Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Opinion Article

Hypothesis: Designation of Liposomal Scavenger System for Fight against 2019-nCoV

Author(s): Nooshin Bagherani* and Bruce R. Smoller

Volume 22, Issue 1, 2022

Published on: 02 December, 2021

Article ID: e150621194093 Pages: 12

DOI: 10.2174/1871526521666210615141036

Price: $65

Abstract

2019 novel coronavirus (2019-nCoV), also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or COVID-19 virus, is a member of the family Coronaviridae, which is responsible for the current pandemic of disease COVID-19. It is the seventh member of the family Coronaviridae which infects humans, after 229E, OC43, NL63, HKU1, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Fever, dry cough and severe pneumonia are seen as common symptoms at the early stages of COVID-19. Some cases progress to acute respiratory stress syndrome, septic shock, organ failure, and death.

The development of an effective treatment or vaccination for treating or preventing this lethal condition is an urgent need in order to fight this crisis. Up to now, some effective vaccines with different efficacy profiles have been introduced. Herein, we have theoretically designed a scavenger system for gathering 2019-nCoVs, breaking them, and re-introducing them to the immune system.

Keywords: 2019-nCoV, SARS-CoV-2, COVID-19, Coronaviridae, liposomal scavenger system, treatment

Graphical Abstract

[1]
Robson B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput Biol Med 2020; 119103670
[http://dx.doi.org/10.1016/j.compbiomed.2020.103670] [PMID: 32209231]
[2]
Harapan H, Itoh N, Yufika A, et al. Coronavirus disease 2019 (COVID-19): A literature review. J Infect Public Health 2020; 13(5): 667-73.
[http://dx.doi.org/10.1016/j.jiph.2020.03.019] [PMID: 32340833]
[3]
Aouidate A, Ghaleb A, Chtita S, et al. Identification of a novel dual-target scaffold for 3CLpro and RdRp proteins of SARS-CoV-2 using 3D-similarity search, molecular docking, molecular dynamics and ADMET evaluation. J Biomol Struct Dyn 2021; 29(12): 4522-33.
[PMID: 32552534]
[4]
De Rose DU, Piersigilli F, Ronchetti MP, et al. Novel Coronavirus disease (COVID-19) in newborns and infants: What we know so far. Ital J Pediatr 2020; 46(1): 56.
[http://dx.doi.org/10.1186/s13052-020-0820-x] [PMID: 32349772]
[5]
Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020; 92(6): 568-76.
[http://dx.doi.org/10.1002/jmv.25748] [PMID: 32134116]
[6]
Havranek B, Islam SM. An in silico approach for identification of novel inhibitors as potential therapeutics targeting COVID-19 main protease. J Biomol Struct Dyn 2021; 39(12): 4304-15.
[PMID: 32544024]
[7]
Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents 2020; 55(5)105955
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105955] [PMID: 32234468]
[8]
Madabhavi I, Sarkar M, Kadakol N. COVID-19: A review. Monaldi Arch Chest Dis 2020; 90(2): 10.4081.
[9]
Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020; 581(7807): 215-20.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[10]
Coto-Hernández R, Fábregas Ruano MT. Reply to “Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy”. J Thromb Haemost 2020; 18(6): 1519-20.
[http://dx.doi.org/10.1111/jth.14852] [PMID: 32302445]
[11]
Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 2020; 92(6): 552-5.
[http://dx.doi.org/10.1002/jmv.25728] [PMID: 32104915]
[12]
Porfidia A, Pola R. Venous thromboembolism in COVID-19 patients. J Thromb Haemost 2020; 18(6): 1516-7.
[http://dx.doi.org/10.1111/jth.14842] [PMID: 32294289]
[13]
Ye M, Ren Y, Lv T. Encephalitis as a clinical manifestation of COVID-19. Brain Behav Immun 2020; 88: 945-6.
[http://dx.doi.org/10.1016/j.bbi.2020.04.017] [PMID: 32283294]
[14]
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circ Res 2020; 126(10): 1456-74.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[15]
Shah Mahmud R, Müller C, Romanova Y, et al. Ribonuclease from bacillus acts as an antiviral agent against negative- and positive-sense single stranded human respiratory RNA viruses. BioMed Res Int 2017; 20175279065
[http://dx.doi.org/10.1155/2017/5279065] [PMID: 28546965]
[16]
Ahmad A, Rehman MU, Alkharfy KM. An alternative approach to minimize the risk of coronavirus (COVID-19) and similar infections. Eur Rev Med Pharmacol Sci 2020; 24(7): 4030-4.
[PMID: 32329879]
[17]
Kotwani A, Gandra S. Potential pharmacological agents for COVID-19. Indian J Public Health 2020; 64(Suppl.): S112-6.
[http://dx.doi.org/10.4103/ijph.IJPH_456_20] [PMID: 32496239]
[18]
Baron SA, Devaux C, Colson P, Raoult D, Rolain JM. Teicoplanin: an alternative drug for the treatment of COVID-19? Int J Antimicrob Agents 2020; 55(4)105944
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105944] [PMID: 32179150]
[19]
Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18(5): 1094-9.
[http://dx.doi.org/10.1111/jth.14817] [PMID: 32220112]
[20]
Brown BL, McCullough J. Treatment for emerging viruses: Convalescent plasma and COVID-19. Transfus Apheresis Sci 2020; 59(3)102790
[http://dx.doi.org/10.1016/j.transci.2020.102790] [PMID: 32345485]
[21]
Rajendran K, Krishnasamy N, Rangarajan J, Rathinam J, Natarajan M, Ramachandran A. Convalescent plasma transfusion for the treatment of COVID-19: Systematic review. J Med Virol 2020; 92(9): 1475-83.
[http://dx.doi.org/10.1002/jmv.25961] [PMID: 32356910]
[22]
Johnson RM, Vinetz JM. Dexamethasone in the management of covid -19. BMJ 2020; 370: m2648.
[http://dx.doi.org/10.1136/bmj.m2648] [PMID: 32620554]
[23]
Theoharides TC, Conti P. Dexamethasone for COVID-19? Not so fast. J Biol Regul Homeost Agents 2020; 34(3): 1241-3.
[PMID: 32551464]
[24]
Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev 2020; 53: 66-70.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.002] [PMID: 32418715]
[25]
Liu Y, Gayle AA, Wilder-Smith A, et al. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med 2020; 27(2): taaa021..
[26]
Rizzo P, Vieceli Dalla Sega F, Fortini F, Marracino L, Rapezzi C, Ferrari R. COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm? Basic Res Cardiol 2020; 115(3): 31.
[http://dx.doi.org/10.1007/s00395-020-0791-5] [PMID: 32274570]
[27]
Yadav D, Sandeep K, Pandey D, et al. Liposomes for drug delivery. J Biotechnol Biomater 2017; 7: 4.
[http://dx.doi.org/10.4172/2155-952X.1000276]
[28]
Sharma SK, Farah D, Misra-Bhattacharya S, Bajpai P, Agarwal A, Mohammad O. Escheriosome entrapped soluble blood stage antigens impart protective immunity against a multi-drug resistant isolate of Plasmodium yoelii nigeriensis in BALB/c mice. Vaccine 2006; 24(7): 948-56.
[http://dx.doi.org/10.1016/j.vaccine.2005.08.063] [PMID: 16168527]
[29]
Chauhan A, Swaleha Z, Ahmad N, et al. Escheriosome mediated cytosolic delivery of Candida albicans cytosolic proteins induces enhanced cytotoxic T lymphocyte response and protective immunity. Vaccine 2011; 29(33): 5424-33.
[http://dx.doi.org/10.1016/j.vaccine.2011.05.066] [PMID: 21645572]
[30]
Sharma SK, Dube A, Nadeem A, et al. Non PC liposome entrapped promastigote antigens elicit parasite specific CD8+ and CD4+ T-cell immune response and protect hamsters against visceral leishmaniasis. Vaccine 2006; 24(11): 1800-10.
[http://dx.doi.org/10.1016/j.vaccine.2005.10.025] [PMID: 16310900]
[31]
Ahmad N, Deeba F, Faisal SM, et al. Role of fusogenic non-PC liposomes in elicitation of protective immune response against experimental murine salmonellosis. Biochimie 2006; 88(10): 1391-400.
[http://dx.doi.org/10.1016/j.biochi.2006.04.017] [PMID: 16765503]
[32]
Singha H, Mallick AI, Jana C, et al. Escheriosomes entrapped DNA vaccine co-expressing Cu-Zn superoxide dismutase and IL-18 confers protection against Brucella abortus. Microbes Infect 2008; 10(10-11): 1089-96.
[http://dx.doi.org/10.1016/j.micinf.2008.05.007] [PMID: 18602490]
[33]
Mallick AI, Singha H, Khan S, et al. Escheriosome-mediated delivery of recombinant ribosomal L7/L12 protein confers protection against Murine brucellosis. Vaccine 2007; 25(46): 7873-84.
[http://dx.doi.org/10.1016/j.vaccine.2007.09.008] [PMID: 17931756]
[34]
Khan AA, Jabeen M, Khan AA, Owais M. Anticancer efficacy of a novel propofol-linoleic acid-loaded Escheriosomal formulation against murine hepatocellular carcinoma. Nanomedicine (Lond) 2013; 8(8): 1281-94.
[http://dx.doi.org/10.2217/nnm.12.166] [PMID: 23311988]
[35]
Chauhan A, Zubair S, Nadeem A, Ansari SA, Ansari MY, Mohammad O. Escheriosome-mediated cytosolic delivery of PLK1-specific siRNA: potential in treatment of liver cancer in BALB/c mice. Nanomedicine (Lond) 2014; 9(4): 407-20.
[http://dx.doi.org/10.2217/nnm.13.21] [PMID: 24910873]
[36]
Khan AA. Pro-apoptotic activity of nano-escheriosome based oleic acid conjugate against 7,12-dimethylbenz(a)anthracene (DMBA) induced cutaneous carcinogenesis. Biomed Pharmacother 2017; 90: 295-302.
[http://dx.doi.org/10.1016/j.biopha.2017.03.061] [PMID: 28364601]
[37]
Syed FM, Khan MA, Nasti TH, Ahmad N, Mohammad O. Antigen entrapped in the escheriosomes leads to the generation of CD4(+) helper and CD8(+) cytotoxic T cell response. Vaccine 2003; 21(19-20): 2383-93.
[http://dx.doi.org/10.1016/S0264-410X(03)00106-3] [PMID: 12744869]
[38]
Ahmad N, Masood AK, Owais M. Fusogenic potential of prokaryotic membrane lipids. Implication in vaccine development. Eur J Biochem 2001; 268(22): 5667-75.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02507.x] [PMID: 11722550]
[39]
Trop IE, Kanter VM, Kazantseva SI, Aleksandrov VI, Postnova LS, Nikolaeva SP. O primenenii ribonucleazy pri lechenii bol’nykh kleshchevym éntsefalitom. Sov Med 1971; 34(3): 104-7.
[PMID: 4107318]
[40]
Glukhov BN, Jerusalimsky AP, Canter VM, Salganik RI. Ribonuclease treatment of tick-borne encephalitis. Arch Neurol 1976; 33(9): 598-603.
[http://dx.doi.org/10.1001/archneur.1976.00500090004002] [PMID: 60988]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy