Review Article

鸡胚绒毛膜尿囊膜模型:一种体内外实验的研究方法

卷 29, 期 10, 2022

发表于: 25 June, 2021

页: [1702 - 1717] 页: 16

弟呕挨: 10.2174/0929867328666210625105438

价格: $65

摘要

背景:鸡绒毛膜尿囊膜(CAM)模型作为动物模型的替代或补充的体内实验,在药物和生物学研究中引起了极大的兴趣。传统上,CAM检测方法已被广泛用于进行一些毒理学研究,特别是用于评估新药和配方的皮肤、眼部和胚胎毒性,以及进行血管生成研究。由于有可能在CAM上产生肿瘤,该模型也已成为评估不同肿瘤的转移潜能和在体内测试新型抗癌疗法的疗效的一个极好的策略。此外,近年来,它在其他研究领域的应用也大幅增长,包括对新的抗感染药物的评价、生物分布研究的发展和组织工程研究。 目的:本文提供了一个关键的概述使用CAM模型在药物和生物研究,特别是测试新药的毒性和配方和生物分布和小说抗癌和抗感染疗法的功效,分析其优缺点与动物模型。 结论:鸡绒毛膜尿囊膜模型在癌症、毒理学、生物分布研究和抗感染治疗等多个研究领域具有广阔的应用价值。事实上,它已经成为体外实验和动物研究之间的中间阶段,在毒理学研究(皮肤和眼部的毒性)中,它甚至取代了动物模型。

关键词: 血管生成,CAM检测,癌症,体外,HET-CAM检测,蛋,体内,毒理学研究。

[1]
Ribatti, D. The chick embryo chorioallantoic membrane as a model for tumor biology. Exp. Cell Res., 2014, 328(2), 314-324.
[http://dx.doi.org/10.1016/j.yexcr.2014.06.010] [PMID: 24972385]
[2]
Cimpean, A.M.; Ribatti, D.; Raica, M. The chick embryo chorioallantoic membrane as a model to study tumor metastasis. Angiogenesis, 2008, 11(4), 311-319.
[http://dx.doi.org/10.1007/s10456-008-9117-1] [PMID: 18780151]
[3]
Vargas, A.; Zeisser-Labouèbe, M.; Lange, N.; Gurny, R.; Delie, F. The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv. Drug Deliv. Rev., 2007, 59(11), 1162-1176.
[http://dx.doi.org/10.1016/j.addr.2007.04.019] [PMID: 17870202]
[4]
Ribatti, D. The chick embryo chorioallantoic membrane (CAM) assay. Reprod. Toxicol., 2017, 70, 97-101.
[http://dx.doi.org/10.1016/j.reprotox.2016.11.004] [PMID: 27832950]
[5]
Hamamichi, S.; Nishigori, H. Establishment of a chick embryo shell-less culture system and its use to observe change in behavior caused by nicotine and substances from cigarette smoke. Toxicol. Lett., 2001, 119(2), 95-102.
[http://dx.doi.org/10.1016/S0378-4274(00)00300-3] [PMID: 11311570]
[6]
Janse, E.M.; Jeurissen, S.H. Ontogeny and function of two non-lymphoid cell populations in the chicken embryo. Immunobiology, 1991, 182(5), 472-481.
[http://dx.doi.org/10.1016/S0171-2985(11)80211-1] [PMID: 1916887]
[7]
Murphy, J.B. Transplantability of tissues to the embryo of foreign species: Its bearing on questions of tissue specificity and tumor immunity. J. Exp. Med., 1913, 17(4), 482-493.
[http://dx.doi.org/10.1084/jem.17.4.482] [PMID: 19867659]
[8]
Murphy, J.B. Factors of resistance to heteroplastic tissue-grafting: Studies in tissue specificity. III. J. Exp. Med., 1914, 19(5), 513-522.
[http://dx.doi.org/10.1084/jem.19.5.513] [PMID: 19867789]
[9]
Murphy, J.B. Studies in tissue specificity: II. The ultimate fate of mammalian tissue implanted in the chick embryo. J. Exp. Med., 1914, 19(2), 181-186.
[http://dx.doi.org/10.1084/jem.19.2.181] [PMID: 19867756]
[10]
Taizi, M.; Deutsch, V.R.; Leitner, A.; Ohana, A.; Goldstein, R.S. A novel and rapid in vivo system for testing therapeutics on human leukemias. Exp. Hematol., 2006, 34(12), 1698-1708.
[http://dx.doi.org/10.1016/j.exphem.2006.07.005] [PMID: 17157167]
[11]
Avram, S.; Coricovac, D.E.; Pavel, I.Z.; Pinzaru, I.; Ghiulai, R.; Baderca, F.; Soica, C.; Muntean, D.; Branisteanu, D.E.; Spandidos, D.A.; Tsatsakis, A.M.; Dehelean, C.A. Standardization of A375 human melanoma models on chicken embryo chorioallantoic membrane and Balb/c nude mice. Oncol. Rep., 2017, 38(1), 89-99.
[http://dx.doi.org/10.3892/or.2017.5658] [PMID: 28535001]
[12]
Auerbach, R.; Kubai, L.; Sidky, Y. Angiogenesis induction by tumors, embryonic tissues, and lymphocytes. Cancer Res., 1976, 36(9 PT 2), 3435-3440.
[PMID: 975113]
[13]
Mostafa, L.K.; Jones, D.B.; Wright, D.H. Mechanism of the induction of angiogenesis by human neoplastic lymphoid tissue: Studies on the chorioallantoic membrane (CAM) of the chick embryo. J. Pathol., 1980, 132(3), 191-205.
[http://dx.doi.org/10.1002/path.1711320302] [PMID: 6159466]
[14]
Knighton, D. D., F.V.D.; Philipps, G.D. The assay for angiogenesis. Clinical and experimental approaches to dermal and epidermal repair normal and chronic wound 1991, 291-299.
[15]
Deryugina, E.I.; Quigley, J.P. Chapter 2. Chick embryo chorioallantoic membrane models to quantify angiogenesis induced by inflammatory and tumor cells or purified effector molecules. Methods Enzymol., 2008, 444, 21-41.
[http://dx.doi.org/10.1016/S0076-6879(08)02802-4] [PMID: 19007659]
[16]
Mousa, S.A.; O’Connor, L.; Rossman, T.G.; Block, E. Pro-angiogenesis action of arsenic and its reversal by selenium-derived compounds. Carcinogenesis, 2007, 28(5), 962-967.
[http://dx.doi.org/10.1093/carcin/bgl229] [PMID: 17158527]
[17]
Aljada, A.; O’Connor, L.; Fu, Y.Y.; Mousa, S.A. PPAR gamma ligands, rosiglitazone and pioglitazone, inhibit bFGF- and VEGF-mediated angiogenesis. Angiogenesis, 2008, 11(4), 361-367.
[http://dx.doi.org/10.1007/s10456-008-9118-0] [PMID: 18810647]
[18]
Ulus, G.; Koparal, A.T.; Baysal, K.; Yetik Anacak, G.; Karabay Yavaşoğlu, N.U. The anti-angiogenic potential of (±) gossypol in comparison to suramin. Cytotechnology, 2018, 70(6), 1537-1550.
[http://dx.doi.org/10.1007/s10616-018-0247-z] [PMID: 30123923]
[19]
Liu, Y.; He, Y.; Yang, F.; Cong, X.; Wang, J.; Peng, S.; Gao, D.; Wang, W.; Lan, L.; Ying, X.; Liu, M.; Chen, Y.; Yi, Z. A novel synthetic small molecule YF-452 inhibits tumor growth through antiangiogenesis by suppressing VEGF receptor 2 signaling. Sci. China Life Sci., 2017, 60(2), 202-214.
[http://dx.doi.org/10.1007/s11427-016-0369-6] [PMID: 28194552]
[20]
Zhu, D.; Wang, S.; Lawless, J.; He, J.; Zheng, Z. Dose dependent dual effect of baicalin and herb huang qin extract on angiogenesis. PLoS One, 2016, 11(11), e0167125.
[http://dx.doi.org/10.1371/journal.pone.0167125] [PMID: 27902752]
[21]
Rathinavelu, A.; Kanagasabai, T.; Dhandayuthapani, S.; Alhazzani, K. Anti-angiogenic and pro-apoptotic effects of a small-molecule JFD-WS in in vitro and breast cancer xenograft mouse models. Oncol. Rep., 2018, 39(4), 1711-1724.
[http://dx.doi.org/10.3892/or.2018.6256] [PMID: 29436685]
[22]
Kumar, M.; Meshram, G.G.; Rastogi, T.; Sharma, S.; Gupta, R.; Jain, S.; Prasad, A.; Galav, V.; Bhattacharya, S.K. Antiangiogenic activity of zinc and zinc-sorafenib combination using the chick chorioallantoic membrane assay: A descriptive study. J. Cancer Res. Ther., 2020, 16(Suppl.), S84-S89.
[http://dx.doi.org/10.4103/jcrt.JCRT_737_16] [PMID: 33380658]
[23]
Xu, S.; Guo, R.; Li, P.Z.; Li, K.; Yan, Y.; Chen, J.; Wang, G.; Brand-Saberi, B.; Yang, X.; Cheng, X. Dexamethasone interferes with osteoblasts formation during osteogenesis through altering IGF-1-mediated angiogenesis. J. Cell. Physiol., 2019. Online ahead of print.
[http://dx.doi.org/10.1002/jcp.28157] [PMID: 30671960]
[24]
Kardamakis, D.; Hadjimichael, C.; Ginopoulos, P.; Papaioannou, S. Effects of paclitaxel in combination with ionizing radiation on angiogenesis in the chick embryo chorioallantoic membrane. A radiobiological study. Strahlenther. Onkol., 2004, 180(3), 152-156.
[http://dx.doi.org/10.1007/s00066-004-1140-6] [PMID: 14991203]
[25]
Dragostin, O-M.; Tatia, R.; Samal, S.K.; Oancea, A.; Zamfir, A.S.; Dragostin, I.; Lisă, E-L.; Apetrei, C.; Zamfir, C.L. Designing of chitosan derivatives nanoparticles with antiangiogenic effect for cancer therapy. Nanomaterials (Basel), 2020, 10(4), 698.
[http://dx.doi.org/10.3390/nano10040698] [PMID: 32272625]
[26]
Li, Q.; Yuan, D.M.; Ma, L.H.; Ma, C.H.; Liu, Y.F.; Lv, T.F.; Song, Y. Chloroquine inhibits tumor growth and angiogenesis in malignant pleural effusion. Tumour Biol., 2016.
[http://dx.doi.org/10.1007/s13277-016-5441-z] [PMID: 27771855]
[27]
Buzzá, H.H.; Fialho de Freitas, L.C.; Moriyama, L.T.; Teixeira Rosa, R.G.; Bagnato, V.S.; Kurachi, C. Vascular effects of photodynamic therapy with curcumin in a chorioallantoic membrane model. Int. J. Mol. Sci., 2019, 20(5), E1084.
[http://dx.doi.org/10.3390/ijms20051084] [PMID: 30832361]
[28]
Fu, Y.; Ponce, M.L.; Thill, M.; Yuan, P.; Wang, N.S.; Csaky, K.G. Angiogenesis inhibition and choroidal neovascularization suppression by sustained delivery of an integrin antagonist, EMD478761. Invest. Ophthalmol. Vis. Sci., 2007, 48(11), 5184-5190.
[http://dx.doi.org/10.1167/iovs.07-0469] [PMID: 17962472]
[29]
Soares, D.C.F.; de Paula Oliveira, D.C.; Barcelos, L.S.; Barbosa, A.S.; Vieira, L.C.; Townsend, D.M.; Rubello, D.; de Barros, A.L.B.; Duarte, L.P.; Silva-Cunha, A. Antiangiogenic activity of PLGA-Lupeol implants for potential intravitreal applications. Biomed. Pharmacother., 2017, 92, 394-402.
[http://dx.doi.org/10.1016/j.biopha.2017.05.093] [PMID: 28558353]
[30]
Kang, M.S.; Lee, N.H.; Singh, R.K.; Mandakhbayar, N.; Perez, R.A.; Lee, J.H.; Kim, H.W. Nanocements produced from mesoporous bioactive glass nanoparticles. Biomaterials, 2018, 162, 183-199.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.005] [PMID: 29448144]
[31]
Pedrosa, P.; Heuer-Jungemann, A.; Kanaras, A.G.; Fernandes, A.R.; Baptista, P.V. Potentiating angiogenesis arrest in vivovia laser irradiation of peptide functionalised gold nanoparticles. J. Nanobiotechnology, 2017, 15(1), 85.
[http://dx.doi.org/10.1186/s12951-017-0321-2] [PMID: 29162137]
[32]
Nooris, M.; Aparna, D.; Radha, S. Synthesis and characterization of MFe2O4 (M = Co, Ni, Mn) magnetic nanoparticles for modulation of angiogenesis in chick chorioallantoic membrane (CAM). Eur. Biophys. J., 2016, 45(2), 139-148.
[http://dx.doi.org/10.1007/s00249-015-1083-0] [PMID: 26493065]
[33]
Özcetin, A.; Aigner, A.; Bakowsky, U. A chorioallantoic membrane model for the determination of anti-angiogenic effects of imatinib. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt A), 711-715.
[http://dx.doi.org/10.1016/j.ejpb.2013.07.010] [PMID: 23891770]
[34]
Li, Z.; Guo, Z.; Chu, D.; Feng, H.; Zhang, J.; Zhu, L.; Li, J. Effectively suppressed angiogenesis-mediated retinoblastoma growth using celastrol nanomicelles. Drug Deliv., 2020, 27(1), 358-366.
[http://dx.doi.org/10.1080/10717544.2020.1730522] [PMID: 32091275]
[35]
Vargas, A.; Pegaz, B.; Debefve, E.; Konan-Kouakou, Y.; Lange, N.; Ballini, J.P.; van den Bergh, H.; Gurny, R.; Delie, F. Improved photodynamic activity of porphyrin loaded into nanoparticles: An in vivo evaluation using chick embryos. Int. J. Pharm., 2004, 286(1-2), 131-145.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.029] [PMID: 15501010]
[36]
Samson, F.P.; Patrick, A.T.; Fabunmi, T.E.; Yahaya, M.F.; Madu, J.; He, W.; Sripathi, S.R.; Tyndall, J.; Raji, H.; Jee, D.; Gutsaeva, D.R.; Jahng, W.J. Oleic acid, cholesterol, and linoleic acid as angiogenesis initiators. ACS Omega, 2020, 5(32), 20575-20585.
[http://dx.doi.org/10.1021/acsomega.0c02850] [PMID: 32832811]
[37]
Rudy, S.F.; Brenner, J.C.; Harris, J.L.; Liu, J.; Che, J.; Scott, M.V.; Owen, J.H.; Komarck, C.M.; Graham, M.P.; Bellile, E.L.; Bradford, C.R.; Prince, M.E.; Carey, T.E. in vivo Wnt pathway inhibition of human squamous cell carcinoma growth and metastasis in the chick chorioallantoic model. J. Otolaryngol. Head Neck Surg., 2016, 45, 26.
[http://dx.doi.org/10.1186/s40463-016-0140-8] [PMID: 27117272]
[38]
Liu, M.; Scanlon, C.S.; Banerjee, R.; Russo, N.; Inglehart, R.C.; Willis, A.L.; Weiss, S.J.; D’Silva, N.J. The histone methyltransferase ezh2 mediates tumor progression on the chick chorioallantoic membrane assay, a novel model of head and neck squamous cell carcinoma. Transl. Oncol., 2013, 6(3), 273-281.
[http://dx.doi.org/10.1593/tlo.13175] [PMID: 23730406]
[39]
Ivanova, I.A.; Arulanantham, S.; Barr, K.; Cepeda, M.; Parkins, K.M.; Hamilton, A.M.; Johnston, D.; Penuela, S.; Hess, D.A.; Ronald, J.A.; Dagnino, L. Targeting FER kinase inhibits melanoma growth and metastasis. Cancers (Basel), 2019, 11(3), E419.
[http://dx.doi.org/10.3390/cancers11030419] [PMID: 30909648]
[40]
Schexnayder, C.; Broussard, K.; Onuaguluchi, D.; Poché, A.; Ismail, M.; McAtee, L.; Llopis, S.; Keizerweerd, A.; McFerrin, H.; Williams, C. Metformin inhibits migration and invasion by suppressing ros production and cox2 expression in mda-mb-231 breast cancer cells. Int. J. Mol. Sci., 2018, 19(11), E3692.
[http://dx.doi.org/10.3390/ijms19113692] [PMID: 30469399]
[41]
Pruksakorn, D.; Klangjorhor, J.; Lirdprapamongkol, K.; Teeyakasem, P.; Sungngam, P.; Chaiyawat, P.; Phanphaisarn, A.; Settakorn, J.; Srisomsap, C. Oncogenic roles of serine-threonine kinase receptor-associated protein (STRAP) in osteosarcoma. Cancer Chemother. Pharmacol., 2018, 82(6), 1039-1047.
[http://dx.doi.org/10.1007/s00280-018-3696-3] [PMID: 30276452]
[42]
Xiao, X.; Zhou, X.; Ming, H.; Zhang, J.; Huang, G.; Zhang, Z.; Li, P. Chick chorioallantoic membrane assay: A 3D animal model for study of human nasopharyngeal carcinoma. PLoS One, 2015, 10(6), e0130935.
[http://dx.doi.org/10.1371/journal.pone.0130935] [PMID: 26107941]
[43]
Bobek, V.; Plachy, J.; Pinterova, D.; Kolostova, K.; Boubelik, M.; Jiang, P.; Yang, M.; Hoffman, R.M. Development of a green fluorescent protein metastatic-cancer chick-embryo drug-screen model. Clin. Exp. Metastasis, 2004, 21(4), 347-352.
[http://dx.doi.org/10.1023/B:CLIN.0000046138.58210.31] [PMID: 15554391]
[44]
Pawlikowska, P.; Tayoun, T.; Oulhen, M.; Faugeroux, V.; Rouffiac, V.; Aberlenc, A.; Pommier, A.L.; Honore, A.; Marty, V.; Bawa, O.; Lacroix, L.; Scoazec, J.Y.; Chauchereau, A.; Laplace-Builhe, C.; Farace, F. Exploitation of the chick embryo chorioallantoic membrane (CAM) as a platform for anti-metastatic drug testing. Sci. Rep., 2020, 10(1), 16876.
[http://dx.doi.org/10.1038/s41598-020-73632-w] [PMID: 33037240]
[45]
Klingenberg, M.; Becker, J.; Eberth, S.; Kube, D.; Wilting, J. The chick chorioallantoic membrane as an in vivo xenograft model for Burkitt lymphoma. BMC Cancer, 2014, 14, 339.
[http://dx.doi.org/10.1186/1471-2407-14-339] [PMID: 24884418]
[46]
Stoletov, K.; Willetts, L.; Beatty, P.H.; Lewis, J.D. Intravital imaging tumor screen used to identify novel metastasis-blocking therapeutic targets. Cell Stress, 2018, 2(10), 275-278.
[http://dx.doi.org/10.15698/cst2018.10.159] [PMID: 31225451]
[47]
Vu, B.T.; Shahin, S.A.; Croissant, J.; Fatieiev, Y.; Matsumoto, K.; Le-Hoang Doan, T.; Yik, T.; Simargi, S.; Conteras, A.; Ratliff, L.; Jimenez, C.M.; Raehm, L.; Khashab, N.; Durand, J.O.; Glackin, C.; Tamanoi, F. Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer. Sci. Rep., 2018, 8(1), 8524.
[http://dx.doi.org/10.1038/s41598-018-25573-8] [PMID: 29867159]
[48]
Yalcin, M.; Bharali, D.J.; Lansing, L.; Dyskin, E.; Mousa, S.S.; Hercbergs, A.; Davis, F.B.; Davis, P.J.; Mousa, S.A. Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res., 2009, 29(10), 3825-3831.
[PMID: 19846915]
[49]
Niemelä, E.; Desai, D.; Niemi, R.; Doroszko, M.; Özliseli, E.; Kemppainen, K.; Rahman, N.A.; Sahlgren, C.; Törnquist, K.; Eriksson, J.E.; Rosenholm, J.M. Nanoparticles carrying fingolimod and methotrexate enables targeted induction of apoptosis and immobilization of invasive thyroid cancer. Eur. J. Pharm. Biopharm., 2020, 148, 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2019.12.015] [PMID: 31917332]
[50]
Pastorino, F.; Brignole, C.; Di Paolo, D.; Nico, B.; Pezzolo, A.; Marimpietri, D.; Pagnan, G.; Piccardi, F.; Cilli, M.; Longhi, R.; Ribatti, D.; Corti, A.; Allen, T.M.; Ponzoni, M. Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res., 2006, 66(20), 10073-10082.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2117] [PMID: 17047071]
[51]
Fraguas-Sánchez, A.I.; Fernández-Carballido, A.; Simancas-Herbada, R.; Martin-Sabroso, C.; Torres-Suárez, A.I. CBD loaded microparticles as a potential formulation to improve paclitaxel and doxorubicin-based chemotherapy in breast cancer. Int. J. Pharm., 2020, 574, 118916.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118916] [PMID: 31811927]
[52]
Fraguas-Sánchez, A.I.; Fernández-Carballido, A.; Delie, F.; Cohen, M.; Martin-Sabroso, C.; Mezzanzanica, D.; Figini, M.; Satta, A.; Torres-Suárez, A.I. Enhancing ovarian cancer conventional chemotherapy through the combination with cannabidiol loaded microparticles. Eur. J. Pharm. Biopharm., 2020, 154, 246-258.
[http://dx.doi.org/10.1016/j.ejpb.2020.07.008] [PMID: 32682943]
[53]
Fraguas-Sánchez, A.I.; Torres-Suárez, A.I.; Cohen, M.; Delie, F.; Bastida-Ruiz, D.; Yart, L.; Martin-Sabroso, C.; Fernández-Carballido, A. PLGA nanoparticles for the intraperitoneal administration of cbd in the treatment of ovarian cancer: In vitro and in ovo assessment. Pharmaceutics, 2020, 12(5), E439.
[http://dx.doi.org/10.3390/pharmaceutics12050439] [PMID: 32397428]
[54]
Honda, N.; Kariyama, Y.; Hazama, H.; Ishii, T.; Kitajima, Y.; Inoue, K.; Ishizuka, M.; Tanaka, T.; Awazu, K. Optical properties of tumor tissues grown on the chorioallantoic membrane of chicken eggs: Tumor model to assay of tumor response to photodynamic therapy. J. Biomed. Opt., 2015, 20(12), 125001.
[http://dx.doi.org/10.1117/1.JBO.20.12.125001] [PMID: 26662299]
[55]
Nascimento, B.F.O.; Laranjo, M.; Pereira, N.A.M.; Dias-Ferreira, J.; Piñeiro, M.; Botelho, M.F.; Pinho, E. Melo, T.M.V.D. Ring-fused diphenylchlorins as potent photosensitizers for photodynamic therapy applications: In vitro tumor cell biology and in vivo chick embryo chorioallantoic membrane studies. ACS Omega, 2019, 4(17), 17244-17250.
[http://dx.doi.org/10.1021/acsomega.9b01865] [PMID: 31656898]
[56]
Kuzyniak, W.; Schmidt, J.; Glac, W.; Berkholz, J.; Steinemann, G.; Hoffmann, B.; Ermilov, E.A.; Gürek, A.G.; Ahsen, V.; Nitzsche, B.; Höpfner, M. Novel zinc phthalocyanine as a promising photosensitizer for photodynamic treatment of esophageal cancer. Int. J. Oncol., 2017, 50(3), 953-963.
[http://dx.doi.org/10.3892/ijo.2017.3854] [PMID: 28098886]
[57]
Yoon, J.H.; Yoon, H.E.; Kim, O.; Kim, S.K.; Ahn, S.G.; Kang, K.W. The enhanced anti-cancer effect of hexenyl ester of 5-aminolaevulinic acid photodynamic therapy in adriamycin-resistant compared to non-resistant breast cancer cells. Lasers Surg. Med., 2012, 44(1), 76-86.
[http://dx.doi.org/10.1002/lsm.21154] [PMID: 22246987]
[58]
Park, J.H.; Moon, Y.H.; Kim, D.J.; Kim, S.A.; Lee, J.B.; Ahn, S.G.; Yoon, J.H. Photodynamic therapy with hexenyl ester of 5-aminolevulinic acid induces necrotic cell death in salivary gland adenocarcinoma cells. Oncol. Rep., 2010, 24(1), 177-181.
[PMID: 20514459]
[59]
Uto, Y.; Abe, C.; Futawaka, M.; Yamada, H.; Tominaga, M.; Endo, Y. in vivo drug screening method of radiosensitizers using tumor-bearing chick embryo. Enzymes, 2019, 46, 113-127.
[http://dx.doi.org/10.1016/bs.enz.2019.08.008] [PMID: 31727273]
[60]
Barile, F.A. Validating and troubleshooting ocular in vitro toxicology tests. J. Pharmacol. Toxicol. Methods, 2010, 61(2), 136-145.
[http://dx.doi.org/10.1016/j.vascn.2010.01.001] [PMID: 20096797]
[61]
Spielmann, H.; Kalweit, S.; Liebsch, M.; Wirnsberger, T.; Gerner, I.; Bertram-Neis, E.; Krauser, K.; Kreiling, R.; Miltenburger, H.G.; Pape, W.; Steiling, W. Validation study of alternatives to the draize eye irritation test in Germany: Cytotoxicity testing and HET-CAM test with 136 industrial chemicals. Toxicol. In Vitro, 1993, 7(4), 505-510.
[http://dx.doi.org/10.1016/0887-2333(93)90055-A] [PMID: 20732242]
[62]
Steiling, W.; Bracher, M.; Courtellemont, P.; de Silva, O. The het-cam, a useful in vitro assay for assessing the eye irritation properties of cosmetic formulations and ingredients. Toxicol. In Vitro, 1999, 13(2), 375-384.
[http://dx.doi.org/10.1016/S0887-2333(98)00091-5] [PMID: 20654494]
[63]
Gilleron, L.; Coecke, S.; Sysmans, M.; Hansen, E.; van Oproy, S.; Marzin, D.; van Cauteren, H.; Vanparys, P. Evaluation of the HET-CAM-TSA method as an alternative to the draize eye irritation test. Toxicol. In Vitro, 1997, 11(5), 641-644.
[http://dx.doi.org/10.1016/S0887-2333(97)00074-X] [PMID: 20654364]
[64]
Baig, M.S.; Ahad, A.; Aslam, M.; Imam, S.S.; Aqil, M.; Ali, A. Application of Box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity. Int. J. Biol. Macromol., 2016, 85, 258-270.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.077] [PMID: 26740466]
[65]
Hao, J.; Wang, X.; Bi, Y.; Teng, Y.; Wang, J.; Li, F.; Li, Q.; Zhang, J.; Guo, F.; Liu, J. Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Colloids Surf. B Biointerfaces, 2014, 114, 111-120.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.059] [PMID: 24176890]
[66]
Gupta, H.; Aqil, M.; Khar, R.K.; Ali, A.; Bhatnagar, A.; Mittal, G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine (Lond.), 2010, 6(2), 324-333.
[http://dx.doi.org/10.1016/j.nano.2009.10.004] [PMID: 19857606]
[67]
Abdelkader, H.; Ismail, S.; Hussein, A.; Wu, Z.; Al-Kassas, R.; Alany, R.G. Conjunctival and corneal tolerability assessment of ocular naltrexone niosomes and their ingredients on the hen’s egg chorioallantoic membrane and excised bovine cornea models. Int. J. Pharm., 2012, 432(1-2), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.063] [PMID: 22575752]
[68]
Kojima, H.; Hanamura, A.; Miyamoto, S.; Sato, A.; Konishi, H.; Yoshimura, I. Evaluation of seven alternative assays on the main ingredients in cosmetics as predictors of Draize eye irritation scores. Toxicol. In Vitro, 1995, 9(3), 333-340.
[http://dx.doi.org/10.1016/0887-2333(95)00015-Z] [PMID: 20650095]
[69]
Debbasch, C.; Ebenhahn, C.; Dami, N.; Pericoi, M.; Van den Berghe, C.; Cottin, M.; Nohynek, G.J. Eye irritation of low-irritant cosmetic formulations: Correlation of in vitro results with clinical data and product composition. Food Chem. Toxicol., 2005, 43(1), 155-165.
[http://dx.doi.org/10.1016/j.fct.2004.09.004] [PMID: 15582208]
[70]
Felippi, C.C.; Oliveira, D.; Ströher, A.; Carvalho, A.R.; Van Etten, E.A.; Bruschi, M.; Raffin, R.P. Safety and efficacy of antioxidants-loaded nanoparticles for an anti-aging application. J. Biomed. Nanotechnol., 2012, 8(2), 316-321.
[http://dx.doi.org/10.1166/jbn.2012.1379] [PMID: 22515083]
[71]
Polláková, M.; Petrilla, V.; Andrejčáková, Z.; Petrillová, M.; Sopková, D.; Petrovová, E. Spitting cobras: Experimental assay employing the model of chicken embryo and the chick chorioallantoic membrane for imaging and evaluation of effects of venom from African and Asian species (Naja ashei, Naja nigricollis, Naja siamensis, Naja sumatrana). Toxicon, 2021, 189, 79-90.
[http://dx.doi.org/10.1016/j.toxicon.2020.10.025] [PMID: 33130187]
[72]
Vives, M.A.; Macián, M.; Seguer, J.; Infante, M.R.; Vinardell, M.P. Irritancy potential induced by surfactants derived from lysine. Toxicol. In Vitro, 1997, 11(6), 779-783.
[http://dx.doi.org/10.1016/S0887-2333(97)00068-4] [PMID: 20654384]
[73]
Budai, P.; Lehel, J.; Tavaszi, J.; Kormos, E. HET-CAM test for determining the possible eye irritancy of pesticides. Acta Vet. Hung., 2010, 58(3), 369-377.
[http://dx.doi.org/10.1556/avet.58.2010.3.9] [PMID: 20713327]
[74]
Jira, D.; Janousek, S.; Pikula, J.; Vitula, F.; Kejlova, K. Toxicity hazard of organophosphate insecticide malathion identified by in vitro methods. Neuroendocrinol. Lett., 2012, 33(Suppl. 3), 53-59.
[PMID: 23353844]
[75]
Palmeira-de-Oliveira, R.; Monteiro Machado, R.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, A. Testing vaginal irritation with the Hen’s Egg Test-Chorioallantoic Membrane assay. ALTEX, 2018, 35(4), 495-503.
[http://dx.doi.org/10.14573/altex.1710091] [PMID: 29534246]
[76]
Ardelean, S.; Feflea, S.; Ionescu, D.; Năstase, V.; Dehelean, C.A. Toxicologic screening of some surfactants using modern in vivo bioassays. Rev. Med. Chir. Soc. Med. Nat. Iasi, 2011, 115(1), 251-258.
[PMID: 21682193]
[77]
Batista-Duharte, A.; Jorge Murillo, G.; Pérez, U.M.; Tur, E.N.; Portuondo, D.F.; Martínez, B.T.; Téllez-Martínez, D.; Betancourt, J.E.; Pérez, O. The hen’s egg test on chorioallantoic membrane: An alternative assay for the assessment of the irritating effect of vaccine adjuvants. Int. J. Toxicol., 2016, 35(6), 627-633.
[http://dx.doi.org/10.1177/1091581816672187] [PMID: 27733445]
[78]
Ferreira, M.; Rzhepishevska, O.; Grenho, L.; Malheiros, D.; Gonçalves, L.; Almeida, A.J.; Jordão, L.; Ribeiro, I.A.; Ramstedt, M.; Gomes, P.; Bettencourt, A. Levofloxacin-loaded bone cement delivery system: Highly effective against intracellular bacteria and Staphylococcus aureus biofilms. Int. J. Pharm., 2017, 532(1), 241-248.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.089] [PMID: 28851574]
[79]
Datar, S.; Bhonde, R.R. Shell-less chick embryo culture as an alternative in vitro model to investigate glucose-induced malformations in mammalian embryos. Rev. Diabet. Stud., 2005, 2(4), 221-227.
[http://dx.doi.org/10.1900/RDS.2005.2.221] [PMID: 17491698]
[80]
Mete, M.; Gurcu, B.; Collu, F.; Unsal, U.U.; Duransoy, Y.K.; Tuglu, M.I.; Selcuki, M. Effects of lacosamide “a novel antiepileptic drug” in the early stages of chicken embryo development. Childs Nerv. Syst., 2016, 32(9), 1715-1719.
[http://dx.doi.org/10.1007/s00381-016-3181-4] [PMID: 27473858]
[81]
Rodrigues, P.C.; Beyer, U.; Schumacher, P.; Roth, T.; Fiebig, H.H.; Unger, C.; Messori, L.; Orioli, P.; Paper, D.H.; Mülhaupt, R.; Kratz, F. Acid-sensitive polyethylene glycol conjugates of doxorubicin: Preparation, in vitro efficacy and intracellular distribution. Bioorg. Med. Chem., 1999, 7(11), 2517-2524.
[http://dx.doi.org/10.1016/S0968-0896(99)00209-6] [PMID: 10632061]
[82]
Strojny, B.; Grodzik, M.; Sawosz, E.; Winnicka, A.; Kurantowicz, N.; Jaworski, S.; Kutwin, M.; Urbańska, K.; Hotowy, A.; Wierzbicki, M.; Chwalibog, A. Diamond nanoparticles modify curcumin activity: In vitro studies on cancer and normal cells and in ovo studies on chicken embryo model. PLoS One, 2016, 11(10), e0164637.
[http://dx.doi.org/10.1371/journal.pone.0164637] [PMID: 27736939]
[83]
Nnadi, E.N.; Enweani, I.B.; Ayanbimpe, G.M. Infection of chick chorioallantoic membrane (cam) as a model for the pathogenesis of cryptococcus gattii. Med. Mycol. J., 2018, 59(2), E25-E30.
[http://dx.doi.org/10.3314/mmj.17-00018] [PMID: 29848908]
[84]
Jacobsen, I.D.; Grosse, K.; Berndt, A.; Hube, B. Pathogenesis of Candida albicans infections in the alternative chorio-allantoic membrane chicken embryo model resembles systemic murine infections. PLoS One, 2011, 6(5), e19741.
[http://dx.doi.org/10.1371/journal.pone.0019741] [PMID: 21603634]
[85]
Abdel-Moneim, A.S.; Zlotowski, P.; Veits, J.; Keil, G.M.; Teifke, J.P. Immunohistochemistry for detection of avian infectious bronchitis virus strain M41 in the proventriculus and nervous system of experimentally infected chicken embryos. Virol. J., 2009, 6, 15.
[http://dx.doi.org/10.1186/1743-422X-6-15] [PMID: 19196466]
[86]
Braukmann, M.; Sachse, K.; Jacobsen, I.D.; Westermann, M.; Menge, C.; Saluz, H.P.; Berndt, A. Distinct intensity of host-pathogen interactions in Chlamydia psittaci- and Chlamydia abortus-infected chicken embryos. Infect. Immun., 2012, 80(9), 2976-2988.
[http://dx.doi.org/10.1128/IAI.00437-12] [PMID: 22689815]
[87]
García-Gareta, E.; Binkowska, J.; Kohli, N.; Sharma, V. Towards the development of a novel ex ovo model of infection to pre-screen biomaterials intended for treating chronic wounds. J. Funct. Biomater., 2020, 11(2), E37.
[http://dx.doi.org/10.3390/jfb11020037] [PMID: 32498233]
[88]
Sharma, B.K.; Kakker, N.K.; Bhadouriya, S.; Chhabra, R. Effect of TLR agonist on infections bronchitis virus replication and cytokine expression in embryonated chicken eggs. Mol. Immunol., 2020, 120, 52-60.
[http://dx.doi.org/10.1016/j.molimm.2020.02.001] [PMID: 32065987]
[89]
Petrovova, E.; Giretova, M.; Kvasilova, A.; Benada, O.; Danko, J.; Medvecky, L.; Sedmera, D. Preclinical alternative model for analysis of porous scaffold biocompatibility in bone tissue engineering. ALTEX, 2019, 36(1), 121-130.
[http://dx.doi.org/10.14573/altex.1807241] [PMID: 30474687]
[90]
Smith, E.L.; Kanczler, J.M.; Gothard, D.; Roberts, C.A.; Wells, J.A.; White, L.J.; Qutachi, O.; Sawkins, M.J.; Peto, H.; Rashidi, H.; Rojo, L.; Stevens, M.M.; El Haj, A.J.; Rose, F.R.; Shakesheff, K.M.; Oreffo, R.O. Evaluation of skeletal tissue repair, part 2: Enhancement of skeletal tissue repair through dual-growth-factor-releasing hydrogels within an ex vivo chick femur defect model. Acta Biomater., 2014, 10(10), 4197-4205.
[http://dx.doi.org/10.1016/j.actbio.2014.05.025] [PMID: 24907660]
[91]
Smith, E.L.; Kanczler, J.M.; Roberts, C.A.; Oreffo, R.O. Developmental cues for bone formation from parathyroid hormone and parathyroid hormone-related protein in an ex vivo organotypic culture system of embryonic chick femora. Tissue Eng. Part C Methods, 2012, 18(12), 984-994.
[http://dx.doi.org/10.1089/ten.tec.2012.0132] [PMID: 22690868]
[92]
Moreno-Jiménez, I.; Lanham, S.A.; Kanczler, J.M.; Hulsart-Billstrom, G.; Evans, N.D.; Oreffo, R.O.C. Remodelling of human bone on the chorioallantoic membrane of the chicken egg: De novo bone formation and resorption. J. Tissue Eng. Regen. Med., 2018, 12(8), 1877-1890.
[http://dx.doi.org/10.1002/term.2711] [PMID: 29893478]
[93]
Yang, X.B.; Whitaker, M.J.; Sebald, W.; Clarke, N.; Howdle, S.M.; Shakesheff, K.M.; Oreffo, R.O. Human osteoprogenitor bone formation using encapsulated bone morphogenetic protein 2 in porous polymer scaffolds. Tissue Eng., 2004, 10(7-8), 1037-1045.
[http://dx.doi.org/10.1089/ten.2004.10.1037] [PMID: 15363161]
[94]
Moreno-Jiménez, I.; Hulsart-Billstrom, G.; Lanham, S.A.; Janeczek, A.A.; Kontouli, N.; Kanczler, J.M.; Evans, N.D.; Oreffo, R.O. The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: A refinement animal model for tissue engineering. Sci. Rep., 2016, 6, 32168.
[http://dx.doi.org/10.1038/srep32168] [PMID: 27577960]
[95]
Joniová, J.; Wagnières, G. Catechin reduces phototoxic effects induced by protoporphyrin IX-based photodynamic therapy in the chick embryo chorioallantoic membrane. J. Biomed. Opt., 2020, 25(6), 1-9.
[http://dx.doi.org/10.1117/1.JBO.25.6.063807] [PMID: 32052612]
[96]
Haller, S.; Ametamey, S.M.; Schibli, R.; Müller, C. Investigation of the chick embryo as a potential alternative to the mouse for evaluation of radiopharmaceuticals. Nucl. Med. Biol., 2015, 42(3), 226-233.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.10.010] [PMID: 25533725]
[97]
Winter, G.; Koch, A.B.F.; Löffler, J.; Lindén, M.; Solbach, C.; Abaei, A.; Li, H.; Glatting, G.; Beer, A.J.; Rasche, V. Multi-Modal PET and MR Imaging in the Hen’s Egg Test-Chorioallantoic Membrane (HET-CAM) Model for Initial in vivo Testing of Target-Specific Radioligands. Cancers (Basel), 2020, 12(5), E1248.
[http://dx.doi.org/10.3390/cancers12051248] [PMID: 32429233]
[98]
Derouiche, M.T.T.; Abdennour, S. HET-CAM test. Application to shampoos in developing countries. Toxicol. In Vitro, 2017, 45(Pt 3), 393-396.
[http://dx.doi.org/10.1016/j.tiv.2017.05.024] [PMID: 28602853]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy