Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Antineoplastic Activity of an Old Natural Antidiabetic Biguanide on the Human Thyroid Carcinoma Cell Line

Author(s): Zahra Nozhat, Maryam Zarkesh, Enke Baldini, Samira Mohammadi-Yeganeh*, Feridoun Azizi and Mehdi Hedayati*

Volume 22, Issue 4, 2022

Published on: 18 January, 2021

Page: [713 - 720] Pages: 8

DOI: 10.2174/1871520621666210118093532

Price: $65

Abstract

Background: In the last decades, metformin (Met), an herbal anti-diabetic medicine, has been proposed as an anti-cancer agent.

Objective: Thyroid cancers are the most common malignancy of the endocrine system. Therefore, the current study was performed to assess the effects of Met on cell proliferation and activation of the Phosphoinositide 3- Kinase (PI3K)/Protein kinase B (AKT)/Forkhead Box O1 (FOXO1) signaling pathway in the Medullary Thyroid Carcinoma (MTC) cells. The effects of Met on the expression of REarranged during Transfection (RET) proto-oncogene were also investigated.

Methods: MTC cell line (TT) was treated with 0, 2.5, 5, 10, 20, 30, 40, 50, and 60 mM concentrations of Met for 24, 48, and 72h. The viability and apoptosis of the treated cells were measured by the 3-(4,5-Dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Annexin V- Propidium Iodide (PI) assays. The expression level of PI3K, AKT, FOXO1, and RET genes was investigated by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR), and phosphorylation of their proteins was determined by the Enzyme-Linked Immunosorbent Assay (ELISA).

Results: Results showed that Met significantly decreased the viability of the MTC cells. Met also reduced the expression level of PI3K, AKT, and FOXO1 genes (P<0.05), whereas it elevated the expression level of RET proto-oncogene (P<0.05).

Conclusion: It seems that the Met has a cytostatic effect on the TT cells. Our results showed that anti-tumoral effects of Met may be cell type-specific, and according to the induction of RET (as a proto-oncogene) and inhibition of FOXO1 (as a tumor suppressor gene), Met could not be an appropriate agent in the treatment of MTC. The antineoplastic activity of Met has been confirmed against several malignancies in “in vitro” and “in vivo” studies. However, its molecular mechanisms in the treatment of different carcinomas particularly in thyroid cancers are not clearly understood and more studies are required to confirm its exact effect on the MTC.

Keywords: Thyroid cancer, diabetes, biguanides, cell signalling, metformin, proliferation.

Graphical Abstract

[1]
Nozhat, Z.; Hedayati, M.; Pourhassan, H. Signaling pathways in medullary thyroid carcinoma: Therapeutic implications. Int. J. Endocrinol., 2016, 3(4), 299-312.
[http://dx.doi.org/10.2217/ije-2016-0014]
[2]
Pelizzo, M.R.; Boschin, I.M.; Bernante, P.; Toniato, A.; Piotto, A.; Pagetta, C.; Nibale, O.; Rampin, L.; Muzzio, P.C.; Rubello, D. Natural history, diagnosis, treatment and outcome of medullary thyroid cancer: 37 years experience on 157 patients. Eur. J. Surg. Oncol., 2007, 33(4), 493-497.
[http://dx.doi.org/10.1016/j.ejso.2006.10.021] [PMID: 17125960]
[3]
de Groot, J.W.B.; Plukker, J.T.; Wolffenbuttel, B.H.; Wiggers, T.; Sluiter, W.J.; Links, T.P. Determinants of life expectancy in medullary thyroid cancer: Age does not matter. Clin. Endocrinol. (Oxf.), 2006, 65(6), 729-736.
[http://dx.doi.org/10.1111/j.1365-2265.2006.02659.x] [PMID: 17121523]
[4]
Patade, G.R.; Marita, A.R. Metformin: A Journey from countryside to the bedside. JOMR, 2014, 1(2), 127.
[5]
Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From mechanisms of action to therapies. Cell Metab., 2014, 20(6), 953-966.
[http://dx.doi.org/10.1016/j.cmet.2014.09.018] [PMID: 25456737]
[6]
Ben Sahra, I.; Laurent, K.; Loubat, A.; Giorgetti-Peraldi, S.; Colosetti, P.; Auberger, P.; Tanti, J.F.; Le Marchand-Brustel, Y.; Bost, F. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene, 2008, 27(25), 3576-3586.
[http://dx.doi.org/10.1038/sj.onc.1211024] [PMID: 18212742]
[7]
Zakikhani, M.; Dowling, R.; Fantus, I.G.; Sonenberg, N.; Pollak, M. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res., 2006, 66(21), 10269-10273.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1500] [PMID: 17062558]
[8]
Yung, M.M.H.; Chan, D.W.; Liu, V.W.S.; Yao, K.M.; Ngan, H.Y.S. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade. BMC Cancer, 2013, 13(1), 327.
[http://dx.doi.org/10.1186/1471-2407-13-327] [PMID: 23819460]
[9]
Rattan, R.; Giri, S.; Hartmann, L.C.; Shridhar, V. Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner. J. Cell. Mol. Med., 2011, 15(1), 166-178.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00954.x] [PMID: 19874425]
[10]
Klubo-Gwiezdzinska, J.; Costello, J., Jr; Patel, A.; Bauer, A.; Jensen, K.; Mete, M.; Burman, K.D.; Wartofsky, L.; Vasko, V. Treatment with metformin is associated with higher remission rate in diabetic patients with thyroid cancer. J. Clin. Endocrinol. Metab., 2013, 98(8), 3269-3279.
[http://dx.doi.org/10.1210/jc.2012-3799] [PMID: 23709654]
[11]
Oh, T.K.; Song, I.A. Metformin use and the risk of cancer in patients with diabetes: A nationwide sample cohort study. Cancer Prev. Res. (Phila.), 2020, 13(2), 195-202.
[http://dx.doi.org/10.1158/1940-6207.CAPR-19-0427] [PMID: 31699707]
[12]
Pollak, M.N. Investigating metformin for cancer prevention and treatment: The end of the beginning. Cancer Discov., 2012, 2(9), 778-790.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0263] [PMID: 22926251]
[13]
Bikas, A.; Van Nostrand, D.; Jensen, K.; Desale, S.; Mete, M.; Patel, A.; Wartofsky, L.; Vasko, V.; Burman, K.D. Metformin attenuates 131I-induced decrease in peripheral blood cells in patients with differentiated thyroid cancer. Thyroid, 2016, 26(2), 280-286.
[http://dx.doi.org/10.1089/thy.2015.0413] [PMID: 26649977]
[14]
Chen, G.; Nicula, D.; Renko, K.; Derwahl, M. Synergistic anti-proliferative effect of metformin and sorafenib on growth of anaplastic thyroid cancer cells and their stem cells. Oncol. Rep., 2015, 33(4), 1994-2000.
[http://dx.doi.org/10.3892/or.2015.3805] [PMID: 25683253]
[15]
Cho, S.W.; Yi, K.H.; Han, S.K.; Sun, H.J.; Kim, Y.A.; Oh, B.C.; Park, Y.J.; Park, D.J. Therapeutic potential of metformin in papillary thyroid cancer in vitro and in vivo. Mol. Cell. Endocrinol., 2014, 393(1-2), 24-29.
[http://dx.doi.org/10.1016/j.mce.2014.05.021] [PMID: 24905037]
[16]
Klubo-Gwiezdzinska, J.; Jensen, K.; Costello, J.; Patel, A.; Hoperia, V.; Bauer, A.; Burman, K.D.; Wartofsky, L.; Vasko, V. Metformin inhibits growth and decreases resistance to anoikis in medullary thyroid cancer cells. Endocr. Relat. Cancer, 2012, 19(3), 447-456.
[http://dx.doi.org/10.1530/ERC-12-0046] [PMID: 22389381]
[17]
Han, B.; Cui, H.; Kang, L.; Zhang, X.; Jin, Z.; Lu, L.; Fan, Z. Metformin inhibits thyroid cancer cell growth, migration, and EMT through the mTOR pathway. Tumour Biol., 2015, 36(8), 6295-6304.
[http://dx.doi.org/10.1007/s13277-015-3315-4] [PMID: 25854169]
[18]
Bartolomé, A.; Guillén, C.; Benito, M. Role of the TSC1-TSC2 complex in the integration of insulin and glucose signaling involved in pancreatic β-cell proliferation. Endocrinology, 2010, 151(7), 3084-3094.
[http://dx.doi.org/10.1210/en.2010-0048] [PMID: 20427478]
[19]
Mallik, R.; Chowdhury, T.A. Metformin in cancer. Diabetes Res. Clin. Pract., 2018, 143, 409-419.
[http://dx.doi.org/10.1016/j.diabres.2018.05.023] [PMID: 29807101]
[20]
Pitt, S.C.; Chen, H. The phosphatidylinositol 3-kinase/akt signaling pathway in medullary thyroid cancer. Surgery, 2008, 144(5), 721-724.
[http://dx.doi.org/10.1016/j.surg.2008.06.028] [PMID: 19081012]
[21]
Liu, Y.; Zhang, Y.; Jia, K.; Dong, Y.; Ma, W. Metformin inhibits the proliferation of A431 cells by modulating the PI3K/Akt signaling pathway. Exp. Ther. Med., 2015, 9(4), 1401-1406.
[http://dx.doi.org/10.3892/etm.2015.2220] [PMID: 25780442]
[22]
Tzivion, G.; Dobson, M.; Ramakrishnan, G. FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta, 2011, 1813(11), 1938-1945.
[http://dx.doi.org/10.1016/j.bbamcr.2011.06.002] [PMID: 21708191]
[23]
Zhang, X.; Tang, N.; Hadden, T.J.; Rishi, A.K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta, 2011, 1813(11), 1978-1986.
[http://dx.doi.org/10.1016/j.bbamcr.2011.03.010] [PMID: 21440011]
[24]
Zaballos, M.A.; Santisteban, P. FOXO1 controls thyroid cell proliferation in response to TSH and IGF-I and is involved in thyroid tumorigenesis. Mol. Endocrinol., 2013, 27(1), 50-62.
[http://dx.doi.org/10.1210/me.2012-1032] [PMID: 23160481]
[25]
Song, H.M.; Song, J.L.; Li, D.F.; Hua, K.Y.; Zhao, B.K.; Fang, L. Inhibition of FOXO1 by small interfering RNA enhances proliferation and inhibits apoptosis of papillary thyroid carcinoma cells via Akt/FOXO1/Bim pathway. OncoTargets Ther., 2015, 8, 3565-3573.
[http://dx.doi.org/10.2147/OTT.S95395] [PMID: 26664140]
[26]
Song, J.; Ren, P.; Zhang, L.; Wang, X.L.; Chen, L.; Shen, Y.H. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4. Biochem. Biophys. Res. Commun., 2010, 393(1), 89-94.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.086] [PMID: 20102700]
[27]
Zhang, B.; Gui, L.S.; Zhao, X.L.; Zhu, L.L.; Li, Q.W. FOXO1 is a tumor suppressor in cervical cancer. Genet. Mol. Res., 2015, 14(2), 6605-6616.
[http://dx.doi.org/10.4238/2015.June.18.3] [PMID: 26125868]
[28]
Nozhat, Z.; Mohammadi-Yeganeh, S.; Azizi, F.; Zarkesh, M.; Hedayati, M. Effects of metformin on the PI3K/AKT/FOXO1 pathway in anaplastic thyroid Cancer cell lines. Daru, 2018, 26(2), 93-103.
[http://dx.doi.org/10.1007/s40199-018-0208-2] [PMID: 30242671]
[29]
Chen, G.; Xu, S.; Renko, K.; Derwahl, M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J. Clin. Endocrinol. Metab., 2012, 97(4), E510-E520.
[http://dx.doi.org/10.1210/jc.2011-1754] [PMID: 22278418]
[30]
Frasca, F.; Pandini, G.; Sciacca, L.; Pezzino, V.; Squatrito, S.; Belfiore, A.; Vigneri, R. The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch. Physiol. Biochem., 2008, 114(1), 23-37.
[http://dx.doi.org/10.1080/13813450801969715] [PMID: 18465356]
[31]
Matsuzaki, H.; Daitoku, H.; Hatta, M.; Tanaka, K.; Fukamizu, A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc. Natl. Acad. Sci. USA, 2003, 100(20), 11285-11290.
[http://dx.doi.org/10.1073/pnas.1934283100] [PMID: 13679577]
[32]
Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501.
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]
[33]
Karnevi, E.; Said, K.; Andersson, R.; Rosendahl, A.H. Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells. BMC Cancer, 2013, 13(1), 235.
[http://dx.doi.org/10.1186/1471-2407-13-235] [PMID: 23663483]
[34]
Sarfstein, R.; Friedman, Y.; Attias-Geva, Z.; Fishman, A.; Bruchim, I.; Werner, H. Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or -independent manners. PLoS One, 2013, 8(4), e61537.
[http://dx.doi.org/10.1371/journal.pone.0061537] [PMID: 23620761]
[35]
Li, X.; Kover, K.L.; Heruth, D.P.; Watkins, D.J.; Moore, W.V.; Jackson, K.; Zang, M.; Clements, M.A.; Yan, Y. New insight into Metformin action: Regulation of ChREBP and FoXO1 activities in endothelial cells. Mol. Endocrinol., 2015, 29(8), 1184-1194.
[http://dx.doi.org/10.1210/ME.2015-1090] [PMID: 26147751]
[36]
Zatara, G.; Hertz, R.; Shaked, M.; Mayorek, N.; Morad, E.; Grad, E.; Cahan, A.; Danenberg, H.D.; Unterman, T.G.; Bar-Tana, J. Suppression of FoxO1 activity by long-chain fatty acyl analogs. Diabetes, 2011, 60(7), 1872-1881.
[http://dx.doi.org/10.2337/db11-0248] [PMID: 21602511]
[37]
Lettieri Barbato, D.; Tatulli, G.; Aquilano, K.; Ciriolo, M.R. FoxO1 controls lysosomal acid lipase in adipocytes: Implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis., 2013, 4(10), e861.
[http://dx.doi.org/10.1038/cddis.2013.404] [PMID: 24136225]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy