Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Conformational and Structural Characterization of Carbohydrates and their Interactions Studied by NMR

Author(s): Francisco Javier Cañada*, Ángeles Canales, Pablo Valverde, Beatriz Fernández de Toro, Mónica Martínez-Orts, Paola Oquist Phillips and Amaia Pereda

Volume 29, Issue 7, 2022

Published on: 05 July, 2021

Page: [1147 - 1172] Pages: 26

DOI: 10.2174/0929867328666210705154046

Price: $65

Abstract

Carbohydrates, either free or as glycans conjugated with other biomolecules, participate in a plethora of essential biological processes. Their apparent simplicity in terms of chemical functionality hides an extraordinary diversity and structural complexity. Deeply deciphering at the atomic level their structures is essential to understand their biological function and activities, but it is still a challenging task in need of complementary approaches and no generalized procedures are available to address the study of such complex, natural glycans. The versatility of Nuclear Magnetic Resonance spectroscopy (NMR) often makes it the preferred choice to study glycans and carbohydrates in solution media. The most basic NMR parameters, namely chemical shifts, coupling constants, and nuclear Overhauser effects, allow defining short or repetitive chain sequences and characterize their structures and local geometries either in the free state or when interacting with other biomolecules, rendering additional information on the molecular recognition processes. The increased accessibility to carbohydrate molecules extensively or selectively labeled with 13C is boosting the resolution and detail which analyzed glycan structures can reach. In turn, structural information derived from NMR complemented with molecular modeling and theoretical calculations can also provide dynamic information on the conformational flexibility of carbohydrate structures. Furthermore, using partially oriented media or paramagnetic perturbations, it has been possible to introduce additional longrange observables rendering structural information on longer and branched glycan chains. In this review, we provide examples of these studies and an overview of the recent and most relevant NMR applications in the glycobiology field.

Keywords: Carbohydrates, glycans, NMR, structure, conformational analysis, molecular recognition.

[1]
Varki, A. Biological roles of glycans. Glycobiology, 2017, 27(1), 3-49.
[http://dx.doi.org/10.1093/glycob/cww086] [PMID: 27558841]
[2]
Varki, A; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Prestegard, J. H.; Schnaar, R. L.; Seeberger, P. H. Essentials of glycobiology, 3rd; Cold Spring Harbor Laboratory Press (NY): Cold Spring Harbor (NY). 2015-2017.
[PMID: 27010055]
[3]
Dwek, R.A. Glycobiology: Toward understanding the function of sugars. Chem. Rev., 1996, 96(2), 683-720.
[http://dx.doi.org/10.1021/cr940283b] [PMID: 11848770]
[4]
Scherbinina, S.I.; Toukach, P.V. three-dimensional structures of carbohydrates and where to find them. Int. J. Mol. Sci., 2020, 21(20), 7702.
[http://dx.doi.org/10.3390/ijms21207702] [PMID: 33081008]
[5]
Sarkar, A.; Drouillard, S.; Rivet, A.; Perez, S. Databases of conformations and nmr structures of glycan determinants. Glycobiology, 2015, 25(12), 1480-1490.
[http://dx.doi.org/10.1093/glycob/cwv054] [PMID: 26240168]
[6]
Imberty, A.; Pérez, S. Structure, conformation, and dynamics of bioactive oligosaccharides: Theoretical approaches and experimental validations. Chem. Rev., 2000, 100(12), 4567-4588.
[http://dx.doi.org/10.1021/cr990343j] [PMID: 11749358]
[7]
Widmalm, G. A perspective on the primary and three-dimensional structures of carbohydrates. Carbohydr. Res., 2013, 378, 123-132.
[http://dx.doi.org/10.1016/j.carres.2013.02.005] [PMID: 23522728]
[8]
Wormald, M.R.; Petrescu, A.J.; Pao, Y.L.; Glithero, A.; Elliott, T.; Dwek, R.A. Conformational studies of oligosaccharides and glycopeptides: Complementarity of NMR, X-ray crystallography, and molecular modelling. Chem. Rev., 2002, 102(2), 371-386.
[http://dx.doi.org/10.1021/cr990368i] [PMID: 11841247]
[9]
Blaum, B.S.; Neu, U.; Peters, T.; Stehle, T. Spin ballet for sweet encounters: Saturation-transfer difference NMR and X-ray crystallography complement each other in the elucidation of protein-glycan interactions. Acta Crystallogr. F Struct. Biol. Commun., 2018, 74(Pt 8), 451-462.
[http://dx.doi.org/10.1107/S2053230X18006581] [PMID: 30084394]
[10]
Peters, T.; Pinto, B.M. Structure and dynamics of oligosaccharides: NMR and modeling studies. Curr. Opin. Struct. Biol., 1996, 6(5), 710-720.
[http://dx.doi.org/10.1016/S0959-440X(96)80039-X] [PMID: 8913695]
[11]
Marchetti, R.; Perez, S.; Arda, A.; Imberty, A.; Jimenez-Barbero, J.; Silipo, A.; Molinaro, A. “Rules of engagement” of protein-glycoconjugate interactions: A molecular view achievable by using nmr spectroscopy and molecular modeling. ChemistryOpen, 2016, 5(4), 274-296.
[http://dx.doi.org/10.1002/open.201600024] [PMID: 27547635]
[12]
Agirre, J.; Davies, G.; Wilson, K.; Cowtan, K. Carbohydrate anomalies in the PDB. Nat. Chem. Biol., 2015, 11(5), 303-303.
[http://dx.doi.org/10.1038/nchembio.1798] [PMID: 25885951]
[13]
(a)Valverde, P.; Quintana, J.I.; Santos, J.I.; Ardá, A.; Jiménez-Barbero, J. Novel NMR avenues to explore the conformation and interactions of glycans. ACS Omega, 2019, 4(9), 13618-13630.
[http://dx.doi.org/10.1021/acsomega.9b01901] [PMID: 31497679]
(b)Arda, A.; Coelho, H.; Fernandez de Toro, B.; Galante, S.; Gimeno, A.; Poveda, A.; Sastre, J.; Unione, L.; Valverde, P. Javier Canada, F.; Jimenez-Barbero, J. Recent advances in the application of NMR methods to uncover the conformation and recognition features of glycans. Carbohydr. Chem., 2017, 42, 47-82.
[http://dx.doi.org/10.1039/9781782626657-00047]
(c)Cheng, H.N.; Neiss, T.G. Solution NMR spectroscopy of food polysaccharides. Polym. Rev. (Phila. Pa.), 2012, 52(2), 81-114.
[http://dx.doi.org/10.1080/15583724.2012.668154]
[14]
Ardá, A.; Jiménez-Barbero, J. The recognition of glycans by protein receptors. Insights from NMR spectroscopy. Chem. Commun. (Camb.), 2018, 54(38), 4761-4769.
[http://dx.doi.org/10.1039/C8CC01444B] [PMID: 29662983]
[15]
del Carmen Fernández-Alonso, M.; Díaz, D.; Berbis, M.A.; Marcelo, F.; Cañada, J.; Jiménez-Barbero, J. Protein-carbohydrate interactions studied by NMR: From molecular recognition to drug design. Curr. Protein Pept. Sci., 2012, 13(8), 816-830.
[http://dx.doi.org/10.2174/138920312804871175] [PMID: 23305367]
[16]
Peters, T.; Kato, K. New developments in NMR: NMR in glycoscience and glycotechnology preface.NMR in glycoscience and glycotechnology; 1st; Kato, K.; Peters, T., Eds.; Royal Society of Chemistry: Cambridge. , 2017, 10, p. VVI.
[17]
van der Wel, P.C.A. New applications of solid-state NMR in structural biology. Emerg. Top. Life Sci., 2018, 2(1), 57-67.
[http://dx.doi.org/10.1042/ETLS20170088] [PMID: 29911185]
[18]
El Hariri El Nokab, M.; van der Wel, P.C.A. Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: A review. Carbohydr. Polym., 2020, 240, 116276.
[http://dx.doi.org/10.1016/j.carbpol.2020.116276] [PMID: 32475563]
[19]
(a)Ladizhansky, V. Applications of solid-state NMR to membrane proteins. Biochim. Biophys. Acta. Proteins Proteomics, 2017, 1865(11 Pt B), 1577-1586.
[http://dx.doi.org/10.1016/j.bbapap.2017.07.004 ] [PMID: 28709996]
(b)Takahashi, M.; Shirasaki, J.; Komura, N.; Sasaki, K.; Tanaka, H-N.; Imamura, A.; Ishida, H.; Hanashima, S.; Murata, M.; Ando, H. Efficient diversification of GM3 gangliosides via late-stage sialylation and dynamic glycan structural studies with 19F solid-state NMR. Org. Biomol. Chem., 2020, 18(15), 2902-2913.
[http://dx.doi.org/10.1039/D0OB00437E] [PMID: 32236234]
[20]
Wang, T.; Hong, M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J. Exp. Bot., 2016, 67(2), 503-514.
[http://dx.doi.org/10.1093/jxb/erv416] [PMID: 26355148]
[21]
Bougault, C.; Ayala, I.; Vollmer, W.; Simorre, J-P.; Schanda, P. Studying intact bacterial peptidoglycan by proton-detected NMR spectroscopy at 100 kHz MAS frequency. J. Struct. Biol., 2019, 206(1), 66-72.
[http://dx.doi.org/10.1016/j.jsb.2018.07.009] [PMID: 30031884]
[22]
Laguri, C.; Silipo, A.; Martorana, A.M.; Schanda, P.; Marchetti, R.; Polissi, A.; Molinaro, A.; Simorre, J-P. Solid state nmr studies of intact lipopolysaccharide endotoxin. ACS Chem. Biol., 2018, 13(8), 2106-2113.
[http://dx.doi.org/10.1021/acschembio.8b00271] [PMID: 29965728]
[23]
Romaniuk, J.H.; Cegelski, L. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell nmr. Philos. Trans. R. Soc. Lond. B. Biol., 2015, 370(1679), 20150024.
[http://dx.doi.org/10.1098/rstb.2015.0024] [PMID: 26370936]
[24]
Unione, L.; Lenza, M.P.; Ardá, A.; Urquiza, P.; Laín, A.; Falcón-Pérez, J.M.; Jiménez-Barbero, J.; Millet, O. Glycoprofile analysis of an intact glycoprotein as inferred by NMR spectroscopy. ACS Cent. Sci., 2019, 5(9), 1554-1561.
[http://dx.doi.org/10.1021/acscentsci.9b00540] [PMID: 31572782]
[25]
Lenza, M.P.; Oyenarte, I.; Diercks, T.; Quintana, J.I.; Gimeno, A.; Coelho, H.; Diniz, A.; Peccati, F.; Delgado, S.; Bosch, A.; Valle, M.; Millet, O.; Abrescia, N.G.A.; Palazón, A.; Marcelo, F.; Jiménez-Osés, G.; Jiménez-Barbero, J.; Ardá, A.; Ereño-Orbea, J. Structural characterization of n-linked glycans in the receptor binding domain of the sars-cov-2 spike protein and their interactions with human lectins. Angew. Chem. Int. Ed. Engl., 2020, 59(52), 23763-23771.
[http://dx.doi.org/10.1002/anie.202011015] [PMID: 32915505]
[26]
Subedi, G.P.; Falconer, D.J.; Barb, A.W. Carbohydrate-polypeptide contacts in the antibody receptor cd16a identified through solution nmr spectroscopy. Biochemistry, 2017, 56(25), 3174-3177.
[http://dx.doi.org/10.1021/acs.biochem.7b00392] [PMID: 28613884]
[27]
Subedi, G.P.; Sinitskiy, A.V.; Roberts, J.T.; Patel, K.R.; Pande, V.S.; Barb, A.W. Intradomain interactions in an nmda receptor fragment mediate n-glycan processing and conformational sampling. Structure, 2019, 27(1), 55-65.e3.
[http://dx.doi.org/10.1016/j.str.2018.09.010] [PMID: 30482728]
[28]
Díaz, D.; Canales-Mayordomo, A.; Cañada, F.J.; Jiménez-Barbero, J. Solution conformation of carbohydrates: A view by using NMR assisted by modeling. Methods Mol. Biol., 2015, 1273, 261-287.
[http://dx.doi.org/10.1007/978-1-4939-2343-4_19] [PMID: 25753717]
[29]
Asensio, J.L.; Cañada, F.J.; García-Herrero, A.; Murillo, M.T.; Fernández-Mayoralas, A.; Johns, B.A.; Kozak, J.; Zhu, Z.; Johnson, C.R.; Jiménez-Barbero, J. Conformational behavior of aza-c-glycosides: Experimental demonstration of the relative role of the exo-anomeric effect and 1,3-type interactions in controlling the conformation of regular glycosides. J. Am. Chem. Soc., 1999, 121(49), 11318-11329.
[http://dx.doi.org/10.1021/ja9922734]
[30]
Lundborg, M.; Widmalm, G. Structural analysis of glycans by NMR chemical shift prediction. Anal. Chem., 2011, 83(5), 1514-1517.
[http://dx.doi.org/10.1021/ac1032534] [PMID: 21280662]
[31]
Böhm, M.; Bohne-Lang, A.; Frank, M.; Loss, A.; Rojas-Macias, M.A.; Lütteke, T. Glycosciences.DB: An annotated data collection linking glycomics and proteomics data (2018 update). Nucleic Acids Res., 2019, 47(D1), D1195-D1201.
[http://dx.doi.org/10.1093/nar/gky994] [PMID: 30357361]
[32]
Yu, B.; van Ingen, H.; Vivekanandan, S.; Rademacher, C.; Norris, S.E.; Freedberg, D.I. More accurate 1J(CH) coupling measurement in the presence of 3J(HH) strong coupling in natural abundance. J. Magn. Reson., 2012, 215, 10-22.
[http://dx.doi.org/10.1016/j.jmr.2011.09.037] [PMID: 22227287]
[33]
Hadad, M.J.; Zhang, W.; Turney, T.; Sernau, L.; Wang, X.; Woods, R.J.; Incandela, A.; Surjancev, I.; Wang, A.; Yoon, M.K.; Coscia, A.; Euell, C.; Meredith, R.; Carmichael, I.; Serianni, A.S. Chapter 2, NMR spin-couplings in saccharides: Relationships between structure, conformation and the magnitudes of jhh, jch and jcc values.New developments in NMR, 1st; Kato, K.; Peters, T., Eds.; Royal Society of Chemistry: Cambridge, 2017, pp. 20-100.
[34]
Watson, A.; Hackbusch, S.; Franz, A.H. NMR solution geometry of saccharides containing the 6-O-(α-D-glucopyranosyl)-α/β-D-glucopyranose (isomaltose) or 6-O-(α-D-galactopyranosyl)-α/β-D-glucopyranose (melibiose) core. Carbohydr. Res., 2019, 473, 18-35.
[http://dx.doi.org/10.1016/j.carres.2018.12.012] [PMID: 30599389]
[35]
Martin, A.; Arda, A.; Désiré, J.; Martin-Mingot, A.; Probst, N.; Sinaÿ, P.; Jiménez-Barbero, J.; Thibaudeau, S.; Blériot, Y. Catching elusive glycosyl cations in a condensed phase with HF/SbF5 superacid. Nat. Chem., 2016, 8(2), 186-191.
[http://dx.doi.org/10.1038/nchem.2399] [PMID: 26791903]
[36]
Lebedel, L.; Ardá, A.; Martin, A.; Désiré, J.; Mingot, A.; Aufiero, M.; Aiguabella Font, N.; Gilmour, R.; Jiménez-Barbero, J.; Blériot, Y.; Thibaudeau, S. Structural and computational analysis of 2-halogeno-glycosyl cations in the presence of a superacid: An expansive platform. Angew. Chem. Int. Ed. Engl., 2019, 58(39), 13758-13762.
[http://dx.doi.org/10.1002/anie.201907001] [PMID: 31348606]
[37]
Colomer, J.P.; Fernández de Toro, B.; Cañada, F.J.; Corzana, F.; Jiménez Barbero, J.; Canales, Á.; Varela, O. Diastereomeric glycosyl sulfoxides display different recognition features versus E. coli β-galactosidase. Eur. J. Org. Chem., 2016, 30, 5117-5122.
[http://dx.doi.org/10.1002/ejoc.201600835]
[38]
Navo, C.D.; Bermejo, I.A.; Oroz, P.; Tovillas, P.; Compañón, I.; Matías, C.; Avenoza, A.; Busto, J.H.; Zurbano, M.M.; Jiménez-Osés, G.; Corzana, F.; Peregrina, J.M. Oxygen by carbon replacement at the glycosidic linkage modulates the sugar conformation in tn antigen mimics. ACS Omega, 2018, 3(12), 18142-18152.
[http://dx.doi.org/10.1021/acsomega.8b02576]
[39]
Turupcu, A.; Blaukopf, M.; Kosma, P.; Oostenbrink, C. Molecular conformations of di-, tri-, and tetra-α-(2→8)-linked sialic acid from nmr spectroscopy and md simulations. Int. J. Mol. Sci., 2019, 21(1), 30.
[http://dx.doi.org/10.3390/ijms21010030] [PMID: 31861593]
[40]
Li, W.; Battistel, M.D.; Reeves, H.; Oh, L.; Yu, H.; Chen, X.; Wang, L.P.; Freedberg, D.I. A combined NMR, MD and DFT conformational analysis of 9-O-acetyl sialic acid-containing GM3 ganglioside glycan and its 9-N-acetyl mimic. Glycobiology, 2020, 30(10), 787-801.
[http://dx.doi.org/10.1093/glycob/cwaa040] [PMID: 32350512]
[41]
Castañar, L.; Saurí, J.; Williamson, R.T.; Virgili, A.; Parella, T. Pure in-phase heteronuclear correlation NMR experiments. Angew. Chem. Int. Ed. Engl., 2014, 53(32), 8379-8382.
[http://dx.doi.org/10.1002/anie.201404136] [PMID: 24962005]
[42]
Vidal, P.; Jiménez-Barbero, J.; Espinosa, J.F. Conformational flexibility around the Gal-β-(1 → 3)-Glc linkage: Experimental evidence for the existence of the anti-ψ conformation in aqueous solution. Carbohydr. Res., 2016, 433, 36-40.
[http://dx.doi.org/10.1016/j.carres.2016.06.009] [PMID: 27434833]
[43]
Hricovíni, M.; Hricovíni, M. Solution conformation of heparin tetrasaccharide. dft analysis of structure and spinspin coupling constants. Molecules, 2018, 23(11), 3042.
[http://dx.doi.org/10.3390/molecules23113042] [PMID: 30469334]
[44]
Guberman, M.; Seeberger, P.H. Automated glycan assembly: A perspective. J. Am. Chem. Soc., 2019, 141(14), 5581-5592.
[http://dx.doi.org/10.1021/jacs.9b00638] [PMID: 30888803]
[45]
Nestor, G.; Anderson, T.; Oscarson, S.; Gronenborn, A.M. Exploiting uniformly 13C-labeled carbohydrates for probing carbohydrate-protein interactions by NMR spectroscopy. J. Am. Chem. Soc., 2017, 139(17), 6210-6216.
[http://dx.doi.org/10.1021/jacs.7b01929] [PMID: 28406013]
[46]
Seeberger, P.H. The logic of automated glycan assembly. Acc. Chem. Res., 2015, 48(5), 1450-1463.
[http://dx.doi.org/10.1021/ar5004362] [PMID: 25871824]
[47]
Delbianco, M.; Kononov, A.; Poveda, A.; Yu, Y.; Diercks, T.; Jiménez-Barbero, J.; Seeberger, P.H. Well-defined oligo- and polysaccharides as ideal probes for structural studies. J. Am. Chem. Soc., 2018, 140(16), 5421-5426.
[http://dx.doi.org/10.1021/jacs.8b00254] [PMID: 29624385]
[48]
Casillo, A.; Ståhle, J.; Parrilli, E.; Sannino, F.; Mitchell, D.E.; Pieretti, G.; Gibson, M.I.; Marino, G.; Lanzetta, R.; Parrilli, M.; Widmalm, G.; Tutino, M.L.; Corsaro, M.M. Structural characterization of an all-aminosugar-containing capsular polysaccharide from Colwellia psychrerythraea 34H. Antonie van Leeuwenhoek, 2017, 110(11), 1377-1387.
[http://dx.doi.org/10.1007/s10482-017-0834-6] [PMID: 28161737]
[49]
Del Bino, L.; Calloni, I.; Oldrini, D.; Raso, M.M.; Cuffaro, R.; Ardá, A.; Codée, J.D.C.; Jiménez-Barbero, J.; Adamo, R. Regioselective glycosylation strategies for the synthesis of group ia and ib streptococcus related glycans enable elucidating unique conformations of the capsular polysaccharides. Chemistry, 2019, 25(71), 16277-16287.
[http://dx.doi.org/10.1002/chem.201903527] [PMID: 31506992]
[50]
Hlozek, J.; Kuttel, M.M.; Ravenscroft, N. Conformations of neisseria meningitidis serogroup a and x polysaccharides: The effects of chain length and O-acetylation. Carbohydr. Res., 2018, 465, 44-51.
[http://dx.doi.org/10.1016/j.carres.2018.06.007] [PMID: 29940397]
[51]
Calloni, I.; Unione, L.; Jiménez-Osés, G.; Corzana, F.; Del Bino, L.; Corrado, A.; Pitirollo, O.; Colombo, C.; Lay, L.; Adamo, R.; Jiménez-Barbero, J. The conformation of the mannopyranosyl phosphate repeating unit of the capsular polysaccharide of Neisseria meningitidis serogroup a and its carba-mimetic. Eur. J. Org. Chem., 2018, 2018(33), 4548-4555.
[http://dx.doi.org/10.1002/ejoc.201801003] [PMID: 30443159]
[52]
Hayakawa, S.; Matsushita, T.; Yokoi, Y.; Wakui, H.; Garcia-Martin, F.; Hinou, H.; Matsuoka, K.; Nouso, K.; Kamiyama, T.; Taketomi, A.; Nishimura, S.I. Impaired o-glycosylation at consecutive threonine ttx motifs in mucins generates conformationally restricted cancer neoepitopes. Biochemistry, 2020, 59(12), 1221-1241.
[http://dx.doi.org/10.1021/acs.biochem.0c00007] [PMID: 32155332]
[53]
Singh, J.; Her, C.; Supekar, N.; Boons, G.J.; Krishnan, V.V.; Brooks, C.L. Role of glycosylation on the ensemble of conformations in the MUC1 immunodominant epitope. J. Pept. Sci., 2020, 26(1), e3229.
[http://dx.doi.org/10.1002/psc.3229] [PMID: 31729101]
[54]
Hanashima, S.; Suga, A.; Yamaguchi, Y. Bisecting GlcNAc restricts conformations of branches in model N-glycans with GlcNAc termini. Carbohydr. Res., 2018, 456, 53-60.
[http://dx.doi.org/10.1016/j.carres.2017.12.002] [PMID: 29274553]
[55]
Schubert, M.; Walczak, M.J.; Aebi, M.; Wider, G. Posttranslational modifications of intact proteins detected by NMR spectroscopy: Application to glycosylation. Angew. Chem. Int. Ed. Engl., 2015, 54(24), 7096-7100.
[http://dx.doi.org/10.1002/anie.201502093] [PMID: 25924827]
[56]
Yanaka, S.; Yagi, H.; Yogo, R.; Yagi-Utsumi, M.; Kato, K. Stable isotope labeling approaches for NMR characterization of glycoproteins using eukaryotic expression systems. J. Biomol. NMR, 2018, 71(3), 193-202.
[http://dx.doi.org/10.1007/s10858-018-0169-2] [PMID: 29492730]
[57]
Unione, L.; Ardá, A.; Jiménez-Barbero, J.; Millet, O. NMR of glycoproteins: Profiling, structure, conformation and interactions. Curr. Opin. Struct. Biol., 2020, 68, 9-17.
[http://dx.doi.org/10.1016/j.sbi.2020.09.009] [PMID: 33129067]
[58]
Peng, J.; Patil, S.M.; Keire, D.A.; Chen, K. Chemical structure and composition of major glycans covalently linked to therapeutic monoclonal antibodies by middle-down nuclear magnetic resonance. Anal. Chem., 2018, 90(18), 11016-11024.
[http://dx.doi.org/10.1021/acs.analchem.8b02637] [PMID: 30102512]
[59]
Bewley, C.A.; Shahzad-ul-Hussan, S. Characterizing carbohydrate-protein interactions by nuclear magnetic resonance spectroscopy. Biopolymers, 2013, 99(10), 796-806.
[http://dx.doi.org/10.1002/bip.22329] [PMID: 23784792]
[60]
Meyer, B.; Peters, T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. Engl., 2003, 42(8), 864-890.
[http://dx.doi.org/10.1002/anie.200390233] [PMID: 12596167]
[61]
Fielding, L. NMR methods for the determination of protein-ligand dissociation constants. Curr. Top. Med. Chem., 2003, 3(1), 39-53.
[http://dx.doi.org/10.2174/1568026033392705] [PMID: 12577990]
[62]
Gyöngyösi, T.; Timári, I.; Haller, J.; Koos, M.R.M.; Luy, B.; Kövér, K.E. Boosting the nmr assignment of carbohydrates with clean in-phase correlation experiments. ChemPlusChem, 2018, 83(1), 53-60.
[http://dx.doi.org/10.1002/cplu.201700452] [PMID: 31957316]
[63]
Huang, R.; Bonnichon, A.; Claridge, T.D.W.; Leung, I.K.H. Protein-ligand binding affinity determination by the waterLOGSY method: An optimised approach considering ligand rebinding. Sci. Rep., 2017, 7, 43727.
[http://dx.doi.org/10.1038/srep43727] [PMID: 28256624]
[64]
Milbradt, A.G.; Arthanari, H.; Takeuchi, K.; Boeszoermenyi, A.; Hagn, F.; Wagner, G. Increased resolution of aromatic cross peaks using alternate 13C labeling and TROSY. J. Biomol. NMR, 2015, 62(3), 291-301.
[http://dx.doi.org/10.1007/s10858-015-9944-5] [PMID: 25957757]
[65]
Sugiki, T.; Furuita, K.; Fujiwara, T.; Kojima, C. Current NMR techniques for structure-based drug discovery. Molecules, 2018, 23(1), 148.
[http://dx.doi.org/10.3390/molecules23010148] [PMID: 29329228]
[66]
Wen, L.; Edmunds, G.; Gibbons, C.; Zhang, J.; Gadi, M.R.; Zhu, H.; Fang, J.; Liu, X.; Kong, Y.; Wang, P.G. Toward automated enzymatic synthesis of oligosaccharides. Chem. Rev., 2018, 118(17), 8151-8187.
[http://dx.doi.org/10.1021/acs.chemrev.8b00066] [PMID: 30011195]
[67]
Schneider, R.; Blackledge, M.; Jensen, M.R. Elucidating binding mechanisms and dynamics of intrinsically disordered protein complexes using NMR spectroscopy. Curr. Opin. Struct. Biol., 2019, 54, 10-18.
[http://dx.doi.org/10.1016/j.sbi.2018.09.007] [PMID: 30316104]
[68]
Kumar, S.; Akabayov, S.R.; Kessler, N.; Cohen, L.S.; Solanki, J.; Naider, F.; Kay, L.E.; Anglister, J. The methyl 13C-edited/13C-filtered transferred NOE for studying protein interactions with short linear motifs. J. Biomol. NMR, 2020, 74(12), 681-693.
[http://dx.doi.org/10.1007/s10858-020-00340-y] [PMID: 32997264]
[69]
Nestor, G.; Anderson, T.; Oscarson, S.; Gronenborn, A.M. Direct observation of carbohydrate hydroxyl protons in hydrogen bonds with a protein. J. Am. Chem. Soc., 2018, 140(1), 339-345.
[http://dx.doi.org/10.1021/jacs.7b10595] [PMID: 29227646]
[70]
Schulze, J.; Baukmann, H.; Wawrzinek, R.; Fuchsberger, F.F.; Specker, E.; Aretz, J.; Nazaré, M.; Rademacher, C. CellFy: A cell-based fragment screen against c-type lectins. ACS Chem. Biol., 2018, 13(12), 3229-3235.
[http://dx.doi.org/10.1021/acschembio.8b00875] [PMID: 30480432]
[71]
Dalvit, C.; Vulpetti, A. Ligand-based fluorine NMR screening: Principles and applications in drug discovery projects. J. Med. Chem., 2019, 62(5), 2218-2244.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01210] [PMID: 30295487]
[72]
Igonet, S.; Raingeval, C.; Cecon, E.; Pučić-Baković, M.; Lauc, G.; Cala, O.; Baranowski, M.; Perez, J.; Jockers, R.; Krimm, I.; Jawhari, A. Enabling STD-NMR fragment screening using stabilized native GPCR: A case study of adenosine receptor. Sci. Rep., 2018, 8(1), 8142.
[http://dx.doi.org/10.1038/s41598-018-26113-0] [PMID: 29802269]
[73]
Wamhoff, E.C.; Hanske, J.; Schnirch, L.; Aretz, J.; Grube, M.; Varón Silva, D.; Rademacher, C. (19)F nmr-guided design of glycomimetic langerin ligands. ACS Chem. Biol., 2016, 11(9), 2407-2413.
[http://dx.doi.org/10.1021/acschembio.6b00561] [PMID: 27458873]
[74]
Cala, O.; Krimm, I. Ligand-orientation based fragment selection in std NMR screening. J. Med. Chem., 2015, 58(21), 8739-8742.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01114] [PMID: 26492576]
[75]
Boden, S.; Reise, F.; Kania, J.; Lindhorst, T.K.; Hartmann, L. Sequence-defined introduction of hydrophobic motifs and effects in lectin binding of precision glycomacromolecules. Macromol. Biosci., 2019, 19(4), e1800425.
[http://dx.doi.org/10.1002/mabi.201800425] [PMID: 30707496]
[76]
Aretz, J.; Anumala, U.R.; Fuchsberger, F.F.; Molavi, N.; Ziebart, N.; Zhang, H.; Nazaré, M.; Rademacher, C. Allosteric inhibition of a mammalian lectin. J. Am. Chem. Soc., 2018, 140(44), 14915-14925.
[http://dx.doi.org/10.1021/jacs.8b08644] [PMID: 30303367]
[77]
Aretz, J.; Baukmann, H.; Shanina, E.; Hanske, J.; Wawrzinek, R.; Zapol’skii, V.A.; Seeberger, P.H.; Kaufmann, D.E.; Rademacher, C. Identification of multiple druggable secondary sites by fragment screening against DC-SIGN. Angew. Chem. Int. Ed. Engl., 2017, 56(25), 7292-7296.
[http://dx.doi.org/10.1002/anie.201701943] [PMID: 28523851]
[78]
(a)Volkamer, A.; Kuhn, D.; Grombacher, T.; Rippmann, F.; Rarey, M. Combining global and local measures for structure-based druggability predictions. J. Chem. Inf. Model., 2012, 52(2), 360-372.
[http://dx.doi.org/10.1021/ci200454v] [PMID: 22148551]
(b)Kozakov, D.; Grove, L.E.; Hall, D.R.; Bohnuud, T.; Mottarella, S.E.; Luo, L.; Xia, B.; Beglov, D.; Vajda, S. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat. Protoc., 2015, 10(5), 733-755.
[http://dx.doi.org/10.1038/nprot.2015.043] [PMID: 25855957]
(c)Cimermancic, P.; Weinkam, P.; Rettenmaier, T.J.; Bichmann, L.; Keedy, D.A.; Woldeyes, R.A.; Schneidman-Duhovny, D.; Demerdash, O.N.; Mitchell, J.C.; Wells, J.A.; Fraser, J.S.; Sali, A. CryptoSite: Expanding the druggable proteome by characterization and prediction of cryptic binding sites. J. Mol. Biol., 2016, 428(4), 709-719.
[http://dx.doi.org/10.1016/j.jmb.2016.01.029] [PMID: 26854760]
[79]
Wamhoff, E.C.; Schulze, J.; Bellmann, L.; Rentzsch, M.; Bachem, G.; Fuchsberger, F.F.; Rademacher, J.; Hermann, M.; Del Frari, B.; van Dalen, R.; Hartmann, D.; van Sorge, N.M.; Seitz, O.; Stoitzner, P.; Rademacher, C. A specific, glycomimetic langerin ligand for human langerhans cell targeting. ACS Cent. Sci., 2019, 5(5), 808-820.
[http://dx.doi.org/10.1021/acscentsci.9b00093] [PMID: 31139717]
[80]
Neuhaus, K.; Wamhoff, E.C.; Freichel, T.; Grafmüller, A.; Rademacher, C.; Hartmann, L. Asymmetrically branched precision glycooligomers targeting langerin. Biomacromolecules, 2019, 20(11), 4088-4095.
[http://dx.doi.org/10.1021/acs.biomac.9b00906] [PMID: 31600054]
[81]
Nieto, P.M. The use of nmr to study transient carbohydrate-protein interactions. Front. Mol. Biosci., 2018, 5, 33.
[http://dx.doi.org/10.3389/fmolb.2018.00033] [PMID: 29696146]
[82]
Monaco, S.; Tailford, L.E.; Juge, N.; Angulo, J. Differential epitope mapping by std nmr spectroscopy to reveal the nature of protein-ligand contacts. Angew. Chem. Int. Ed. Engl., 2017, 56(48), 15289-15293.
[http://dx.doi.org/10.1002/anie.201707682] [PMID: 28977722]
[83]
Henriques, P.; Dello Iacono, L.; Gimeno, A.; Biolchi, A.; Romano, M.R.; Arda, A.; Bernardes, G.J.L.; Jimenez-Barbero, J.; Berti, F.; Rappuoli, R.; Adamo, R. Structure of a protective epitope reveals the importance of acetylation of Neisseria meningitidis serogroup A capsular polysaccharide. Proc. Natl. Acad. Sci. USA, 2020, 117(47), 29795-29802.
[http://dx.doi.org/10.1073/pnas.2011385117] [PMID: 33158970]
[84]
Tamigney Kenfack, M.; Mazur, M.; Nualnoi, T.; Shaffer, T.L.; Ngassimou, A.; Blériot, Y.; Marrot, J.; Marchetti, R.; Sintiprungrat, K.; Chantratita, N.; Silipo, A.; Molinaro, A.; AuCoin, D.P.; Burtnick, M.N.; Brett, P.J.; Gauthier, C. Deciphering minimal antigenic epitopes associated with Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharide O-antigens. Nat. Commun., 2017, 8(1), 115.
[http://dx.doi.org/10.1038/s41467-017-00173-8] [PMID: 28740137]
[85]
Shen, Y.; Kalograiaki, I.; Prunotto, A.; Dunne, M.; Boulos, S.; Taylor, N.M.I.; Sumrall, E.T.; Eugster, M.R.; Martin, R.; Julian-Rodero, A.; Gerber, B.; Leiman, P.G.; Menéndez, M.; Peraro, M.D.; Cañada, F.J.; Loessner, M.J. Structural basis for recognition of bacterial cell wall teichoic acid by pseudo-symmetric SH3b-like repeats of a viral peptidoglycan hydrolase. Chem. Sci. (Camb.), 2021, 12, 576-589.
[http://dx.doi.org/10.1039/D0SC04394J]
[86]
Singh, A.K.; Berbís, M.A.; Ballmann, M.Z.; Kilcoyne, M.; Menéndez, M.; Nguyen, T.H.; Joshi, L.; Cañada, F.J.; Jiménez-Barbero, J.; Benkő, M.; Harrach, B.; van Raaij, M.J. Structure and sialyllactose binding of the carboxy-terminal head domain of the fibre from a siadenovirus, Turkey adenovirus 3. PLoS One, 2015, 10(9), e0139339.
[http://dx.doi.org/10.1371/journal.pone.0139339] [PMID: 26418008]
[87]
Forgione, R.E.; Di Carluccio, C.; Kubota, M.; Manabe, Y.; Fukase, K.; Molinaro, A.; Hashiguchi, T.; Marchetti, R.; Silipo, A. Structural basis for Glycan-receptor binding by mumps virus hemagglutinin-neuraminidase. Sci. Rep., 2020, 10(1), 1589.
[http://dx.doi.org/10.1038/s41598-020-58559-6] [PMID: 32005959]
[88]
Jayalakshmi, V.; Krishna, N.R. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of STD-NMR spectra of ligand–receptor complexes. J. Magn. Reson., 2002, 155(1), 106-118.
[http://dx.doi.org/10.1006/jmre.2001.2499] [PMID: 11945039]
[89]
Mallagaray, A.; Lockhauserbäumer, J.; Hansman, G.; Uetrecht, C.; Peters, T. Attachment of norovirus to histo blood group antigens: A cooperative multistep process. Angew. Chem. Int. Ed. Engl., 2015, 54(41), 12014-12019.
[http://dx.doi.org/10.1002/anie.201505672] [PMID: 26329854]
[90]
Koromyslova, A.D.; Leuthold, M.M.; Bowler, M.W.; Hansman, G.S. The sweet quartet: Binding of fucose to the norovirus capsid. Virology, 2015, 483, 203-208.
[http://dx.doi.org/10.1016/j.virol.2015.04.006] [PMID: 25980740]
[91]
Mallagaray, A.; Rademacher, C.; Parra, F.; Hansman, G.; Peters, T. Saturation transfer difference nuclear magnetic resonance titrations reveal complex multistep-binding of l-fucose to norovirus particles. Glycobiology, 2017, 27(1), 80-86.
[http://dx.doi.org/10.1093/glycob/cww070] [PMID: 27496762]
[92]
Fiege, B.; Leuthold, M.; Parra, F.; Dalton, K.P.; Meloncelli, P.J.; Lowary, T.L.; Peters, T. Epitope mapping of histo blood group antigens bound to norovirus VLPs using STD NMR experiments reveals fine details of molecular recognition. Glycoconj. J., 2017, 34(5), 679-689.
[http://dx.doi.org/10.1007/s10719-017-9792-5] [PMID: 28823097]
[93]
Wegener, H.; Mallagaray, Á.; Schöne, T.; Peters, T.; Lockhauserbäumer, J.; Yan, H.; Uetrecht, C.; Hansman, G.S.; Taube, S. Human norovirus GII.4(MI001) P dimer binds fucosylated and sialylated carbohydrates. Glycobiology, 2017, 27(11), 1027-1037.
[http://dx.doi.org/10.1093/glycob/cwx078] [PMID: 28973640]
[94]
Mallagaray, A.; Creutznacher, R.; Dülfer, J.; Mayer, P.H.O.; Grimm, L.L.; Orduña, J.M.; Trabjerg, E.; Stehle, T.; Rand, K.D.; Blaum, B.S.; Uetrecht, C.; Peters, T. A post-translational modification of human Norovirus capsid protein attenuates glycan binding. Nat. Commun., 2019, 10(1), 1320.
[http://dx.doi.org/10.1038/s41467-019-09251-5] [PMID: 30899001]
[95]
Blaum, B.S.; Hannan, J.P.; Herbert, A.P.; Kavanagh, D.; Uhrín, D.; Stehle, T. Structural basis for sialic acid-mediated self-recognition by complement factor H. Nat. Chem. Biol., 2015, 11(1), 77-82.
[http://dx.doi.org/10.1038/nchembio.1696] [PMID: 25402769]
[96]
Schmidt, C.Q.; Hipgrave Ederveen, A.L.; Harder, M.J.; Wuhrer, M.; Stehle, T.; Blaum, B.S. Biophysical analysis of sialic acid recognition by the complement regulator Factor H. Glycobiology, 2018, 28(10), 765-773.
[http://dx.doi.org/10.1093/glycob/cwy061] [PMID: 29982679]
[97]
Jordan, J.B.; Poppe, L.; Xia, X.; Cheng, A.C.; Sun, Y.; Michelsen, K.; Eastwood, H.; Schnier, P.D.; Nixey, T.; Zhong, W. Fragment based drug discovery: Practical implementation based on 19F NMR spectroscopy. J. Med. Chem., 2012, 55(2), 678-687.
[http://dx.doi.org/10.1021/jm201441k] [PMID: 22165820]
[98]
Martínez, J.D.; Valverde, P.; Delgado, S.; Romanò, C.; Linclau, B.; Reichardt, N.C.; Oscarson, S.; Ardá, A.; Jiménez-Barbero, J.; Cañada, F.J. Unraveling sugar binding modes to dc-sign by employing fluorinated carbohydrates. Molecules, 2019, 24(12), 2337.
[http://dx.doi.org/10.3390/molecules24122337] [PMID: 31242623]
[99]
Valverde, P.; Delgado, S.; Martínez, J.D.; Vendeville, J.B.; Malassis, J.; Linclau, B.; Reichardt, N.C.; Cañada, F.J.; Jiménez-Barbero, J.; Ardá, A. Molecular insights into dc-sign binding to self-antigens: The interaction with the blood group a/b antigens. ACS Chem. Biol., 2019, 14(7), 1660-1671.
[http://dx.doi.org/10.1021/acschembio.9b00458] [PMID: 31283166]
[100]
Denavit, V.; Lainé, D.; Bouzriba, C.; Shanina, E.; Gillon, É.; Fortin, S.; Rademacher, C.; Imberty, A.; Giguère, D. Stereoselective synthesis of fluorinated galactopyranosides as potential molecular probes for galactophilic proteins: Assessment of monofluorogalactoside-leca interactions. Chemistry, 2019, 25(17), 4478-4490.
[http://dx.doi.org/10.1002/chem.201806197] [PMID: 30690814]
[101]
Unione, L.; Alcalá, M.; Echeverria, B.; Serna, S.; Ardá, A.; Franconetti, A.; Cañada, F.J.; Diercks, T.; Reichardt, N.; Jiménez-Barbero, J. Fluoroacetamide moieties as nmr spectroscopy probes for the molecular recognition of glcnac-containing sugars: Modulation of the ch-π stacking interactions by different fluorination patterns. Chemistry, 2017, 23(16), 3957-3965.
[http://dx.doi.org/10.1002/chem.201605573] [PMID: 28124793]
[102]
Veronesi, M.; Giacomina, F.; Romeo, E.; Castellani, B.; Ottonello, G.; Lambruschini, C.; Garau, G.; Scarpelli, R.; Bandiera, T.; Piomelli, D.; Dalvit, C. Fluorine nuclear magnetic resonance-based assay in living mammalian cells. Anal. Biochem., 2016, 495, 52-59.
[http://dx.doi.org/10.1016/j.ab.2015.11.015] [PMID: 26686030]
[103]
Dalvit, C.; Fagerness, P.E.; Hadden, D.T.; Sarver, R.W.; Stockman, B.J. Fluorine-NMR experiments for high-throughput screening: Theoretical aspects, practical considerations, and range of applicability. J. Am. Chem. Soc., 2003, 125(25), 7696-7703.
[http://dx.doi.org/10.1021/ja034646d] [PMID: 12812511]
[104]
Yu, J.X.; Hallac, R.R.; Chiguru, S.; Mason, R.P. New frontiers and developing applications in 19F NMR. Prog. Nucl. Magn. Reson. Spectrosc., 2013, 70, 25-49.
[http://dx.doi.org/10.1016/j.pnmrs.2012.10.001] [PMID: 23540575]
[105]
Martínez, J.D.; Manzano, A.I.; Calviño, E.; Diego, A.; Rodriguez de Francisco, B.; Romanò, C.; Oscarson, S.; Millet, O.; Gabius, H-J.; Jiménez-Barbero, J.; Cañada, F.J. Fluorinated carbohydrates as lectin ligands: Simultaneous screening of a monosaccharide library and chemical mapping by 19f nmr spectroscopy. J. Org. Chem., 2020, 85(24), 16072-16081.
[http://dx.doi.org/10.1021/acs.joc.0c01830] [PMID: 33258593]
[106]
Ribeiro, J.P.; Diercks, T.; Jiménez-Barbero, J.; André, S.; Gabius, H.J.; Cañada, F.J. Fluorinated carbohydrates as lectin ligands: (19)F-based direct std monitoring for detection of anomeric selectivity. Biomolecules, 2015, 5(4), 3177-3192.
[http://dx.doi.org/10.3390/biom5043177] [PMID: 26580665]
[107]
Diercks, T.; Infantino, A.S.; Unione, L.; Jiménez-Barbero, J.; Oscarson, S.; Gabius, H.J. Fluorinated carbohydrates as lectin ligands: Synthesis of oh/f-substituted n-glycan core trimannoside and epitope mapping by 2d std-tocsyref nmr spectroscopy. Chemistry, 2018, 24(59), 15761-15765.
[http://dx.doi.org/10.1002/chem.201803217] [PMID: 30276889]
[108]
Martínez, J.D.; Infantino, A.S.; Valverde, P.; Diercks, T.; Delgado, S.; Reichardt, N.C.; Ardá, A.; Cañada, F.J.; Oscarson, S.; Jiménez-Barbero, J. The interaction of fluorinated glycomimetics with DC-SIGN: Multiple binding modes disentangled by the combination of nmr methods and md simulations. Pharmaceuticals (Basel), 2020, 13(8), 179.
[http://dx.doi.org/10.3390/ph13080179] [PMID: 32759765]
[109]
Feinberg, H.; Castelli, R.; Drickamer, K.; Seeberger, P.H.; Weis, W.I. Multiple modes of binding enhance the affinity of DC-SIGN for high mannose N-linked glycans found on viral glycoproteins. J. Biol. Chem., 2007, 282(6), 4202-4209.
[http://dx.doi.org/10.1074/jbc.M609689200] [PMID: 17150970]
[110]
Guo, Y.; Feinberg, H.; Conroy, E.; Mitchell, D.A.; Alvarez, R.; Blixt, O.; Taylor, M.E.; Weis, W.I.; Drickamer, K. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat. Struct. Mol. Biol., 2004, 11(7), 591-598.
[http://dx.doi.org/10.1038/nsmb784] [PMID: 15195147]
[111]
(a)Suzuki, T.; Makyio, H.; Ando, H.; Komura, N.; Menjo, M.; Yamada, Y.; Imamura, A.; Ishida, H.; Wakatsuki, S.; Kato, R.; Kiso, M. Expanded potential of selenocarbohydrates as a molecular tool for X-ray structural determination of a carbohydrate-protein complex with single/ multi-wavelength anomalous dispersion phasing. Bioorg. Med. Chem., 2014, 22(7), 2090-2101.
[http://dx.doi.org/10.1016/j.bmc.2014.02.023] [PMID: 24631362]
(b)Shimabukuro, J.; Makyio, H.; Suzuki, T.; Nishikawa, Y.; Kawasaki, M.; Imamura, A.; Ishida, H.; Ando, H.; Kato, R.; Kiso, M. Synthesis of seleno-fucose compounds and their application to the X-ray structural determination of carbohydrate-lectin complexes using single/multi-wavelength anomalous dispersion phasing. Bioorg. Med. Chem., 2017, 25(3), 1132-1142.
[http://dx.doi.org/10.1016/j.bmc.2016.12.021] [PMID: 28041800]
[112]
Suzuki, T.; Hayashi, C.; Komura, N.; Tamai, R.; Uzawa, J.; Ogawa, J.; Tanaka, H.N.; Imamura, A.; Ishida, H.; Kiso, M.; Yamaguchi, Y.; Ando, H. Synthesis and glycan-protein interaction studies of se-sialosides by 77se nmr. Org. Lett., 2019, 21(16), 6393-6396.
[http://dx.doi.org/10.1021/acs.orglett.9b02303] [PMID: 31393132]
[113]
Kerfah, R.; Plevin, M.J.; Sounier, R.; Gans, P.; Boisbouvier, J. Methyl-specific isotopic labeling: A molecular tool box for solution NMR studies of large proteins. Curr. Opin. Struct. Biol., 2015, 32, 113-122.
[http://dx.doi.org/10.1016/j.sbi.2015.03.009] [PMID: 25881211]
[114]
Trojanowski, J.Q.; Lee, V.M. Pathological tau: A loss of normal function or a gain in toxicity? Nat. Neurosci., 2005, 8(9), 1136-1137.
[http://dx.doi.org/10.1038/nn0905-1136] [PMID: 16127446]
[115]
Zhao, J.; Huvent, I.; Lippens, G.; Eliezer, D.; Zhang, A.; Li, Q.; Tessier, P.; Linhardt, R.J.; Zhang, F.; Wang, C. Glycan determinants of heparin-tau interaction. Biophys. J., 2017, 112(5), 921-932.
[http://dx.doi.org/10.1016/j.bpj.2017.01.024] [PMID: 28297651]
[116]
Huang, T.Y.; Irene, D.; Zulueta, M.M.; Tai, T.J.; Lain, S.H.; Cheng, C.P.; Tsai, P.X.; Lin, S.Y.; Chen, Z.G.; Ku, C.C.; Hsiao, C.D.; Chyan, C.L.; Hung, S.C. Structure of the complex between a heparan sulfate octasaccharide and mycobacterial heparin-binding hemagglutinin. Angew. Chem. Int. Ed. Engl., 2017, 56(15), 4192-4196.
[http://dx.doi.org/10.1002/anie.201612518] [PMID: 28294485]
[117]
Bertuzzi, S.; Gimeno, A.; Núñez-Franco, R.; Bernardo-Seisdedos, G.; Delgado, S.; Jiménez-Osés, G.; Millet, O.; Jiménez-Barbero, J.; Ardá, A. Unravelling the time scale of conformational plasticity and allostery in glycan recognition by human galectin-1. Chemistry, 2020, 26(67), 15643-15653.
[http://dx.doi.org/10.1002/chem.202003212] [PMID: 32780906]
[118]
Agirre, J.; Davies, G.J.; Wilson, K.S.; Cowtan, K.D. Carbohydrate structure: The rocky road to automation. Curr. Opin. Struct. Biol., 2017, 44, 39-47.
[http://dx.doi.org/10.1016/j.sbi.2016.11.011] [PMID: 27940408]
[119]
Canales, A.; Boos, I.; Perkams, L.; Karst, L.; Luber, T.; Karagiannis, T.; Domínguez, G.; Cañada, F.J.; Pérez-Castells, J.; Häussinger, D.; Unverzagt, C.; Jiménez-Barbero, J. Breaking the limits in analyzing carbohydrate recognition by nmr spectroscopy: Resolving branch-selective interaction of a tetra-antennary n-glycan with lectins. Angew. Chem. Int. Ed. Engl., 2017, 56(47), 14987-14991.
[http://dx.doi.org/10.1002/anie.201709130] [PMID: 28991403]
[120]
Martin-Pastor, M.; Bush, C.A. Refined structure of a flexible heptasaccharide using 1H-13C and 1H-1H NMR residual dipolar couplings in concert with NOE and long range scalar coupling constants. J. Biomol. NMR, 2001, 19(2), 125-139.
[http://dx.doi.org/10.1023/A:1008327926009] [PMID: 11256809]
[121]
Claridge, T.D.W. Chapter 8, separating shifts and couplings: J-resolved and pure shift spectroscopy.Highresolution nmr techniques in organic chemistry; Claridge, T.D.W., Ed.; Elsevier: Boston. , 2016, pp. 295-313.
[http://dx.doi.org/10.1016/B978-0-08-099986-9.00008-7]
[122]
Otting, G. Prospects for lanthanides in structural biology by NMR. J. Biomol. NMR, 2008, 42(1), 1-9.
[http://dx.doi.org/10.1007/s10858-008-9256-0] [PMID: 18688728]
[123]
Morris, A.T.; Dwek, R.A. Some recent applications of the use of paramagnetic centres to probe biological systems using nuclear magnetic resonance. Q. Rev. Biophys., 1977, 10(4), 421-484.
[http://dx.doi.org/10.1017/S003358350000319X] [PMID: 203973]
[124]
Banci, L.; Bertini, I.; Eltis, L.D.; Felli, I.C.; Kastrau, D.H.; Luchinat, C.; Piccioli, M.; Pierattelli, R.; Smith, M. The three-dimensional structure in solution of the paramagnetic high-potential iron-sulfur protein I from Ectothiorhodospira halophila through nuclear magnetic resonance. Eur. J. Biochem., 1994, 225(2), 715-725.
[http://dx.doi.org/10.1111/j.1432-1033.1994.00715.x] [PMID: 7957187]
[125]
Mallagaray, A.; Canales, A.; Domínguez, G.; Jiménez-Barbero, J.; Pérez-Castells, J. A rigid lanthanide binding tag for NMR structural analysis of carbohydrates. Chem. Commun. (Camb.), 2011, 47(25), 7179-7181.
[http://dx.doi.org/10.1039/c1cc11860a] [PMID: 21607252]
[126]
Canales, A.; Mallagaray, A.; Pérez-Castells, J.; Boos, I.; Unverzagt, C.; André, S.; Gabius, H.J.; Cañada, F.J.; Jiménez-Barbero, J. Breaking pseudo-symmetry in multiantennary complex N-glycans using lanthanide-binding tags and NMR pseudo-contact shifts. Angew. Chem. Int. Ed. Engl., 2013, 52(51), 13789-13793.
[http://dx.doi.org/10.1002/anie.201307845] [PMID: 24346952]
[127]
Fernández de Toro, B.; Peng, W.; Thompson, A.J.; Domínguez, G.; Cañada, F.J.; Pérez-Castells, J.; Paulson, J.C.; Jiménez-Barbero, J.; Canales, Á. Avenues to characterize the interactions of extended n-glycans with proteins by nmr spectroscopy: The influenza hemagglutinin case. Angew. Chem. Int. Ed. Engl., 2018, 57(46), 15051-15055.
[http://dx.doi.org/10.1002/anie.201807162] [PMID: 30238596]
[128]
Yamamoto, S.; Zhang, Y.; Yamaguchi, T.; Kameda, T.; Kato, K. Lanthanide-assisted NMR evaluation of a dynamic ensemble of oligosaccharide conformations. Chem. Commun. (Camb.), 2012, 48(39), 4752-4754.
[http://dx.doi.org/10.1039/c2cc30353a] [PMID: 22472911]
[129]
Yamaguchi, T.; Sakae, Y.; Zhang, Y.; Yamamoto, S.; Okamoto, Y.; Kato, K. Exploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulation. Angew. Chem. Int. Ed. Engl., 2014, 53(41), 10941-10944.
[http://dx.doi.org/10.1002/anie.201406145] [PMID: 25196214]
[130]
Erdélyi, M.; d’Áuvergne, E.; Navarro-Vázquez, A.; Leonov, A.; Griesinger, C. Dynamics of the glycosidic bond: Conformational space of lactose. Chemistry, 2011, 17(34), 9368-9376.
[http://dx.doi.org/10.1002/chem.201100854] [PMID: 21755545]
[131]
Martín-Pastor, M.; Canales, A.; Corzana, F.; Asensio, J.L.; Jiménez-Barbero, J. Limited flexibility of lactose detected from residual dipolar couplings using molecular dynamics simulations and steric alignment methods. J. Am. Chem. Soc., 2005, 127(10), 3589-3595.
[http://dx.doi.org/10.1021/ja043445m] [PMID: 15755180]
[132]
Azurmendi, H.F.; Martin-Pastor, M.; Bush, C.A. Conformational studies of Lewis X and Lewis A trisaccharides using NMR residual dipolar couplings. Biopolymers, 2002, 63(2), 89-98.
[http://dx.doi.org/10.1002/bip.10015] [PMID: 11786997]
[133]
Martin-Pastor, M.; Bush, C.A. The use of NMR residual dipolar couplings in aqueous dilute liquid crystalline medium for conformational studies of complex oligosaccharides. Carbohydr. Res., 2000, 323(1-4), 147-155.
[http://dx.doi.org/10.1016/S0008-6215(99)00237-2] [PMID: 10782296]
[134]
Navarro-Vázquez, A. MSpin-RDC. A program for the use of residual dipolar couplings for structure elucidation of small molecules. Magn. Reson. Chem., 2012, 50(S1)(Suppl. 1), S73-S79.
[http://dx.doi.org/10.1002/mrc.3905] [PMID: 23280663]
[135]
Canales, Á.; Mallagaray, Á.; Berbís, M.A.; Navarro-Vázquez, A.; Domínguez, G.; Cañada, F.J.; André, S.; Gabius, H-J.; Pérez-Castells, J.; Jiménez-Barbero, J. Lanthanide-chelating carbohydrate conjugates are useful tools to characterize carbohydrate conformation in solution and sensitive sensors to detect carbohydrate-protein interactions. J. Am. Chem. Soc., 2014, 136(22), 8011-8017.
[http://dx.doi.org/10.1021/ja502406x] [PMID: 24831588]
[136]
Zhuang, T.; Lee, H.S.; Imperiali, B.; Prestegard, J.H. Structure determination of a Galectin-3-carbohydrate complex using paramagnetism-based NMR constraints. Protein Sci., 2008, 17(7), 1220-1231.
[http://dx.doi.org/10.1110/ps.034561.108] [PMID: 18413860]
[137]
Valafar, H.; Prestegard, J.H. REDCAT: A residual dipolar coupling analysis tool. J. Magn. Reson., 2004, 167(2), 228-241.
[http://dx.doi.org/10.1016/j.jmr.2003.12.012] [PMID: 15040978]
[138]
Banci, L.; Bertini, I.; Cavallaro, G.; Giachetti, A.; Luchinat, C.; Parigi, G. Paramagnetism-based restraints for Xplor-NIH. J. Biomol. NMR, 2004, 28(3), 249-261.
[http://dx.doi.org/10.1023/B:JNMR.0000013703.30623.f7] [PMID: 14752258]
[139]
Unione, L.; Ortega, G.; Mallagaray, A.; Corzana, F.; Pérez-Castells, J.; Canales, A.; Jiménez-Barbero, J.; Millet, O. Unraveling the conformational landscape of ligand binding to glucose/galactose-binding protein by paramagnetic nmr and md simulations. ACS Chem. Biol., 2016, 11(8), 2149-2157.
[http://dx.doi.org/10.1021/acschembio.6b00148] [PMID: 27219646]
[140]
Moure, M.J.; Eletsky, A.; Gao, Q.; Morris, L.C.; Yang, J.Y.; Chapla, D.; Zhao, Y.; Zong, C.; Amster, I.J.; Moremen, K.W.; Boons, G.J.; Prestegard, J.H. Paramagnetic tag for glycosylation sites in glycoproteins: Structural constraints on heparan sulfate binding to robo1. ACS Chem. Biol., 2018, 13(9), 2560-2567.
[http://dx.doi.org/10.1021/acschembio.8b00511] [PMID: 30063822]
[141]
Hall, D.A.; Maus, D.C.; Gerfen, G.J.; Inati, S.J.; Becerra, L.R.; Dahlquist, F.W.; Griffin, R.G. Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science, 1997, 276(5314), 930-932.
[http://dx.doi.org/10.1126/science.276.5314.930] [PMID: 9139651]
[142]
(a)Wang, Y.; Hilty, C. Determination of ligand binding epitope structures using polarization transfer from hyperpolarized ligands. J. Med. Chem., 2019, 62(5), 2419-2427.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01711] [PMID: 30715877]
(b)Wang, Y.; Kim, J.; Hilty, C. Determination of protein-ligand binding modes using fast multi-dimensional NMR with hyperpolarization. Chem. Sci. (Camb.), 2020, 11(23), 5935-5943.
[http://dx.doi.org/10.1039/D0SC00266F] [PMID: 32874513]
[143]
Marin-Montesinos, I.; Goyard, D.; Gillon, E.; Renaudet, O.; Imberty, A.; Hediger, S.; De Paëpe, G. Selective high-resolution DNP-enhanced NMR of biomolecular binding sites. Chem. Sci. (Camb.), 2019, 10(11), 3366-3374.
[http://dx.doi.org/10.1039/C8SC05696J] [PMID: 30996925]
[144]
Yang, Y.; Shen, W.; Zhong, Q.; Chen, Q.; He, X.; Baker, J.L.; Xiong, K.; Jin, X.; Wang, J.; Hu, F.; Le, S. Development of a bacteriophage cocktail to constrain the emergence of phage-resistant Pseudomonas aeruginosa. Front. Microbiol., 2020, 11, 327.
[http://dx.doi.org/10.3389/fmicb.2020.00327] [PMID: 32194532]
[145]
Varki, A.; Cummings, R.D.; Aebi, M.; Packer, N.H.; Seeberger, P.H.; Esko, J.D.; Stanley, P.; Hart, G.; Darvill, A.; Kinoshita, T.; Prestegard, J.J.; Schnaar, R.L.; Freeze, H.H.; Marth, J.D.; Bertozzi, C.R.; Etzler, M.E.; Frank, M.; Vliegenthart, J.F.G.; Lütteke, T.; Perez, S.; Bolton, E.; Rudd, P.; Paulson, J.; Kanehisa, M.; Toukach, P.; Aoki-Kinoshita, K.F.; Dell, A.; Narimatsu, H.; York, W.; Taniguchi, N.; Kornfeld, S. Symbol nomenclature for graphical representations of glycans. Glycobiology, 2015, 25(12), 1323-1324.
[http://dx.doi.org/10.1093/glycob/cwv091] [PMID: 26543186]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy