Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Screening of Candidate Pathogenic Genes for Spontaneous Abortion Using Whole Exome Sequencing

Author(s): Qingwen Zhu, Jia Liu, Li Chen, Yiwen Zhou, Tao Zhou, Wenjun Bian, Guohui Ding, Guang Li* and Jiayi Ding*

Volume 25, Issue 9, 2022

Published on: 28 June, 2021

Page: [1462 - 1473] Pages: 12

DOI: 10.2174/1386207324666210628115715

Price: $65

Abstract

Background: Spontaneous abortion is a common disease in obstetrics and reproduction.

Objectives: This study aimed to screen candidate pathogenic genes for spontaneous abortion using whole-exome sequencing.

Methods: Genomic DNA was extracted from abortion tissues of spontaneous abortion patients and sequenced using the Illumina HiSeq2500 high-throughput sequencing platform. Whole exome sequencing was performed to select harmful mutations, including SNP and insertion and deletion sites, associated with spontaneous abortion. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and gene fusion analyses were performed. MUC3A and PDE4DIP were two novel mutation genes that were screened and verified by PCR in abortion tissues of patients.

Results: A total of 83,633 SNPs and 13,635 Indel mutations were detected, of which 29172 SNPs and 3093 Indels were screened as harmful mutations. The 7 GO-BP, 4 GO-CC, 9 GO-MF progress, and 3 KEGG pathways were enriched in GO and KEGG pathway analyses. A total of 746 gene fusion mutations were obtained, involving 492 genes. MUC3A and PDE4DIP were used for PCR verification because of their high number of mutation sites in all samples.

Conclusion: There are extensive SNPs and Indel mutations in the genome of spontaneous abortion tissues, and the effect of these gene mutations on spontaneous abortion needs further experimental verification.

Keywords: Spontaneous abortion, whole exome sequencing, enrichment analyses, gene fusion analyses, SNP, insertion and deletion sites.

Graphical Abstract

[1]
Sundermann, A.C.; Velez Edwards, D.R.; Bray, M.J.; Jones, S.H.; Latham, S.M.; Hartmann, K.E. Leiomyomas in pregnancy and spontaneous abortion: A systematic review and meta-analysis. Obstet. Gynecol., 2017, 130(5), 1065-1072.
[http://dx.doi.org/10.1097/AOG.0000000000002313] [PMID: 29016496]
[2]
Farland, L.V.; Prescott, J.; Sasamoto, N.; Tobias, D.K.; Gaskins, A.J.; Stuart, J.J.; Carusi, D.A.; Chavarro, J.E.; Horne, A.W.; Rich-Edwards, J.W.; Missmer, S.A. Endometriosis and risk of adverse pregnancy outcomes. Obstet. Gynecol., 2019, 134(3), 527-536.
[http://dx.doi.org/10.1097/AOG.0000000000003410] [PMID: 31403584]
[3]
Akolekar, R.; Beta, J.; Picciarelli, G.; Ogilvie, C.; D’Antonio, F. Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol., 2015, 45(1), 16-26.
[http://dx.doi.org/10.1002/uog.14636] [PMID: 25042845]
[4]
Haas, D.M.; Hathaway, T.J.; Ramsey, P.S. Progestogen for preventing miscarriage in women with recurrent miscarriage of unclear etiology. Cochrane Database Syst. Rev., 2018, 10(11), CD003511.
[http://dx.doi.org/10.1002/14651858.CD003511.pub4] [PMID: 30298541]
[5]
Toth, B.; Jeschke, U.; Rogenhofer, N.; Scholz, C.; Würfel, W.; Thaler, C.J.; Makrigiannakis, A. Recurrent miscarriage: Current concepts in diagnosis and treatment. J. Reprod. Immunol., 2010, 85(1), 25-32.
[http://dx.doi.org/10.1016/j.jri.2009.12.006] [PMID: 20185181]
[6]
Sully, E.A.; Madziyire, M.G.; Riley, T.; Moore, A.M.; Crowell, M.; Nyandoro, M.T.; Madzima, B.; Chipato, T. Abortion in Zimbabwe: A national study of the incidence of induced abortion, unintended pregnancy and post-abortion care in 2016. PLoS One, 2018, 13(10), e0205239.
[http://dx.doi.org/10.1371/journal.pone.0205239] [PMID: 30356264]
[7]
Pereza, N; Ostojić, S; Kapović, M; Peterlin, B. Systematic review and meta-analysis of genetic association studies in idiopathic recurrent spontaneous abortion. Fertil. Steril., 2017, 107(1), 150-159.
[8]
Lu, L.; Lv, B.; Huang, K.; Xue, Z.; Zhu, X.; Fan, G. Recent advances in preimplantation genetic diagnosis and screening. J. Assist. Reprod. Genet., 2016, 33(9), 1129-1134.
[http://dx.doi.org/10.1007/s10815-016-0750-0] [PMID: 27272212]
[9]
Kharbanda, E.O.; Vazquez-Benitez, G.; Lipkind, H.S.; Sheth, S.S.; Zhu, J.; Naleway, A.L.; Klein, N.P.; Hechter, R.; Daley, M.F.; Donahue, J.G.; Jackson, M.L.; Kawai, A.T.; Sukumaran, L.; Nordin, J.D. Risk of spontaneous abortion after inadvertent human papillomavirus vaccination in pregnancy. Obstet. Gynecol., 2018, 132(1), 35-44.
[http://dx.doi.org/10.1097/AOG.0000000000002694] [PMID: 29889760]
[10]
Qiao, Y.; Wen, J.; Tang, F.; Martell, S.; Shomer, N.; Leung, P.C.; Stephenson, M.D.; Rajcan-Separovic, E. Whole exome sequencing in recurrent early pregnancy loss. Mol. Hum. Reprod., 2016, 22(5), 364-372.
[http://dx.doi.org/10.1093/molehr/gaw008] [PMID: 26826164]
[11]
Stephenson, M.; Kutteh, W. Evaluation and management of recurrent early pregnancy loss. Clin. Obstet. Gynecol., 2007, 50(1), 132-145.
[http://dx.doi.org/10.1097/GRF.0b013e31802f1c28] [PMID: 17304030]
[12]
Kolte, A.M.; Bernardi, L.A.; Christiansen, O.B.; Quenby, S.; Farquharson, R.G.; Goddijn, M.; Stephenson, M.D. Terminology for pregnancy loss prior to viability: A consensus statement from the ESHRE early pregnancy special interest group. Hum. Reprod., 2015, 30(3), 495-498.
[http://dx.doi.org/10.1093/humrep/deu299] [PMID: 25376455]
[13]
Sierra, S.; Stephenson, M. Genetics of recurrent pregnancy loss. Semin. Reprod. Med., 2006, 24(1), 17-24.
[http://dx.doi.org/10.1055/s-2006-931797] [PMID: 16418974]
[14]
Larsen, E.C.; Christiansen, O.B.; Kolte, A.M.; Macklon, N. New insights into mechanisms behind miscarriage. BMC Med., 2013, 11(13), 154.
[http://dx.doi.org/10.1186/1741-7015-11-154] [PMID: 23803387]
[15]
Dickinson, M.E. Analysis of embryonic lethal mutations in mice using 3D imaging. Transgenic Res., 2016, 537(7621), 508-514.
[16]
Copp, A.J. Death before birth: Clues from gene knockouts and mutations. Trends Genet., 1995, 11(3), 87-93.
[http://dx.doi.org/10.1016/S0168-9525(00)89008-3] [PMID: 7732578]
[17]
Kasarskis, A.; Manova, K.; Anderson, K.V. A phenotype-based screen for embryonic lethal mutations in the mouse. Proc. Natl. Acad. Sci. USA, 1998, 95(13), 7485-7490.
[http://dx.doi.org/10.1073/pnas.95.13.7485] [PMID: 9636176]
[18]
Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of next-generation sequencing technologies. Curr. Protoc. Mol. Biol., 2018, 122(1), e59.
[http://dx.doi.org/10.1002/cpmb.59] [PMID: 29851291]
[19]
Oliver, G.R.; Hart, S.N.; Klee, E.W. Bioinformatics for clinical next generation sequencing. Clin. Chem., 2015, 61(1), 124-135.
[http://dx.doi.org/10.1373/clinchem.2014.224360] [PMID: 25451870]
[20]
Tran, N.H.; Vo, T.B.; Nguyen, V.T.; Tran, N.T.; Trinh, T.N.; Pham, H.T.; Dao, T.H.T.; Nguyen, N.M.; Van, Y.T.; Tran, V.U.; Vu, H.G.; Bui, Q.N.; Vo, P.N.; Nguyen, H.N.; Nguyen, Q.T.; Do, T.T.; Lam, N.V.; Ngoc, P.C.T.; Truong, D.K.; Nguyen, H.N.; Giang, H.; Phan, M.D. Genetic profiling of Vietnamese population from large-scale genomic analysis of non-invasive prenatal testing data. Sci. Rep., 2020, 10(1), 19142.
[http://dx.doi.org/10.1038/s41598-020-76245-5] [PMID: 33154511]
[21]
Gu, W; Miller, S; Chiu, CY. Clinical metagenomic next-generation sequencing for pathogen detection. Ann. Rev. Pathology, 2019, 14, 319-338.
[22]
Peng, J.P.; Yuan, H.M. Application of chromosomal microarray analysis for a cohort of 2600 Chinese patients with miscarriage. Yi Chuan, 2018, 40(9), 779-788.
[PMID: 30369481]
[23]
Levy, B.; Sigurjonsson, S.; Pettersen, B.; Maisenbacher, M.K.; Hall, M.P.; Demko, Z.; Lathi, R.B.; Tao, R.; Aggarwal, V.; Rabinowitz, M. Genomic imbalance in products of conception: Single-nucleotide polymorphism chromosomal microarray analysis. Obstet. Gynecol., 2014, 124(2 Pt 1), 202-209.
[http://dx.doi.org/10.1097/AOG.0000000000000325] [PMID: 25004334]
[24]
Tur-Torres, M.H.; Garrido-Gimenez, C.; Alijotas-Reig, J. Genetics of recurrent miscarriage and fetal loss. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 42(12), 11-25.
[http://dx.doi.org/10.1016/j.bpobgyn.2017.03.007] [PMID: 28412101]
[25]
Meng, L.; Pammi, M.; Saronwala, A.; Magoulas, P.; Ghazi, A.R.; Vetrini, F.; Zhang, J.; He, W.; Dharmadhikari, A.V.; Qu, C.; Ward, P.; Braxton, A.; Narayanan, S.; Ge, X.; Tokita, M.J.; Santiago-Sim, T.; Dai, H.; Chiang, T.; Smith, H.; Azamian, M.S.; Robak, L.; Bostwick, B.L.; Schaaf, C.P.; Potocki, L.; Scaglia, F.; Bacino, C.A.; Hanchard, N.A.; Wangler, M.F.; Scott, D.; Brown, C.; Hu, J.; Belmont, J.W.; Burrage, L.C.; Graham, B.H.; Sutton, V.R.; Craigen, W.J.; Plon, S.E.; Lupski, J.R.; Beaudet, A.L.; Gibbs, R.A.; Muzny, D.M.; Miller, M.J.; Wang, X.; Leduc, M.S.; Xiao, R.; Liu, P.; Shaw, C.; Walkiewicz, M.; Bi, W.; Xia, F.; Lee, B.; Eng, C.M.; Yang, Y.; Lalani, S.R. Use of exome sequencing for infants in intensive care units: Ascertainment of severe single- gene disorders and effect on medical management. JAMA Pediatr., 2017, 171(12), e173438.
[http://dx.doi.org/10.1001/jamapediatrics.2017.3438] [PMID: 28973083]
[26]
Rose, N.C.; Wick, M. Carrier screening for single gene disorders. Semin. Fetal Neonatal Med., 2018, 23(2), 78-84.
[http://dx.doi.org/10.1016/j.siny.2017.06.001] [PMID: 28669541]
[27]
Jelin, A.C.; Vora, N. Whole exome sequencing: Applications in prenatal genetics. Obstet. Gynecol. Clin. North Am., 2018, 45(1), 69-81.
[http://dx.doi.org/10.1016/j.ogc.2017.10.003] [PMID: 29428287]
[28]
Uitterlinden, A.G. An introduction to genome-wide association studies: GWAS for Dummies. Semin. Reprod. Med., 2016, 34(4), 196-204.
[http://dx.doi.org/10.1055/s-0036-1585406] [PMID: 27513020]
[29]
Saxena, R.; Voight, B.F.; Lyssenko, V.; Burtt, N.P.; de Bakker, P.I.; Chen, H.; Roix, J.J.; Kathiresan, S.; Hirschhorn, J.N.; Daly, M.J.; Hughes, T.E.; Groop, L.; Altshuler, D.; Almgren, P.; Florez, J.C.; Meyer, J.; Ardlie, K.; Bengtsson Boström, K.; Isomaa, B.; Lettre, G.; Lindblad, U.; Lyon, H.N.; Melander, O.; Newton-Cheh, C.; Nilsson, P.; Orho-Melander, M.; Råstam, L.; Speliotes, E.K.; Taskinen, M.R.; Tuomi, T.; Guiducci, C.; Berglund, A.; Carlson, J.; Gianniny, L.; Hackett, R.; Hall, L.; Holmkvist, J.; Laurila, E.; Sjögren, M.; Sterner, M.; Surti, A.; Svensson, M.; Svensson, M.; Tewhey, R.; Blumenstiel, B.; Parkin, M.; Defelice, M.; Barry, R.; Brodeur, W.; Camarata, J.; Chia, N.; Fava, M.; Gibbons, J.; Handsaker, B.; Healy, C.; Nguyen, K.; Gates, C.; Sougnez, C.; Gage, D.; Nizzari, M.; Gabriel, S.B.; Chirn, G.W.; Ma, Q.; Parikh, H.; Richardson, D.; Ricke, D.; Purcell, S. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science, 2007, 316(5829), 1331-1336.
[http://dx.doi.org/10.1126/science.1142358] [PMID: 17463246]
[30]
Shamseldin, H.E.; Maddirevula, S.; Faqeih, E.; Ibrahim, N.; Hashem, M.; Shaheen, R.; Alkuraya, F.S. Increasing the sensitivity of clinical exome sequencing through improved filtration strategy. Genet. Med., 2017, 19(5), 593-598.
[http://dx.doi.org/10.1038/gim.2016.155] [PMID: 27711071]
[31]
Ulintz, PJ; Wu, W; Gates, CM Bioinformatics analysis of whole exome sequencing data. Methods in molecular biology (Clifton, NJ), 2019, 1881, 277-3187.
[32]
Bis, J.C.; Jian, X.; Kunkle, B.W.; Chen, Y.; Hamilton-Nelson, K.L.; Bush, W.S.; Salerno, W.J.; Lancour, D.; Ma, Y.; Renton, A.E.; Marcora, E.; Farrell, J.J.; Zhao, Y.; Qu, L.; Ahmad, S.; Amin, N.; Amouyel, P.; Beecham, G.W.; Below, J.E.; Campion, D.; Cantwell, L.; Charbonnier, C.; Chung, J.; Crane, P.K.; Cruchaga, C.; Cupples, L.A.; Dartigues, J.F.; Debette, S.; Deleuze, J.F.; Fulton, L.; Gabriel, S.B.; Genin, E.; Gibbs, R.A.; Goate, A.; Grenier-Boley, B.; Gupta, N.; Haines, J.L.; Havulinna, A.S.; Helisalmi, S.; Hiltunen, M.; Howrigan, D.P.; Ikram, M.A.; Kaprio, J.; Konrad, J.; Kuzma, A.; Lander, E.S.; Lathrop, M.; Lehtimäki, T.; Lin, H.; Mattila, K.; Mayeux, R.; Muzny, D.M.; Nasser, W.; Neale, B.; Nho, K.; Nicolas, G.; Patel, D.; Pericak-Vance, M.A.; Perola, M.; Psaty, B.M.; Quenez, O.; Rajabli, F.; Redon, R.; Reitz, C.; Remes, A.M.; Salomaa, V.; Sarnowski, C.; Schmidt, H.; Schmidt, M.; Schmidt, R.; Soininen, H.; Thornton, T.A.; Tosto, G.; Tzourio, C.; van der Lee, S.J.; van Duijn, C.M.; Valladares, O.; Vardarajan, B.; Wang, L.S.; Wang, W.; Wijsman, E.; Wilson, R.K.; Witten, D.; Worley, K.C.; Zhang, X.; Bellenguez, C.; Lambert, J.C.; Kurki, M.I.; Palotie, A.; Daly, M.; Boerwinkle, E.; Lunetta, K.L.; Destefano, A.L.; Dupuis, J.; Martin, E.R.; Schellenberg, G.D.; Seshadri, S.; Naj, A.C.; Fornage, M.; Farrer, L.A. Whole exome sequencing study identifies novel rare and common Alzheimer’s-Associated variants involved in immune response and transcriptional regulation. Mol. Psychiatry, 2020, 25(8), 1859-1875.
[http://dx.doi.org/10.1038/s41380-018-0112-7] [PMID: 30108311]
[33]
Schwarze, K; Buchanan, J; Taylor, JC; Wordsworth, S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet. Med., 2018, 20(10), 1122-1130.
[34]
van der Ven, A.T.; Connaughton, D.M.; Ityel, H.; Mann, N.; Nakayama, M.; Chen, J.; Vivante, A.; Hwang, D.Y.; Schulz, J.; Braun, D.A.; Schmidt, J.M.; Schapiro, D.; Schneider, R.; Warejko, J.K.; Daga, A.; Majmundar, A.J.; Tan, W.; Jobst-Schwan, T.; Hermle, T.; Widmeier, E.; Ashraf, S.; Amar, A.; Hoogstraaten, C.A.; Hugo, H.; Kitzler, T.M.; Kause, F.; Kolvenbach, C.M.; Dai, R.; Spaneas, L.; Amann, K.; Stein, D.R.; Baum, M.A.; Somers, M.J.G.; Rodig, N.M.; Ferguson, M.A.; Traum, A.Z.; Daouk, G.H.; Bogdanović, R.; Stajić, N.; Soliman, N.A.; Kari, J.A.; El Desoky, S.; Fathy, H.M.; Milosevic, D.; Al-Saffar, M.; Awad, H.S.; Eid, L.A.; Selvin, A.; Senguttuvan, P.; Sanna-Cherchi, S.; Rehm, H.L.; MacArthur, D.G.; Lek, M.; Laricchia, K.M.; Wilson, M.W.; Mane, S.M.; Lifton, R.P.; Lee, R.S.; Bauer, S.B.; Lu, W.; Reutter, H.M.; Tasic, V.; Shril, S.; Hildebrandt, F. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol., 2018, 29(9), 2348-2361.
[http://dx.doi.org/10.1681/ASN.2017121265] [PMID: 30143558]
[35]
Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14), 1754-1760.
[http://dx.doi.org/10.1093/bioinformatics/btp324] [PMID: 19451168]
[36]
Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The human genome browser at UCSC. Genome Res., 2002, 12(6), 996-1006.
[http://dx.doi.org/10.1101/gr.229102] [PMID: 12045153]
[37]
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 2011, 27(21), 2987-2993.
[http://dx.doi.org/10.1093/bioinformatics/btr509] [PMID: 21903627]
[38]
McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; DePristo, M.A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res., 2010, 20(9), 1297-1303.
[http://dx.doi.org/10.1101/gr.107524.110] [PMID: 20644199]
[39]
Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 2010, 38(16), e164.
[http://dx.doi.org/10.1093/nar/gkq603] [PMID: 20601685]
[40]
Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res., 2018, 28(11), 1747-1756.
[http://dx.doi.org/10.1101/gr.239244.118] [PMID: 30341162]
[41]
Huang, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[42]
Newman, A.M.; Bratman, S.V.; Stehr, H.; Lee, L.J.; Liu, C.L.; Diehn, M.; Alizadeh, A.A. FACTERA: A practical method for the discovery of genomic rearrangements at breakpoint resolution. Bioinformatics, 2014, 30(23), 3390-3393.
[http://dx.doi.org/10.1093/bioinformatics/btu549] [PMID: 25143292]
[43]
Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res., 2009, 19(9), 1639-1645.
[http://dx.doi.org/10.1101/gr.092759.109] [PMID: 19541911]
[44]
Yu, Y.; Triebwasser, M.P.; Wong, E.K.; Schramm, E.C.; Thomas, B.; Reynolds, R.; Mardis, E.R.; Atkinson, J.P.; Daly, M.; Raychaudhuri, S.; Kavanagh, D.; Seddon, J.M. Whole-exome sequencing identifies rare, functional CFH variants in families with macular degeneration. Hum. Mol. Genet., 2014, 23(19), 5283-5293.
[http://dx.doi.org/10.1093/hmg/ddu226] [PMID: 24847005]
[45]
Mathur, P.; Medicherla, K.M.; Chaudhary, S.; Patel, M.; Bagali, P.; Suravajhala, P. Whole exome sequencing reveals rare variants linked to congenital pouch colon. Sci. Rep., 2018, 8(1), 6646.
[http://dx.doi.org/10.1038/s41598-018-24967-y] [PMID: 29703930]
[46]
Retterer, K.; Juusola, J.; Cho, M.T.; Vitazka, P.; Millan, F.; Gibellini, F.; Vertino-Bell, A.; Smaoui, N.; Neidich, J.; Monaghan, K.G.; McKnight, D.; Bai, R.; Suchy, S.; Friedman, B.; Tahiliani, J.; Pineda-Alvarez, D.; Richard, G.; Brandt, T.; Haverfield, E.; Chung, W.K.; Bale, S. Clinical application of whole-exome sequencing across clinical indications. Genet. Med., 2016, 18(7), 696-704.
[http://dx.doi.org/10.1038/gim.2015.148] [PMID: 26633542]
[47]
Lee, H.; Deignan, J.L.; Dorrani, N.; Strom, S.P.; Kantarci, S.; Quintero-Rivera, F.; Das, K.; Toy, T.; Harry, B.; Yourshaw, M.; Fox, M.; Fogel, B.L.; Martinez-Agosto, J.A.; Wong, D.A.; Chang, V.Y.; Shieh, P.B.; Palmer, C.G.; Dipple, K.M.; Grody, W.W.; Vilain, E.; Nelson, S.F. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA, 2014, 312(18), 1880-1887.
[http://dx.doi.org/10.1001/jama.2014.14604] [PMID: 25326637]
[48]
Shastry, BS SNPs: Impact on gene function and phenotype. Methods in molecular biology (Clifton, NJ), 2009, 578, 3-22.
[49]
Frazer, K.A.; Ballinger, D.G.; Cox, D.R.; Hinds, D.A.; Stuve, L.L.; Gibbs, R.A.; Belmont, J.W.; Boudreau, A.; Hardenbol, P.; Leal, S.M.; Pasternak, S.; Wheeler, D.A.; Willis, T.D.; Yu, F.; Yang, H.; Zeng, C.; Gao, Y.; Hu, H.; Hu, W.; Li, C.; Lin, W.; Liu, S.; Pan, H.; Tang, X.; Wang, J.; Wang, W.; Yu, J.; Zhang, B.; Zhang, Q.; Zhao, H.; Zhao, H.; Zhou, J.; Gabriel, S.B.; Barry, R.; Blumenstiel, B.; Camargo, A.; Defelice, M.; Faggart, M.; Goyette, M.; Gupta, S.; Moore, J.; Nguyen, H.; Onofrio, R.C.; Parkin, M.; Roy, J.; Stahl, E.; Winchester, E.; Ziaugra, L.; Altshuler, D.; Shen, Y.; Yao, Z.; Huang, W.; Chu, X.; He, Y.; Jin, L.; Liu, Y.; Shen, Y.; Sun, W.; Wang, H.; Wang, Y.; Wang, Y.; Xiong, X.; Xu, L.; Waye, M.M.; Tsui, S.K.; Xue, H.; Wong, J.T.; Galver, L.M.; Fan, J.B.; Gunderson, K.; Murray, S.S.; Oliphant, A.R.; Chee, M.S.; Montpetit, A.; Chagnon, F.; Ferretti, V.; Leboeuf, M.; Olivier, J.F.; Phillips, M.S.; Roumy, S.; Sallée, C.; Verner, A.; Hudson, T.J.; Kwok, P.Y.; Cai, D.; Koboldt, D.C.; Miller, R.D.; Pawlikowska, L.; Taillon-Miller, P.; Xiao, M.; Tsui, L.C.; Mak, W.; Song, Y.Q.; Tam, P.K.; Nakamura, Y.; Kawaguchi, T.; Kitamoto, T.; Morizono, T.; Nagashima, A.; Ohnishi, Y.; Sekine, A.; Tanaka, T.; Tsunoda, T.; Deloukas, P.; Bird, C.P.; Delgado, M.; Dermitzakis, E.T.; Gwilliam, R.; Hunt, S.; Morrison, J.; Powell, D.; Stranger, B.E.; Whittaker, P.; Bentley, D.R.; Daly, M.J.; de Bakker, P.I.; Barrett, J.; Chretien, Y.R.; Maller, J.; McCarroll, S.; Patterson, N.; Pe’er, I.; Price, A.; Purcell, S.; Richter, D.J.; Sabeti, P.; Saxena, R.; Schaffner, S.F.; Sham, P.C.; Varilly, P.; Altshuler, D.; Stein, L.D.; Krishnan, L.; Smith, A.V.; Tello-Ruiz, M.K.; Thorisson, G.A.; Chakravarti, A.; Chen, P.E.; Cutler, D.J.; Kashuk, C.S.; Lin, S.; Abecasis, G.R.; Guan, W.; Li, Y.; Munro, H.M.; Qin, Z.S.; Thomas, D.J.; McVean, G.; Auton, A.; Bottolo, L.; Cardin, N.; Eyheramendy, S.; Freeman, C.; Marchini, J.; Myers, S.; Spencer, C.; Stephens, M.; Donnelly, P.; Cardon, L.R.; Clarke, G.; Evans, D.M.; Morris, A.P.; Weir, B.S.; Tsunoda, T.; Mullikin, J.C.; Sherry, S.T.; Feolo, M.; Skol, A.; Zhang, H.; Zeng, C.; Zhao, H.; Matsuda, I.; Fukushima, Y.; Macer, D.R.; Suda, E.; Rotimi, C.N.; Adebamowo, C.A.; Ajayi, I.; Aniagwu, T.; Marshall, P.A.; Nkwodimmah, C.; Royal, C.D.; Leppert, M.F.; Dixon, M.; Peiffer, A.; Qiu, R.; Kent, A.; Kato, K.; Niikawa, N.; Adewole, I.F.; Knoppers, B.M.; Foster, M.W.; Clayton, E.W.; Watkin, J.; Gibbs, R.A.; Belmont, J.W.; Muzny, D.; Nazareth, L.; Sodergren, E.; Weinstock, G.M.; Wheeler, D.A.; Yakub, I.; Gabriel, S.B.; Onofrio, R.C.; Richter, D.J.; Ziaugra, L.; Birren, B.W.; Daly, M.J.; Altshuler, D.; Wilson, R.K.; Fulton, L.L.; Rogers, J.; Burton, J.; Carter, N.P.; Clee, C.M.; Griffiths, M.; Jones, M.C.; McLay, K.; Plumb, R.W.; Ross, M.T.; Sims, S.K.; Willey, D.L.; Chen, Z.; Han, H.; Kang, L.; Godbout, M.; Wallenburg, J.C.; L’Archevêque, P.; Bellemare, G.; Saeki, K.; Wang, H.; An, D.; Fu, H.; Li, Q.; Wang, Z.; Wang, R.; Holden, A.L.; Brooks, L.D.; McEwen, J.E.; Guyer, M.S.; Wang, V.O.; Peterson, J.L.; Shi, M.; Spiegel, J.; Sung, L.M.; Zacharia, L.F.; Collins, F.S.; Kennedy, K.; Jamieson, R.; Stewart, J. A second generation human haplotype map of over 3.1 million SNPs. Nature, 2007, 449(7164), 851-861.
[http://dx.doi.org/10.1038/nature06258] [PMID: 17943122]
[50]
Meng, J.; Xu, Y.; Shen, X.; Liang, C. A novel frameshift PKD1 mutation in a Chinese patient with autosomal dominant polycystic kidney disease and azoospermia: A case report. Exp. Ther. Med., 2019, 17(1), 507-511.
[PMID: 30651829]
[51]
Suwa, Y.; Higo, S.; Nakamoto, K.; Sera, F.; Kunimatsu, S.; Masumura, Y.; Kanzaki, M.; Mizote, I.; Mizuno, H.; Fujio, Y.; Hikoso, S.; Sakata, Y. Old-Age onset progressive cardiac contractile dysfunction in a patient with polycystic kidney disease harboring a pkd1 frameshift mutation. Int. Heart J., 2019, 60(1), 220-225.
[http://dx.doi.org/10.1536/ihj.18-184] [PMID: 30464138]
[52]
Nazari, T.; Rashidi-Nezhad, A.; Ganji, M.; Rezaei, Z.; Talebi, S.; Ghasemi, N.; Tavakkoly Bazzaz, J. Utilization of whole exome sequencing in lethal form of multiple pterygium syndrome: Identification of mutations in embryonal subunit of acetylcholine receptor. Int. J. Mol. Cell. Med., 2019, 8(4), 258-269.
[PMID: 32587836]
[53]
Lee, H.A.; Ahn, E.H.; Kim, J.H.; Kim, J.O.; Ryu, C.S.; Lee, J.Y.; Cho, S.H.; Lee, W.S.; Kim, N.K. Association study of frameshift and splice variant polymorphisms with risk of idiopathic recurrent pregnancy loss. Mol. Med. Rep., 2018, 18(2), 2417-2426.
[http://dx.doi.org/10.3892/mmr.2018.9202] [PMID: 29956771]
[54]
Yang, Y.; Wang, L.; Han, X.; Yang, W.L.; Zhang, M.; Ma, H.L.; Sun, B.F.; Li, A.; Xia, J.; Chen, J.; Heng, J.; Wu, B.; Chen, Y.S.; Xu, J.W.; Yang, X.; Yao, H.; Sun, J.; Lyu, C.; Wang, H.L.; Huang, Y.; Sun, Y.P.; Zhao, Y.L.; Meng, A.; Ma, J.; Liu, F.; Yang, Y.G. RNA 5-Methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol. Cell, 2019, 75(6), 1188-1202.e11.
[http://dx.doi.org/10.1016/j.molcel.2019.06.033] [PMID: 31399345]
[55]
Anderson, J.E.; Matteri, R.L.; Abeydeera, L.R.; Day, B.N.; Prather, R.S. Degradation of maternal cdc25c during the maternal to zygotic transition is dependent upon embryonic transcription. Mol. Reprod. Dev., 2001, 60(2), 181-188.
[http://dx.doi.org/10.1002/mrd.1075] [PMID: 11553916]
[56]
Song, W.H.; Yi, Y.J.; Sutovsky, M.; Meyers, S.; Sutovsky, P. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc. Natl. Acad. Sci. USA, 2016, 113(36), E5261-E5270.
[http://dx.doi.org/10.1073/pnas.1605844113] [PMID: 27551072]
[57]
Toralova, T.; Kinterova, V.; Chmelikova, E.; Kanka, J. The neglected part of early embryonic development: Maternal protein degradation. Cell. Mol. Life Sci., 2020, 77(16), 3177-3194.
[http://dx.doi.org/10.1007/s00018-020-03482-2] [PMID: 32095869]
[58]
Sha, Q.Q.; Zhang, J.; Fan, H.Y. A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammals†. Biol. Reprod., 2019, 101(3), 579-590.
[http://dx.doi.org/10.1093/biolre/ioz012] [PMID: 30715134]
[59]
Gupta, N; Thakker, S; Verma, SC KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription. Scientific reports, 2016, 6, 32633.
[60]
Bouchard, M.F.; Bergeron, F.; Grenier Delaney, J.; Harvey, L.M.; Viger, R.S. In vivo ablation of the conserved GATA-binding motif in the amh promoter impairs amh expression in the male mouse. Endocrinology, 2019, 160(4), 817-826.
[http://dx.doi.org/10.1210/en.2019-00047] [PMID: 30759208]
[61]
Mzoughi, S.; Zhang, J.; Hequet, D.; Teo, S.X.; Fang, H.; Xing, Q.R.; Bezzi, M.; Seah, M.K.Y.; Ong, S.L.M.; Shin, E.M.; Wollmann, H.; Wong, E.S.M.; Al-Haddawi, M.; Stewart, C.L.; Tergaonkar, V.; Loh, Y.H.; Dunn, N.R.; Messerschmidt, D.M.; Guccione, E. PRDM15 safeguards naive pluripotency by transcriptionally regulating WNT and MAPK-ERK signaling. Nat. Genet., 2017, 49(9), 1354-1363.
[http://dx.doi.org/10.1038/ng.3922] [PMID: 28740264]
[62]
Giaimo, BD; Borggrefe, T. Introduction to molecular mechanisms in notch signal transduction and disease pathogenesis. Adv. Exp. Med. Bio., 2018, 1066, 3-30.
[63]
Braune, E.B.; Lendahl, U. Notch - A goldilocks signaling pathway in disease and cancer therapy. Discov. Med., 2016, 21(115), 189-196.
[PMID: 27115169]
[64]
Tung, J.C.; Paige, S.L.; Ratner, B.D.; Murry, C.E.; Giachelli, C.M. Engineered biomaterials control differentiation and proliferation of human-embryonic-stem-cell-derived cardiomyocytes via timed Notch activation. Stem Cell Reports, 2014, 2(3), 271-281.
[http://dx.doi.org/10.1016/j.stemcr.2014.01.011] [PMID: 24672751]
[65]
Hosaka, Y.; Saito, T.; Sugita, S.; Hikata, T.; Kobayashi, H.; Fukai, A.; Taniguchi, Y.; Hirata, M.; Akiyama, H.; Chung, U.I.; Kawaguchi, H. Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. Proc. Natl. Acad. Sci. USA, 2013, 110(5), 1875-1880.
[http://dx.doi.org/10.1073/pnas.1207458110] [PMID: 23319657]
[66]
Zhang, Z.; Gao, F.; Kang, X.; Li, J.; Zhang, L.; Dong, W.; Jin, Z.; Li, F.; Gao, N.; Cai, X.; Yang, S.; Zhang, J.; Ren, X.; Yang, X. Exploring the potential relationship between Notch pathway genes expression and their promoter methylation in mice hippocampal neurogenesis. Brain Res. Bull., 2015, 113(6), 8-16.
[http://dx.doi.org/10.1016/j.brainresbull.2015.02.003] [PMID: 25701255]
[67]
Bigas, A.; Robert-Moreno, A.; Espinosa, L. The Notch pathway in the developing hematopoietic system. Int. J. Dev. Biol., 2010, 54(6-7), 1175-1188.
[http://dx.doi.org/10.1387/ijdb.093049ab] [PMID: 20711994]
[68]
Velicky, P.; Haider, S.; Otti, G.R.; Fiala, C.; Pollheimer, J.; Knöfler, M. Notch-dependent RBPJκ inhibits proliferation of human cytotrophoblasts and their differentiation into extravillous trophoblasts. Mol. Hum. Reprod., 2014, 20(8), 756-766.
[http://dx.doi.org/10.1093/molehr/gau038] [PMID: 24850908]
[69]
Jaiswal, MK; Agrawal, V; Pamarthy, S; Katara, GK; Kulshrestha, A; Gilman-Sachs, A; Beaman, KD; Hirsch, E Notch signaling in inflammation-induced preterm labor. Scientific reports, 2015, 5, 15221.
[70]
Fang, Y.; Yu, S.; Ma, Y.; Sun, P.; Ma, D.; Ji, C.; Kong, B. Association of Dll4/notch and HIF-1a -VEGF signaling in the angiogenesis of missed abortion. PLoS One, 2013, 8(8), e70667.
[http://dx.doi.org/10.1371/journal.pone.0070667] [PMID: 23950980]
[71]
Devereaux, K.A.; Weiel, J.J.; Mills, A.M.; Kunder, C.A.; Longacre, T.A. Neurofibrosarcoma revisited: An institutional case series of uterine sarcomas harboring kinase-related fusions with report of a novel FGFR1-TACC1 Fusion. Am. J. Surg. Pathol., 2021, 45(5), 638-652.
[http://dx.doi.org/10.1097/PAS.0000000000001644] [PMID: 33481389]
[72]
Xu, L.; Xie, X.; Shi, X.; Zhang, P.; Liu, A.; Wang, J.; Zhang, B. Potential application of genomic profiling for the diagnosis and treatment of patients with sarcoma. Oncol. Lett., 2021, 21(5), 353-362.
[http://dx.doi.org/10.3892/ol.2021.12614] [PMID: 33747210]
[73]
Dachy, G.; Fraitag, S.; Boulouadnine, B.; Cordi, S.; Demoulin, J-B. Novel COL4A1-VEGFD gene fusion in myofibroma. J. Cell. Mol. Med., 2021, 25(9), 4387-4394.
[http://dx.doi.org/10.1111/jcmm.16502] [PMID: 33830670]
[74]
Dharmaraj, N.; Chapela, P.J.; Morgado, M.; Hawkins, S.M.; Lessey, B.A.; Young, S.L.; Carson, D.D. Expression of the transmembrane mucins, MUC1, MUC4 and MUC16, in normal endometrium and in endometriosis. Hum. Reprod., 2014, 29(8), 1730-1738.
[http://dx.doi.org/10.1093/humrep/deu146] [PMID: 24939955]
[75]
Song, Y.; Wang, Q.; Huang, W.; Xiao, L.; Shen, L.; Xu, W. NF κB expression increases and CFTR and MUC1 expression decreases in the endometrium of infertile patients with hydrosalpinx: A comparative study. Reprod. Biol. Endocrinol., 2012, 10(6), 86-95.
[http://dx.doi.org/10.1186/1477-7827-10-86] [PMID: 23061681]
[76]
Shapshak, P. Molecule of the month, PDE4DIP. Bioinformation, 2012, 8(16), 740-741.
[http://dx.doi.org/10.6026/97320630008740] [PMID: 23055623]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy