Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Quantification of Flavonoids in Alpinia officinarum Hance. via HPLC and Evaluation of its Cytotoxicity on Human Prostate Carcinoma (LNCaP) and Breast Carcinoma (MCF-7) Cells

Author(s): Sohrab Kazemi , Farideh Asadi, Ladan Barari, Payam Morakabati, Maryam Jahani, Seyede Narges Mousavi Kani, Farangiz Soorani, Fatemeh Kolangi and Zahra Memariani*

Volume 22, Issue 4, 2022

Published on: 06 July, 2021

Page: [721 - 730] Pages: 10

DOI: 10.2174/1871520621666210706142157

Price: $65

Abstract

Background: Various plant species have been shown to be effective in the prevention or adjuvant therapy of cancer. Alpinia officinarum and its main phytochemicals have also been the subject of several studies for their anticancer properties.

Objective: The objective of this study is to analyze the extracts of A. officinarum to quantify flavonoids and to evaluate the growth inhibitory effects of the extracts on MCF-7 and LNCaP cells.

Methods: A. officinarum aqueous and hydroalcoholic extracts were analyzed by using High-Performance Liquid Chromatography (HPLC) for the quantification of three flavonoid compounds. Then, MCF-7, LNCaP, and fibroblast cells were treated with several concentrations (25, 50, 100, 200, and 400 μg/mL) of extracts (24, 48 and 72h). Cell viability was assessed using an MTT assay. Flow cytometry was conducted to evaluate apoptosis.

Results: Galangin and kaempferol (3.85 and 1.57 mg/g dry extract) were quantified, respectively, in hydroalcoholic and aqueous extracts using a validated method. The hydroalcoholic extract significantly decreased the viability of MCF-7 (IC50: 43.45μg/mL for 48h) and LNCaP cells (IC50: 168 μg/mL for 48h). The aqueous extract reduced cancer cell viability by more than 50% only at 200 and 400 μg/mL (72 h). Treatment of primary fibroblasts with both extracts showed no significant decrease in cell viability (25-100 μg/mL; 24 and 48h). The hydroalcoholic extract induced a significant increase in apoptotic cells in both MCF-7 and LNCaP cells.

Conclusion: Obtained results demonstrated the cytotoxicity of A. officinarum through apoptosis induction in two cancer cell lines. Further investigations are required to determine the underlying apoptotic cell death mechanisms induced by A. officinarum in cancerous cells.

Keywords: Adjuvant therapy, anti-cancer, chemoprevention, galangin, kaempferol, lesser galangal, medicinal plants, persian medicine.

Graphical Abstract

[1]
Süntar, I. Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochem. Rev., 2020, 19, 1199-1209.
[http://dx.doi.org/10.1007/s11101-019-09629-9]
[2]
Zhao, Q.; Luan, X.; Zheng, M.; Tian, X.H.; Zhao, J.; Zhang, W.D.; Ma, B.L. Synergistic mechanisms of constituents in herbal extracts during intestinal absorption: focus on natural occurring nanoparticles. Pharmaceutics, 2020, 12(2), 128.
[http://dx.doi.org/10.3390/pharmaceutics12020128] [PMID: 32028739]
[3]
Kolangi, F.; Memariani, Z.; Bozorgi, M.; Mozaffarpur, S.A.; Mirzapour, M. Herbs with potential nephrotoxic effects according to the traditional Persian medicine: review and assessment of scientific evidence. Curr. Drug Metab., 2018, 19(7), 628-637.
[http://dx.doi.org/10.2174/1389200219666180404095849] [PMID: 29623832]
[4]
Lichota, A.; Gwozdzinski, K. Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci., 2018, 19(11), 3533.
[http://dx.doi.org/10.3390/ijms19113533] [PMID: 30423952]
[5]
Yin, S-Y. Therapeutic applications of herbal medicines for cancer patients. Evid.-based Complem. And Alternat. Med., 2013, 2013,302426.
[http://dx.doi.org/10.1155/2013/302426]
[6]
Lin, S-R.; Chang, C.H.; Hsu, C.F.; Tsai, M.J.; Cheng, H.; Leong, M.K.; Sung, P.J.; Chen, J.C.; Weng, C.F. Natural compounds as potential adjuvants to cancer therapy: preclinical evidence. Br. J. Pharmacol., 2020, 177(6), 1409-1423.
[http://dx.doi.org/10.1111/bph.14816] [PMID: 31368509]
[7]
Ullah, N. Green tea phytocompounds as anticancer: a review. Asian Pac. J. Trop. Dis., 2016, 6(4), 330-336.
[http://dx.doi.org/10.1016/S2222-1808(15)61040-4]
[8]
Syed, D.N.; Chamcheu, J.C.; Adhami, V.M.; Mukhtar, H. Pomegranate extracts and cancer prevention: molecular and cellular activities. Anticancer. Agents Med. Chem., 2013, 13(8), 1149-1161.
[http://dx.doi.org/10.2174/1871520611313080003] [PMID: 23094914]
[9]
Dinicola, S. Anticancer effects of grape seed extract on human cancers: a review. J. Carcinog. Mutagen. S, 2014, 8(005)
[10]
Honmore, V.S.; Kandhare, A.D.; Kadam, P.P.; Khedkar, V.M.; Sarkar, D.; Bodhankar, S.L.; Zanwar, A.A.; Rojatkar, S.R.; Natu, A.D. Isolates of Alpinia officinarum Hance as COX-2 inhibitors: evidence from anti-inflammatory, antioxidant and molecular docking studies. Int. Immunopharmacol., 2016, 33, 8-17.
[http://dx.doi.org/10.1016/j.intimp.2016.01.024] [PMID: 26849772]
[11]
Zhang, W.; Luo, J.; Kong, L-Y. The genus Alpinia: a review of its phytochemistry and pharmacology. World J. Tradit. Chin. Med., 2016, 2, 26-41.
[http://dx.doi.org/10.15806/j.issn.2311-8571.2015.0026]
[12]
Mahjour, M.; Khoushabi, A.; Noras, M. Herbal Remedies for Cancer based on Persian Medicine.In:Traditional and Integrative Medicine; Tehran University of Medical Sciences: Tehran, 2018, pp. 196-206.
[13]
Ghosh, S.; Rangan, L. Alpinia: the gold mine of future therapeutics. 3 Biotech,, 2013, 3(3), 173-185.
[http://dx.doi.org/10.1007/s13205-012-0089-x]
[14]
Houghton, P.; Fang, R.; Techatanawat, I.; Steventon, G.; Hylands, P.J.; Lee, C.C. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods, 2007, 42(4), 377-387.
[http://dx.doi.org/10.1016/j.ymeth.2007.01.003] [PMID: 17560325]
[15]
Lee, C.C.; Houghton, P. Cytotoxicity of plants from Malaysia and Thailand used traditionally to treat cancer. J. Ethnopharmacol., 2005, 100(3), 237-243.
[http://dx.doi.org/10.1016/j.jep.2005.01.064] [PMID: 15888378]
[16]
Suja, S.; Chinnaswamy, P. Inhibition of in vitro cytotoxic effect evoked by Alpinia galanga and Alpinia officinarum on PC - 3 cell line. Anc. Sci. Life, 2008, 27(4), 33-40.
[PMID: 22557284]
[17]
Lee, H-S. Anti-proliferative effect of the rhizome extract of Alpinia officinarum on cultured human tumor cell lines. Korean J. Pharmacogn., 2008, 39(4), 347-351.
[18]
Ghil, S. Antiproliferative activity of Alpinia officinarum extract in the human breast cancer cell line MCF-7. Mol. Med. Rep., 2013, 7(4), 1288-1292.
[http://dx.doi.org/10.3892/mmr.2013.1305] [PMID: 23404367]
[19]
Alasmary, F.; Assirey, E.A.; El-Meligy, R.M.; Awaad, A.S.; El-Sawaf, L.A.; Allah, M.M.; Alqasoumi, S.I. Analysis of Alpina officinarum Hance, chemically and biologically. Saudi Pharm. J., 2019, 27(8), 1107-1112.
[http://dx.doi.org/10.1016/j.jsps.2019.09.007] [PMID: 31885470]
[20]
Motiur Rahman, A.F.M.; Lu, Y.; Lee, H.J.; Jo, H.; Yin, W.; Alam, M.S.; Cha, H.; Kadi, A.A.; Kwon, Y.; Jahng, Y. Linear diarylheptanoids as potential anticancer therapeutics: synthesis, biological evaluation, and structure-activity relationship studies. Arch. Pharm. Res., 2018, 41(12), 1131-1148.
[http://dx.doi.org/10.1007/s12272-018-1004-8] [PMID: 29397550]
[21]
An, N.; Zou, Z.M.; Tian, Z.; Luo, X.Z.; Yang, S.L.; Xu, L.Z. Diarylheptanoids from the rhizomes of Alpinia officinarum and their anticancer activity. Fitoterapia, 2008, 79(1), 27-31.
[http://dx.doi.org/10.1016/j.fitote.2007.07.001] [PMID: 17916414]
[22]
Wei, N.; Zhou, Z.; Wei, Q.; Wang, Y.; Jiang, J.; Zhang, J.; Wu, L.; Dai, S.; Li, Y. A novel diarylheptanoid-bearing sesquiterpene moiety from the rhizomes of Alpinia officinarum. Nat. Prod. Res., 2016, 30(20), 2344-2349.
[http://dx.doi.org/10.1080/14786419.2016.1185716] [PMID: 27222912]
[23]
Chien, S-T.; Shi, M.D.; Lee, Y.C.; Te, C.C.; Shih, Y.W. Galangin, a novel dietary flavonoid, attenuates metastatic feature via PKC/ERK signaling pathway in TPA-treated liver cancer HepG2 cells. Cancer Cell Int., 2015, 15(1), 15.
[http://dx.doi.org/10.1186/s12935-015-0168-2] [PMID: 25698902]
[24]
Liu, D.; You, P.; Luo, Y.; Yang, M.; Liu, Y. Galangin induces apoptosis in MCF-7 human breast cancer cells through mitochondrial pathway and phosphatidylinositol 3-Kinase/Akt inhibition. Pharmacology, 2018, 102(1-2), 58-66.
[http://dx.doi.org/10.1159/000489564] [PMID: 29879712]
[25]
Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Tsouh Fokou, P.V.; Umair Arshad, M.; Khan, H.; Guerreiro, S.G.; Martins, N.; Estevinho, L.M. Kaempferol: a key emphasis to its anticancer potential. Molecules, 2019, 24(12), 2277.
[http://dx.doi.org/10.3390/molecules24122277] [PMID: 31248102]
[26]
Tambunan, A.P.; Bahtiar, A.; Tjandrawinata, R.R. Influence of extraction parameters on the yield, phytochemical, TLC-densitometric quantification of quercetin, and LC-MS profile, and how to standardize different batches for long term from Ageratum conyoides L. leaves. Pharmacogn. J., 2017, 9(6)
[http://dx.doi.org/10.5530/pj.2017.6.121]
[27]
Kolangi, F.; Shafi, H.; Memariani, Z.; Kamalinejad, M.; Bioos, S.; Jorsaraei, S.G.A.; Bijani, A.; Shirafkan, H.; Mozaffarpur, S.A. Effect of Alpinia officinarum Hance rhizome extract on spermatogram factors in men with idiopathic infertility: a prospective double-blinded randomised clinical trial. Andrologia, 2019, 51(1),e13172.
[http://dx.doi.org/10.1111/and.13172] [PMID: 30378695]
[28]
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods, 1986, 89(2), 271-277.
[http://dx.doi.org/10.1016/0022-1759(86)90368-6] [PMID: 3486233]
[29]
Ferrari, M.; Fornasiero, M.C.; Isetta, A.M. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J. Immunol. Methods, 1990, 131(2), 165-172.
[http://dx.doi.org/10.1016/0022-1759(90)90187-Z] [PMID: 2391427]
[30]
Lee, J-J.; Lee, J.H.; Yim, N.H.; Han, J.H.; Ma, J.Y. Application of galangin, an active component of Alpinia officinarum Hance (Zingiberaceae), for use in drug-eluting stents. Sci. Rep., 2017, 7(1), 8207.
[http://dx.doi.org/10.1038/s41598-017-08410-2] [PMID: 28811550]
[31]
Jiao, H. Chromatographic fingerprint analysis and quantitative evaluate the rhizomes of Alpinia officinarum Hance (lesser galangal). J. Chin. Pharmaceut. Sci., 2019, 28(10), 728-738.
[32]
Zhang, J-Q. Simultaneous quantification of seventeen bioactive components in rhizome and aerial parts of Alpinia officinarum Hance using LC-MS/MS. Anal. Methods, 2015, 7(12), 4919-4926.
[http://dx.doi.org/10.1039/C5AY00647C]
[33]
Su, Y.; Chen, Y.; Liu, Y.; Yang, Y.; Deng, Y.; Gong, Z.; Chen, J.; Wu, T.; Lin, S.; Cui, L. Antiosteoporotic effects of Alpinia officinarum Hance through stimulation of osteoblasts associated with antioxidant effects. J. Orthop. Translat., 2015, 4, 75-91.
[http://dx.doi.org/10.1016/j.jot.2015.09.009] [PMID: 30035068]
[34]
Tao, L. HPLC analysis of bioactive flavonoids from the rhizome of Alpinia officinarum. S. Afr. J. Bot., 2006, 72(1), 163-166.
[http://dx.doi.org/10.1016/j.sajb.2005.06.007]
[35]
Nair, C. Antioxidant capacity and radioprotective properties of the flavonoids galangin and kaempferide isolated from Alpinia galanga L.(Zingiberaceae) against radiation induced cellular DNA damage. Int. J. Radiat. Res., 2013, 11(2), 81-89.
[36]
Patel, R.K.; Trivedi, P.D. Design-of-experiment approach for the development and validation of a high-performance thin-layer chromatography method for the simultaneous estimation of berberine chloride and galangin in Tinospora cordifolia M. and Alpinia galanga L. and their herbal formulations. JPC, 2018, 31(6), 451-459.
[http://dx.doi.org/10.1556/1006.2018.31.6.5]
[37]
Mpalantinos, M. Biologically active flavonoids and kava pyrones from the aqueous extract of Alpinia zerumbet. Phytother. Res., 1998, 12(6), 442-444.
[38]
Elzaawely, A.A.; Xuan, T.D.; Tawata, S. Essential oils, kava pyrones and phenolic compounds from leaves and rhizomes of Alpinia zerumbet (Pers.) BL Burtt. & RM Sm. and their antioxidant activity. Food Chem., 2007, 103(2), 486-494.
[http://dx.doi.org/10.1016/j.foodchem.2006.08.025]
[39]
Victório, C.P.; Lage, C.L.S.; Kuster, R.M. Flavonoid extraction from Alpinia zerumbet (Pers.) Burtt et Smith leaves using different techniques and solvents. Eclét. Quím., 2009, 34(1), 19-24.
[http://dx.doi.org/10.1590/S0100-46702009000100003]
[40]
Dai, D.N. Antimicrobial activity and chemical constituents of essential oil from the leaves of Alpinia globosa and Alpinia tonkinensis. J. Essent. Oil Bearing Plants, 2020, 23(2), 322-330.
[http://dx.doi.org/10.1080/0972060X.2020.1752816]
[41]
Song, W.; Yan, C.Y.; Zhou, Q.Q.; Zhen, L.L. Galangin potentiates human breast cancer to apoptosis induced by TRAIL through activating AMPK. Biomed. Pharmacother., 2017, 89, 845-856.
[http://dx.doi.org/10.1016/j.biopha.2017.01.062] [PMID: 28282786]
[42]
Haddad, A.Q.; Venkateswaran, V.; Viswanathan, L.; Teahan, S.J.; Fleshner, N.E.; Klotz, L.H. Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines. Prostate Cancer Prostatic Dis., 2006, 9(1), 68-76.
[http://dx.doi.org/10.1038/sj.pcan.4500845] [PMID: 16314891]
[43]
Lee, D-H.; Szczepanski, M.; Lee, Y.J. Role of Bax in quercetin-induced apoptosis in human prostate cancer cells. Biochem. Pharmacol., 2008, 75(12), 2345-2355.
[http://dx.doi.org/10.1016/j.bcp.2008.03.013] [PMID: 18455702]
[44]
Kang, G-Y.; Lee, E.R.; Kim, J.H.; Jung, J.W.; Lim, J.; Kim, S.K.; Cho, S.G.; Kim, K.P. Downregulation of PLK-1 expression in kaempferol-induced apoptosis of MCF-7 cells. Eur. J. Pharmacol., 2009, 611(1-3), 17-21.
[http://dx.doi.org/10.1016/j.ejphar.2009.03.068] [PMID: 19356725]
[45]
Yi, X.; Zuo, J.; Tan, C.; Xian, S.; Luo, C.; Chen, S.; Yu, L.; Luo, Y. Kaempferol, a flavonoid compound from gynura medica induced apoptosis and growth inhibition in MCF-7 breast cancer cell. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(4), 210-215.
[http://dx.doi.org/10.21010/ajtcam.v13i4.27] [PMID: 28852738]
[46]
Da, J. Kaempferol promotes apoptosis while inhibiting cell proliferation via androgen-dependent pathway and suppressing vasculogenic mimicry and invasion in prostate cancer. Analytical. Cellular. Pathology., 2019, 2019,1907698.
[http://dx.doi.org/10.1155/2019/1907698]
[47]
Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat. Prod. Rep., 2019, 36(6), 869-888.
[http://dx.doi.org/10.1039/C9NP00011A] [PMID: 31187844]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy