Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Thymic Immunosuppressive Pentapeptide (TIPP) Shown Anticancer Activity in Breast Cancer and Chronic Myeloid Leukemia Both In Vitro and In Vivo

Author(s): Muhammad Ijaz, Muhammad Shahbaz, Wenjie Jiang, Yikang Shi, Xiuli Guo* and Fengshan Wang*

Volume 28, Issue 10, 2021

Published on: 22 June, 2021

Page: [1148 - 1156] Pages: 9

DOI: 10.2174/0929866528666210622150500

Price: $65

Abstract

Aim: Being the common cause and major burden of deaths globally, timely cancer management is crucial.

Background: Thymic immunosuppressive pentapeptide (TIPP) is a novel pentapeptide originally obtained from calf thymic immunosuppressive extract. Previously, TIPP has been proved to suppress the allergic and inflammatory responses in allergic mice via blocking MAP kinases/NF-κB signaling pathways.

Objective: In this study, in vitro anticancer activity of TIPP was tested on two different types of cancers using MCF-7 and K562 cell lines.

Methods: Tumor xenograft models for breast cancer and chronic myeloid leukemia were designed. In vivo anticancer activity of TIPP was investigated on both cancer types. The liver and tumor tissues of the mice were preserved for immunohistochemistry analysis.

Results: In vitro anticancer activity of TIPP showed significant inhibition on cell viability of both breast cancer and chronic myeloid leukemia. In vivo anticancer effect of TIPP in both types of cancer models further proved the potent anticancer nature of TIPP. Immunohistochemistry analysis assured that TIPP is a safe drug for normal organs such as the liver.

Conclusion: Our present study revealed that TIPP is a potent anticancer drug and an important treatment option for various diseases. Further work is needed to test the flexible and proficient activity of the novel peptide.

Keywords: Cancer, breast cancer, chronic myeloid leukemia, thymic immunosuppressive pentapeptide (TIPP), immunohistochemistry, anticancer drug.

Graphical Abstract

[1]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[3]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
The Lancet. GLOBOCAN 2018: counting the toll of cancer. Lancet, 2018, 392(10152), 985.
[http://dx.doi.org/10.1016/S0140-6736(18)32252-9] [PMID: 30264708]
[6]
Parkin, D.M.; Bray, F.I.; Devesa, S.S. Cancer burden in the year 2000. The global picture. Eur. J. Cancer, 2001, 37(Suppl. 8), S4-S66.
[http://dx.doi.org/10.1016/S0959-8049(01)00267-2] [PMID: 11602373]
[7]
Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin., 2005, 55(2), 74-108.
[http://dx.doi.org/10.3322/canjclin.55.2.74] [PMID: 15761078]
[8]
Tao, Z.; Shi, A.; Lu, C.; Song, T.; Zhang, Z.; Zhao, J. Breast cancer: epidemiology and etiology. Cell Biochem. Biophys., 2015, 72(2), 333-338.
[http://dx.doi.org/10.1007/s12013-014-0459-6] [PMID: 25543329]
[9]
Ghoncheh, M.; Pournamdar, Z.; Salehiniya, H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac. J. Cancer Prev., 2016, 17(S3), 43-46.
[http://dx.doi.org/10.7314/APJCP.2016.17.S3.43] [PMID: 27165206]
[10]
Ha, R.; Chow, D.; Mango, V.; Friedlander, L.; Desperito, E.; Wynn, R. Have we given up on breast cancer metastasis? global trends in breast cancer metastasis research productivity. Breast J., 2015, 21(4), 442-444.
[http://dx.doi.org/10.1111/tbj.12436] [PMID: 25982155]
[11]
DeSantis, C.E.; Bray, F.; Ferlay, J.; Lortet-Tieulent, J.; Anderson, B.O.; Jemal, A. International variation in female breast cancer incidence and mortality rates. Cancer Epidemiol. Biomarkers Prev., 2015, 24(10), 1495-1506.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0535] [PMID: 26359465]
[12]
Breast cancer incidence and death increasing in less-developed countries. Cancer, 2016, 122(3), 339.
[http://dx.doi.org/10.1002/cncr.29881] [PMID: 26799800]
[13]
Ahmad, A. Breast cancer statistics: Recent trends. Adv. Exp. Med. Biol., 2019, 1152(1152), 1-7.
[PMID: 31456176]
[14]
Faderl, S.; Talpaz, M.; Estrov, Z.; Kantarjian, H.M. Chronic myelogenous leukemia: Biology and therapy. Ann. Intern. Med., 1999, 131(3), 207-219.
[http://dx.doi.org/10.7326/0003-4819-131-3-199908030-00008] [PMID: 10428738]
[15]
von Bubnoff, N.; Duyster, J. Chronic myelogenous leukemia: Treatment and monitoring. Dtsch. Arztebl. Int., 2010, 107(7), 114-121.
[PMID: 20221270]
[16]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[17]
Radivoyevitch, T.; Jankovic, G.M.; Tiu, R.V.; Saunthararajah, Y.; Jackson, R.C.; Hlatky, L.R.; Gale, R.P.; Sachs, R.K. Sex differences in the incidence of chronic myeloid leukemia. Radiat. Environ. Biophys., 2014, 53(1), 55-63.
[http://dx.doi.org/10.1007/s00411-013-0507-4] [PMID: 24337217]
[18]
Ma, X.; Yu, H. Global burden of cancer. Yale J. Biol. Med., 2006, 79(3-4), 85-94.
[PMID: 17940618]
[19]
Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with dual antimicrobial and anticancer activities. Front Chem., 2017, 5(5), 5.
[http://dx.doi.org/10.3389/fchem.2017.00005] [PMID: 28271058]
[20]
Dennison, S.R.; Harris, F.; Phoenix, D.A. Investigations into the potential anticancer activity of Maximin H5. Biochimie, 2017, 137, 29-34.
[http://dx.doi.org/10.1016/j.biochi.2017.02.013] [PMID: 28249727]
[21]
Kobayashi, Y.; Sakura, T.; Miyawaki, S.; Toga, K.; Sogo, S.; Heike, Y. A new peptide vaccine OCV-501: In vitro pharmacology and phase 1 study in patients with acute myeloid leukemia. Cancer Immunol. Immunother., 2017, 66(7), 851-863.
[http://dx.doi.org/10.1007/s00262-017-1981-3] [PMID: 28321480]
[22]
Shindo, Y.; Hazama, S.; Suzuki, N.; Iguchi, H.; Uesugi, K.; Tanaka, H.; Aruga, A.; Hatori, T.; Ishizaki, H.; Umeda, Y.; Fujiwara, T.; Ikemoto, T.; Shimada, M.; Yoshimatsu, K.; Takenouchi, H.; Matsui, H.; Kanekiyo, S.; Iida, M.; Koki, Y.; Arima, H.; Furukawa, H.; Ueno, T.; Yoshino, S.; Fujita, T.; Kawakami, Y.; Nakamura, Y.; Oka, M.; Nagano, H. Predictive biomarkers for the efficacy of peptide vaccine treatment: based on the results of a phase II study on advanced pancreatic cancer. J. Exp. Clin. Cancer Res., 2017, 36(1), 36.
[http://dx.doi.org/10.1186/s13046-017-0509-1] [PMID: 28241889]
[23]
Ijaz, M.; Wang, F.; Shahbaz, M.; Jiang, W.; Fathy, A.H.; Nesa, E.U. The role of Grb2 in cancer and peptides as Grb2 antagonists. Protein Pept. Lett., 2018, 24(12), 1084-1095.
[http://dx.doi.org/10.2174/0929866525666171123213148] [PMID: 29173143]
[24]
Zhao, S.M. The effect of U2 fraction of porcine thymus immnosuppressive extract on lymphocyte proliferation. Chin. J. Biochem. Pharm., 2003, 24, 133-134.
[25]
Shang, X.Y. Anti-allergic effects of thymic immunosuppressive fraction. Chin Pharmacol Bull, 1996, 21, 360.
[26]
Xin, X.L.; Zhang, S.L.; Wang, F.S. Effects of thymic immunosuppressive extract on mouse immune functions. Chin. J. Biochem. Pharm., 1996, 17, 185.
[27]
Lian, Q.; Jiang, W.; Cheng, Y.; Cao, H.; Liu, M.; Wang, J.; Li, Y.; Song, X.; Wang, F. A novel pentapeptide originated from calf thymus named TIPP shows an inhibitory effect on lung allergic inflammation. Int. Immunopharmacol., 2015, 24(2), 256-266.
[http://dx.doi.org/10.1016/j.intimp.2014.12.019] [PMID: 25533504]
[28]
Lian, Q.; Cheng, Y.; Zhong, C.; Wang, F. Inhibition of the IgE-mediated activation of RBL-2H3 cells by TIPP, a novel thymic immunosuppressive pentapeptide. Int. J. Mol. Sci., 2015, 16(1), 2252-2268.
[http://dx.doi.org/10.3390/ijms16012252] [PMID: 25608657]
[29]
Barbuti, A.M.; Chen, Z.S. Paclitaxel through the ages of anticancer therapy: exploring Its role in chemoresistance and radiation therapy. Cancers, 2015, 7(4), 2360-2371.
[http://dx.doi.org/10.3390/cancers7040897] [PMID: 26633515]
[30]
Okano J, ; Rustgi, A.K. Paclitaxel induces prolonged activation of the Ras/MEK/ERK pathway independently of activating the programmed cell death machinery. J. Biol. Chem., 2001, 276(22), 19555-19564.
[http://dx.doi.org/10.1074/jbc.M011164200] [PMID: 11278851]
[31]
Kim, H.K.; Jeong, M.J.; Kong, M.Y.; Han, M.Y.; Son, K.H.; Kim, H.M.; Hong, S.H.; Kwon, B.M. Inhibition of Shc/Grb2 protein-protein interaction suppresses growth of B104-1-1 tumors xenografted in nude mice. Life Sci., 2005, 78(3), 321-328.
[http://dx.doi.org/10.1016/j.lfs.2005.04.067] [PMID: 16146636]
[32]
Hill, C.R.; Jamieson, D.; Thomas, H.D.; Brown, C.D.; Boddy, A.V.; Veal, G.J. Characterisation of the roles of ABCB1, ABCC1, ABCC2 and ABCG2 in the transport and pharmacokinetics of actinomycin D in vitro and in vivo. Biochem. Pharmacol., 2013, 85(1), 29-37.
[http://dx.doi.org/10.1016/j.bcp.2012.10.004] [PMID: 23063411]
[33]
Kim, H.K.; Nam, J.Y.; Han, M.Y.; Lee, E.K.; Choi, J.D.; Bok, S.H.; Kwon, B.M. Actinomycin D as a novel SH2 domain ligand inhibits Shc/Grb2 interaction in B104-1-1 (neu*-transformed NIH3T3) and SAA (hEGFR-overexpressed NIH3T3) cells. FEBS Lett., 1999, 453(1-2), 174-178.
[http://dx.doi.org/10.1016/S0014-5793(99)00710-3] [PMID: 10403397]
[34]
Yamamoto, T.; Ohno, T.; Wakahara, K.; Nagano, A.; Kawai, G.; Saitou, M.; Takigami, I.; Matsuhashi, A.; Yamada, K.; Shimizu, K. Simultaneous inhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways augment the sensitivity to actinomycin D in Ewing sarcoma. J. Cancer Res. Clin. Oncol., 2009, 135(8), 1125-1136.
[http://dx.doi.org/10.1007/s00432-009-0554-z] [PMID: 19205734]
[35]
Borrelli, A.; Tornesello, A.L.; Tornesello, M.L.; Buonaguro, F.M. Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules, 2018, 23(2), 295.
[http://dx.doi.org/10.3390/molecules23020295] [PMID: 29385037]
[36]
Negi, B.; Kumar, D.; Rawat, D.S. Marine Peptides as Anticancer Agents: A Remedy to Mankind by Nature. Curr. Protein Pept. Sci., 2017, 18(9), 885-904.
[http://dx.doi.org/10.2174/1389203717666160724200849] [PMID: 27455970]
[37]
Aaghaz, S.; Gohel, V.; Kamal, A. Peptides as potential anticancer agents. Curr. Top. Med. Chem., 2019, 19(17), 1491-1511.
[http://dx.doi.org/10.2174/1568026619666190125161517] [PMID: 30686254]
[38]
Kurrikoff, K.; Aphkhazava, D.; Langel, Ü. The future of peptides in cancer treatment. Curr. Opin. Pharmacol., 2019, 47, 27-32.
[http://dx.doi.org/10.1016/j.coph.2019.01.008] [PMID: 30856511]
[39]
Katsumata, N. Docetaxel: an alternative taxane in ovarian cancer. Br. J. Cancer, 2003, 89(S3)(Suppl. 3), S9-S15.
[http://dx.doi.org/10.1038/sj.bjc.6601495] [PMID: 14661041]
[40]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[41]
Ratanaphan, A.; Canyuk, B.; Wasiksiri, S.; Mahasawat, P. In vitro platination of human breast cancer suppressor gene1 (BRCA1) by the anticancer drug carboplatin. Biochim. Biophys. Acta, 2005, 1725(2), 145-151.
[http://dx.doi.org/10.1016/j.bbagen.2005.07.006] [PMID: 16099593]
[42]
Feng, R.M.; Zong, Y.N.; Cao, S.M.; Xu, R.H. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun, 2019, 39(1), 22.
[http://dx.doi.org/10.1186/s40880-019-0368-6] [PMID: 31030667]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy