franco R. Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples. Clin Chem 2006; 52(7): 1433-4.
[http://dx.doi.org/10.1373/clinchem.2005.065391] [PMID: 16798971]
[25]
Hussain MM, Samir TM, Azzazy HME. Unmodified gold nanoparticles for direct and rapid detection of Mycobacterium tuberculosis complex. Clin Biochem 2013; 46(7-8): 633-7.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.12.020] [PMID: 23318577]
[26]
Yigit MV, Moore A, Medarova Z. Magnetic nanoparticles for cancer diagnosis and therapy. Pharm Res 2012; 29(5): 1180-8.
[http://dx.doi.org/10.1007/s11095-012-0679-7] [PMID: 22274558]
[27]
Kaittanis C, Santra S, Perez JM. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 2010; 62(4-5): 408-23.
[http://dx.doi.org/10.1016/j.addr.2009.11.013] [PMID: 19914316]
[28]
Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8): 969-76.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[29]
Ekrami A, Samarbaf-Zadeh AR, Khosravi A, et al. Validity of bioconjugated silica nanoparticles in comparison with direct smear, culture, and polymerase chain reaction for detection of Mycobacterium tuberculosis in sputum specimens. Int J Nanomedicine 2011; 6: 2729-35.
[http://dx.doi.org/10.2147/IJN.S23239] [PMID: 22114503]
[30]
Cheepsattayakorn A, Cheepsattayakorn R. Roles of nanotechnology in diagnosis and treatment of tuberculosis. J Nanotechnol Diagn Treatment 2013; 1(1): 19-25.
[http://dx.doi.org/10.12974/2311-8792.2013.01.01.3]
[31]
Gemmel F, Dumarey N, Welling M. Future diagnostic agents. Semin Nucl Med 2009; 39(1): 11-26.
[http://dx.doi.org/10.1053/j.semnuclmed.2008.08.005] [PMID: 19038597]
[32]
Laverman P, Boerman OC, Oyen WJG, Dams ETM, Storm G, Corstens FHM. Liposomes for scintigraphic detection of infection and inflammation. Adv Drug Deliv Rev 1999; 37(1-3): 225-35.
[http://dx.doi.org/10.1016/S0169-409X(98)00095-7] [PMID: 10837737]
[33]
Holden F, Amin V, Kuek D, Kopp JB, Hendry BM, Xu Q. Taming the fire of nephrotoxic botanicals. World J Tradit Chin Med 2019; 3: 151-63.
[34]
Patei RD, Patel PM, Patel NM. A review on radiopharmaceuticals and radiochemical method in analysis. Int J Pharm Biol Arch 2011; 2: 1062-7.
[35]
Oyen WJG, Boerman OC, Corstens FHM. Animal models of infection and inflammation and their role in experimental nuclear medicine. J Microbiol Methods 2001; 47(2): 151-7.
[http://dx.doi.org/10.1016/S0167-7012(01)00306-2] [PMID: 11576679]
[36]
Arano Y. Recent advances in 99mTc radiopharmaceuticals. Ann Nucl Med 2002; 16(2): 79-93.
[http://dx.doi.org/10.1007/BF02993710] [PMID: 12043913]
[37]
Banerjee S, Pillai MRA, Ramamoorthy N. Evolution of Tc-99m in diagnostic radiopharmaceuticals. Semin Nucl Med 2001; 31(4): 260-77.
[http://dx.doi.org/10.1053/snuc.2001.26205] [PMID: 11710769]
[38]
Onsel C, Sönmezoglu K, Camsari G, et al. Technetium-99m-MIBI scintigraphy in pulmonary tuberculosis. J Nucl Med 1996; 37(2): 233-8.
[PMID: 8667051]
[39]
Degirmenci B, Kilinc O, Cirak KA, et al. Technetium-99m-tetrofosmin scintigraphy in pulmonary tuberculosis. J Nucl Med 1998; 39(12): 2116-20.
[PMID: 9867153]
[40]
Nocera RM, Sayle B, Rogers C, Wilkey D. Tc-99m MDP and indium-111 chloride scintigraphy in skeletal tuberculosis. Clin Nucl Med 1983; 8(9): 418-20.
[http://dx.doi.org/10.1097/00003072-198309000-00008] [PMID: 6227442]
[41]
Volodina GI, Semenov VM. Significance of lung scanning in the determination of the prognosis of destructive tuberculosis. Med Radiol (Mosk) 1981; 26(5): 40-4.
[PMID: 7242283]
[42]
Bakheet SM, Powe J, Ezzat A, Rostom A. F-18-FDG uptake in tuberculosis. Clin Nucl Med 1998; 23(11): 739-42.
[http://dx.doi.org/10.1097/00003072-199811000-00003] [PMID: 9814559]
[43]
Liu RS, Shei HR, Chu YK, Feng CF, Su WJ. Detection of extrapulmonary tuberculosis with F-18 FDG PET. World J Nucl Med 2002; 1: 235-40.
[44]
Martinez V, Castilla-Lievre MA, Guillet-Caruba C, et al. (18)F-FDG PET/CT in tuberculosis: an early non-invasive marker of therapeutic response. Int J Tuberc Lung Dis 2012; 16(9): 1180-5.
[http://dx.doi.org/10.5588/ijtld.12.0010] [PMID: 22794271]
[45]
Lee G, Lee JH, Park SG. F-18 FDG PET/CT imaging of solitary genital tuberculosis mimicking recurrent lymphoma. Clin Nucl Med 2011; 36(4): 315-6.
[http://dx.doi.org/10.1097/RLU.0b013e31820aa033] [PMID: 21368612]
[46]
Heysell SK, Thomas TA, Sifri CD, Rehm PK, Houpt ER. 18-Fluorodeoxyglucose positron emission tomography for tuberculosis diagnosis and management: a case series. BMC Pulm Med 2013; 13(1): 14.
[http://dx.doi.org/10.1186/1471-2466-13-14] [PMID: 23514625]
[47]
Hwang JH, Kim SE, Lee JK. F18-fluorodeoxyglucose-positron emission tomography for diagnosis of pelvic tuberculosis mimicking peritoneal carcinomatosis. Int J Gynaecol Obstet 2009; 104(3): 244-6.
[http://dx.doi.org/10.1016/j.ijgo.2008.10.013] [PMID: 19038386]
[48]
Santhosh S, Bhattacharya A, Rana SS, Bhasin DK, Srinivasan R, Mittal BR. Pancreatic tuberculosis: Evaluation of therapeutic response using F-18 fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography. Indian J Nucl Med 2014; 29(4): 257-9.
[http://dx.doi.org/10.4103/0972-3919.142635] [PMID: 25400368]
[49]
Liu H, Zhou W, Gao Y. Discussions on toxic traditional Chinese medicine and new perspectives. World J Tradit Chin Med 2019; 3: 145-50.
[50]
Lin WY, Hsieh JF. Gallium-67 citrate scan in extrapulmonary tuberculosis. Nucl Med (Stuttg) 1999; 38(6): 199-202.
[http://dx.doi.org/10.1055/s-0038-1632219] [PMID: 10510804]
[51]
Walsh TJ, Bekerman C, Chausow A, Szidon P. The value of gallium-67 scanning in pulmonary tuberculosis. Am Rev Respir Dis 1985; 132(4): 746-7.
[PMID: 4051309]
[52]
Liu SF, Liu JW, Lin MC, Lee CH, Huang HH, Lai YF. Monitoring treatment responses in patients with pulmonary TB using serial lung gallium-67 scintigraphy. AJR Am J Roentgenol 2007; 188(5): W403-8.
[http://dx.doi.org/10.2214/AJR.06.0587] [PMID: 17449733]
[53]
Del Val GM, Gallardo FG, March J, Laguna F. Gallium-67 (Ga-67) scintigraphy in tuberculosis and Mycobacterium avium-M. intracellulare infections in patients with HIV infections. Med Clin (Barc) 1998; 110(15): 570-3.
[PMID: 9650200]
[54]
Yang SO, Lee YI, Chung DH, et al. Detection of extrapulmonary tuberculosis with gallium-67 scan and computed tomography. J Nucl Med 1992; 33(12): 2118-23.
[PMID: 1460503]
[55]
Sumi Y, Ozaki Y, Hasegawa H, Shindoh N, Katayama H, Tamamoto F. Tuberculosis peritonitis: Gallium-67 scintigraphic appearance. Ann Nucl Med 1999; 13(3): 185-9.
[http://dx.doi.org/10.1007/BF03164860] [PMID: 10435380]
[56]
Weaver P, Lifeso RM. The radiological diagnosis of tuberculosis of the adult spine. Skeletal Radiol 1984; 12(3): 178-86.
[http://dx.doi.org/10.1007/BF00361084] [PMID: 6494935]
[57]
Roper JR, Bowsher JE, Wilson JM, Turkington TG, Yin FF. Target localization using scanner-acquired SPECT data. J Appl Clin Med Phys 2012; 13(3): 3724.
[http://dx.doi.org/10.1120/jacmp.v13i3.3724] [PMID: 22584168]
[58]
Shah SQ, Khan AU, Khan MR. Radiosynthesis and biodistribution of (99m)Tc-rifampicin: A novel radiotracer for in-vivo infection imaging. Appl Radiat Isot 2010; 68(12): 2255-60.
[http://dx.doi.org/10.1016/j.apradiso.2010.05.014] [PMID: 20538473]
[59]
Badbarin A, Jalilian AR, Yousefnia H, Mazidi M, Bolourinovin F. Optimized preparation and evaluation of 99mTc-Streptomycin. Iran J Nucl Med 2016; 24(1): 46-50.
[60]
Singh AK, Verma J, Bhatnager A, Sen S. Tc-99m isoniazid: a specific agent for diagnosis of tuberculosis. World J Nucl Med 2003; 2(4): 292-305.
[61]
Samad A, Sultana Y, Khar RK, et al. Radiolabeling and evaluation of alginate blend-isoniazid microspheres by 99mTc for the treatment of tuberculosis in rabbit model. J Drug Target 2008; 16(6): 509-15.
[http://dx.doi.org/10.1080/10611860802201076] [PMID: 18604664]
[62]
Singh N, Bhatnagar A. Clinical evaluation of efficacy of 99mTC-ethambutol in tubercular lesion imaging. Tubercul Res Treatment 2010; 618051.
[63]
Verma J, Bhatnagar A, Sen S, Singh AK, Bose M. Radio-labeling of Ethambutol with technetium-99m and its evaluation for detection of tuberculosis. World J Nucl Med 2005; 4(1): 35-46.
[64]
Juwita R, Sumpena Y, Eka M, Kartini SN. Biological evaluation of 99mTc-ethambutol for early detection of tuberculosis infection in animal model. Indones J Pharm 2009; 1: 55-61.
[65]
Alavi A, Kung JW, Zhuang H. Implications of PET based molecular imaging on the current and future practice of medicine. Semin Nucl Med 2004; 34(1): 56-69.
[http://dx.doi.org/10.1053/j.semnuclmed.2003.09.007] [PMID: 14735459]
[66]
Petruzzi N, Shanthly N, Thakur M. Recent trends in soft-tissue infection imaging. Semin Nucl Med 2009; 39(2): 115-23.
[http://dx.doi.org/10.1053/j.semnuclmed.2008.10.005] [PMID: 19187804]
[67]
Zhu LY, Jia CH, Park E. Research on characteristic manifestations of xiaochaihu decoction based on association rules mining. World J Tradit Chin Med 2019; 1: 9-17.
[68]
Skoura E, Zumla A, Bomanji J. Imaging in tuberculosis. Int J Infect Dis 2015; 32: 87-93.
[http://dx.doi.org/10.1016/j.ijid.2014.12.007] [PMID: 25809762]
[69]
Sathekge M, Maes A, Kgomo M, Stoltz A, Pottel H, Van de Wiele C. Impact of FDG PET on the management of TBC treatment. A pilot study. Nucl Med (Stuttg) 2010; 49(1): 35-40.
[http://dx.doi.org/10.3413/nukmed-0270] [PMID: 20162246]
[70]
Hara T, Kosaka N, Suzuki T, Kudo K, Niino H. Uptake rates of 18F-fluorodeoxyglucose and 11C-choline in lung cancer and pulmonary tuberculosis: A positron emission tomography study. Chest 2003; 124(3): 893-901.
[http://dx.doi.org/10.1378/chest.124.3.893] [PMID: 12970014]
[71]
Yen RF, Chen KC, Lee JM, et al. 18F-FDG PET for the lymph node staging of non-small cell lung cancer in a tuberculosis-endemic country: is dual time point imaging worth the effort? Eur J Nucl Med Mol Imaging 2008; 35(7): 1305-15.
[http://dx.doi.org/10.1007/s00259-008-0733-1] [PMID: 18283453]
[72]
Bakheet SM, Powe J. Benign causes of 18-FDG uptake on whole body imaging. Semin Nucl Med 1998; 28(4): 352-8.
[http://dx.doi.org/10.1016/S0001-2998(98)80038-X] [PMID: 9800240]
[73]
Zhao DD, Bai Y, Wu R, Mo FF, Liu CY, Zhu RY. Effects of ginsenoside rb1 on skeletal muscle insulin resistance and adenosine monophosphate-activated protein kinase signaling pathway in obese mice. World J Tradit Chin Med 2019; 1: 42-9.
[74]
Kim IJ, Lee JS, Kim SJ, et al. Double-phase 18F-FDG PET-CT for determination of pulmonary tuberculoma activity. Eur J Nucl Med Mol Imaging 2008; 35(4): 808-14.
[http://dx.doi.org/10.1007/s00259-007-0585-0] [PMID: 18097664]
[75]
Barry CE III, Boshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nat Rev Microbiol 2009; 7(12): 845-55.
[http://dx.doi.org/10.1038/nrmicro2236] [PMID: 19855401]
[76]
Demura Y, Tsuchida T, Uesaka D, et al. Usefulness of 18F-fluorodeoxyglucose positron emission tomography for diagnosing disease activity and monitoring therapeutic response in patients with pulmonary mycobacteriosis. Eur J Nucl Med Mol Imaging 2009; 36(4): 632-9.
[http://dx.doi.org/10.1007/s00259-008-1009-5] [PMID: 19093113]
[77]
Liu Q, Peng ZM, Liu QW, et al. The role of 11C-choline positron emission tomography-computed tomography and videomediastinoscopy in the evaluation of diseases of middle mediastinum. Chin Med J (Engl) 2006; 119(8): 634-9.
[http://dx.doi.org/10.1097/00029330-200604020-00004] [PMID: 16635407]
[78]
Xu B, Guan Z, Liu C, et al. Can multimodality imaging using 18F-FDG/18F-FLT PET/CT benefit the diagnosis and management of patients with pulmonary lesions? Eur J Nucl Med Mol Imaging 2011; 38(2): 285-92.
[http://dx.doi.org/10.1007/s00259-010-1625-8] [PMID: 20936411]
[79]
Vorster M, Maes A, Jacobs A, et al. Evaluating the possible role of 68Ga-citrate PET/CT in the characterization of indeterminate lung lesions. Ann Nucl Med 2014; 28(6): 523-30.
[http://dx.doi.org/10.1007/s12149-014-0842-9] [PMID: 24682926]
[80]
Ordonez AA, DeMarco VP, Klunk MH, Pokkali S, Jain SK. Imaging chronic tuberculosis lesions using sodium [18F]Fluoride positron emmission tomography in mice. Mol Imaging Biol 2015; 17(5): 609-14.
[http://dx.doi.org/10.1007/s11307-015-0836-6] [PMID: 25750032]
[81]
Wu HX, Hao EW, Du ZC, Qin JF, Wei W, Pan XL. Research progress on the intervening effects of active components of Chinese herbs on amyloid-beta-induced injury of neural cells. World J Tradit Chin Med 2019; 5: 122-30.
[http://dx.doi.org/10.4103/wjtcm.wjtcm_11_19]
[82]
Wang JB, Shi Z, Xiao XH. Disease-based toxicology on safety assessment strategy and application for herbal and traditional medicines. World J Tradit Chin Med 2019; 3: 139-44.
[http://dx.doi.org/10.4103/wjtcm.wjtcm_18_19]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy