Research Article

饮食诱导的肥胖差异调节 C57 和 FVB 小鼠品系的心脏炎症状态

卷 22, 期 4, 2022

发表于: 06 July, 2021

页: [365 - 373] 页: 9

弟呕挨: 10.2174/1566524021666210603163613

摘要

背景:心血管疾病是全世界猝死风险最高的疾病,而肥胖在很大程度上与增加的风险因素有关。肥胖个体的动脉高血压患病率较高,包括存在心脏肥大。众所周知,Toll 样受体 [TLR],主要是心脏细胞中的 2 和 4,是心脏肥大过程的基础。肥胖已被研究为损伤相关分子模式 [DAMPs] 的激活剂,它使用 TLR 信号通路增加炎症的核因子 NF-kB,增加心脏组织中的细胞因子表达。已知 FVB/N 和 C57BL/6 小鼠品系在新陈代谢方面具有不同的行为,但心脏嗜性和先天免疫系统调节的差异尚不清楚。 方法:本研究旨在评估先天免疫因子对肥胖实验模型诱导的心脏肥大的贡献,比较两种小鼠品系:C57BL/6 和 FVB/N。两种菌株都接受含有 23% 蛋白质、35.5% 碳水化合物和 35.9% 脂肪的高脂肪饮食,持续 68 天。收集心脏、称重并提交 RT-qPCR,并通过 Bioplex 分析血清。 结果:我们观察到两种菌株在 68 天后心脏质量都有所增加。随后仅在 C57BL/6 中增加了 α-肌动蛋白,而在 FVB/N 中增加了 ANF。先天免疫成分和炎性细胞因子的基因表达仅在 C57BL/6 中增加,但在 FVB/N 中没有增加。 结论:基于所得结果,我们证实C57BL/6小鼠的先天免疫系统作用比FVB/N更强。

关键词: 心脏肥大、肥胖、高脂饮食、免疫反应、TLR、C57BL/6、FVB/N。

[1]
Hernandes F, Valentini MP. Obesidade: Causas e consequências em crianças e adolescentes. Conexões (Campinas) 2010; 8(3): 47-63. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/conexoes/article/view/8637727
[http://dx.doi.org/10.20396/conex.v8i3.8637727]
[2]
Seravalle G, Grassi G. Obesity and hypertension. Pharmacol Res 2017; 122: 1-7. Available from: https://linkinghub. elsevier.com/retrieve/pii/S1043661817304620
[http://dx.doi.org/10.1016/j.phrs.2017.05.013] [PMID: 28532816]
[3]
Liu Y-J, Araujo S, Recker RR, Deng H-W. Molecular and genetic mechanisms of obesity: Implications for future management. Curr Mol Med 2003; 3(4): 325-40. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1566-5240&volume=3&issue=4&spage=325
[http://dx.doi.org/10.2174/1566524033479735] [PMID: 12776988]
[4]
Wasim M, Awan FR, Najam SS, Khan AR, Khan HN. Role of leptin deficiency, inefficiency, and leptin receptors in obesity. Biochem Genet 2016; 54(5): 565-72.
[http://dx.doi.org/10.1007/s10528-016-9751-z] [PMID: 27313173]
[5]
Romero CEM, Zanesco A. O papel dos hormônios leptina e grelina na gênese da obesidade. Rev Nutr 2006; 19(1): 85-91. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-52732006000100009&lng=pt&tlng=pt
[http://dx.doi.org/10.1590/S1415-52732006000100009]
[6]
Suresh Y, Das UN. Leptin-the fat controller. J Assoc Physicians India 1998; 46(6): 538-44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11273255
[PMID: 11273255]
[7]
Abella V, Scotece M, Conde J, et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol 2017; 13(2): 100-9. Available from: http://www.nature.com/articles/nrrheum.2016.209
[http://dx.doi.org/10.1038/nrrheum.2016.209] [PMID: 28053336]
[8]
Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine 2008; 42(2): 145-51.
[http://dx.doi.org/10.1016/j.cyto.2008.01.006] [PMID: 18304834]
[9]
Trentin-Sonoda M, da Silva RC, Kmit FV, et al. Knockout of toll-like receptors 2 and 4 prevents renal ischemia-reperfusion-induced cardiac hypertrophy in mice. PLoS One 2015; 10(10): e0139350.
[http://dx.doi.org/10.1371/journal.pone.0139350] [PMID: 26448184]
[10]
Morin SO, Poggi M, Alessi M-C, Landrier J-F, Nunès JA. Modulation of t cell activation in obesity. Antioxid Redox Signal 2017; 26(10): 489-500. Available from: http://www.liebertpub.com/doi/10.1089/ars.2016.6746
[http://dx.doi.org/10.1089/ars.2016.6746] [PMID: 27225042]
[11]
de la Maza MP, Estevez A, Bunout D, Klenner C, Oyonarte M, Hirsch S. Ventricular mass in hypertensive and normotensive obese subjects. Int J Obes Relat Metab Disord 1994; 18(4): 193-7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8044192
[PMID: 8044192]
[12]
Zhu L, Li C, Liu Q, Xu W, Zhou X. Molecular biomarkers in cardiac hypertrophy. J Cell Mol Med 2019; 23(3): 1671-7. Available from: http://doi.wiley.com/10.1111/jcmm.14129
[http://dx.doi.org/10.1111/jcmm.14129] [PMID: 30648807]
[13]
Nascimento-Sales M, Fredo-da-Costa I, Borges Mendes ACB, et al. Is the FVB/N mouse strain truly resistant to diet-induced obesity? Physiol Rep 2017; 5(9): 5.
[http://dx.doi.org/10.14814/phy2.13271] [PMID: 28483861]
[14]
Sartorelli DS, Franco LJ. Tendências do diabetes mellitus no Brasil: O papel da transição nutricional. Cad Saude Publica 2003; 19(Suppl. 1): S29-36.
[http://dx.doi.org/10.1590/S0102-311X2003000700004] [PMID: 12886433]
[15]
Wang Z, Li L, Zhao H, Peng S, Zuo Z. Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice. Metabolism 2015; 64(8): 917-25. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0026049515001286
[http://dx.doi.org/10.1016/j.metabol.2015.04.010] [PMID: 25982698]
[16]
Zeyda M, Stulnig TM. Obesity, inflammation, and insulin resistance--a mini-review. Gerontology 2009; 55(4): 379-86. Available from: https://www.karger.com/Article/FullText/212758
[http://dx.doi.org/10.1159/000212758] [PMID: 19365105]
[17]
Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011; 11(2): 85-97. Available from: http://www.nature.com/articles/nri2921
[http://dx.doi.org/10.1038/nri2921] [PMID: 21252989]
[18]
Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 2008; 14(3-4): 222-31. Available from: https://molmed.biomedcentral.com/articles/10.2119/2007-00119.Tilg
[http://dx.doi.org/10.2119/2007-00119.Tilg] [PMID: 18235842]
[19]
Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 1997; 389(6651): 610-4. Available from: http://www.nature.com/articles/39335
[http://dx.doi.org/10.1038/39335] [PMID: 9335502]
[20]
Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21(1): 335-76. Available from: http://www.annualreviews.org/doi/10.1146/annurev.immunol.21.120601.141126
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.141126] [PMID: 12524386]

© 2024 Bentham Science Publishers | Privacy Policy