Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

3 CpG Methylation Biomarkers for the Diagnosis of Polycystic Ovary Syndrome (PCOS) in Blood Samples

Author(s): Linling Xie, Xiaotao Jiang, Yi Chen, Cihui Huang, Yanfen Chen, Guantong Liu, Wenxi Sun, Lei Zeng* and Ruling Lu*

Volume 25, Issue 8, 2022

Published on: 02 June, 2021

Page: [1304 - 1313] Pages: 10

DOI: 10.2174/1386207321666210602170054

Price: $65

Abstract

Background: Polycystic ovary syndrome (PCOS) is a common endocrine disease in women that seriously interferes with patient's metabolic and reproductive functions. The current diagnostic criteria for PCOS are expert-based and still disputed. Previous studies have identified changes in DNA methylation in peripheral blood of women with PCOS, but their diagnostic potential for PCOS remains to be studied.

Objective: The present study aimed to identify potential methylation biomarkers for the diagnosis of PCOS in blood.

Methods: Methylation profiling of peripheral blood was downloaded from a public database, Gene Expression Omnibus (GEO), including 30 PCOS patients (diagnosed with the revised 2003 Rotterdam consensus criteria) and 30 age-matched healthy women recruited from Centre of Reproductive Medicine, Linyi People’s Hospital, Shandong, China. Weighted gene co-expression network analysis (WGCNA) was utilized to identify PCOS-related co-methylation CpG sites (co- MPs). Functional enrichment analysis was performed on the localized genes of PCOS-related co- MPs. The least absolute shrinkage and selection operator (LASSO) regression was used to screen out CpG methylation signatures for PCOS diagnosis, and receiver operating characteristic (ROC) analysis was conducted to evaluate their diagnostic accuracy. To assess the accuracy of the combination of the investigated indicators, multivariate ROC analysis was performed on the predicted probability values obtained using binary logistic regression on the methylation levels of selected CpGs.

Results: Seven co-methylation modules were obtained, among which the turquoise module is the most relevant to PCOS, containing 194 co-MPs. The genes that these co-MPs located in were mainly associated with the immune-related pathway. According to LASSO regression, three Co- MPs (cg23464743, cg06834912, cg00103771) were identified as potential diagnostic biomarkers of PCOS. ROC analysis showed an AUC (area under curve) of 0.7556 (sensitivity 60.0%, specificity 83.3%) for cg23464743, 0.7822 (sensitivity 70.0%, specificity 80.0%) for cg06834912, and 0.7611 (sensitivity 63.3%, specificity 83.3%) for cg00103771. The diagnostic accuracy of the combination of these 3 indicators presented to be higher than any single one of them, with the AUC of 0.8378 (sensitivity 73.3%, specificity 93.3%).

Conclusion: The combination of 3 CpG methylation signatures in blood was identified with a good diagnostic accuracy for PCOS, which may bring new insight into the development of PCOS diagnostic markers in the future.

Keywords: Diagnostic markers, methylation, polycystic ovary syndrome, LASSO regression, WGCNA, CPG.

Graphical Abstract

[1]
Azziz, R.; Kintziger, K.; Li, R.; Laven, J.; Morin-Papunen, L.; Merkin, S.S.; Teede, H.; Yildiz, B.O. Recommendations for epidemiologic and phenotypic research in polycystic ovary syndrome: an androgen excess and PCOS society resource. Hum. Reprod., 2019, 34(11), 2254-2265.
[http://dx.doi.org/10.1093/humrep/dez185] [PMID: 31751476]
[2]
Moran, L.J.; Tassone, E.C.; Boyle, J.; Brennan, L.; Harrison, C.L.; Hirschberg, A.L.; Lim, S.; Marsh, K.; Misso, M.L.; Redman, L.; Thondan, M.; Wijeyaratne, C.; Garad, R.; Stepto, N.K.; Teede, H.J. Evidence summaries and recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome: Lifestyle management. Obes. Rev., 2020, 21(10), e13046.
[http://dx.doi.org/10.1111/obr.13046] [PMID: 32452622]
[3]
Bahri Khomami, M.; Joham, A.E.; Boyle, J.A.; Piltonen, T.; Silagy, M.; Arora, C.; Misso, M.L.; Teede, H.J.; Moran, L.J. Increased maternal pregnancy complications in polycystic ovary syndrome appear to be independent of obesity-A systematic review, meta-analysis, and meta-regression. Obes. Rev., 2019, 20(5), 659-674.
[http://dx.doi.org/10.1111/obr.12829] [PMID: 30674081]
[4]
McCartney, C.R.; Marshall, J.C. Clinical practice. Polycystic ovary syndrome. N. Engl. J. Med., 2016, 375(1), 54-64.
[http://dx.doi.org/10.1056/NEJMcp1514916] [PMID: 27406348]
[5]
Lizneva, D.; Suturina, L.; Walker, W.; Brakta, S.; Gavrilova-Jordan, L.; Azziz, R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil. Steril., 2016, 106(1), 6-15.
[http://dx.doi.org/10.1016/j.fertnstert.2016.05.003] [PMID: 27233760]
[6]
Chen, Z.J.; Zhao, H.; He, L.; Shi, Y.; Qin, Y.; Shi, Y.; Li, Z.; You, L.; Zhao, J.; Liu, J.; Liang, X.; Zhao, X.; Zhao, J.; Sun, Y.; Zhang, B.; Jiang, H.; Zhao, D.; Bian, Y.; Gao, X.; Geng, L.; Li, Y.; Zhu, D.; Sun, X.; Xu, J.E.; Hao, C.; Ren, C.E.; Zhang, Y.; Chen, S.; Zhang, W.; Yang, A.; Yan, J.; Li, Y.; Ma, J.; Zhao, Y. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat. Genet., 2011, 43(1), 55-59.
[http://dx.doi.org/10.1038/ng.732] [PMID: 21151128]
[7]
Day, F.R.; Hinds, D.A.; Tung, J.Y.; Stolk, L.; Styrkarsdottir, U.; Saxena, R.; Bjonnes, A.; Broer, L.; Dunger, D.B.; Halldorsson, B.V.; Lawlor, D.A.; Laval, G.; Mathieson, I.; McCardle, W.L.; Louwers, Y.; Meun, C.; Ring, S.; Scott, R.A.; Sulem, P.; Uitterlinden, A.G.; Wareham, N.J.; Thorsteinsdottir, U.; Welt, C.; Stefansson, K.; Laven, J.S.E.; Ong, K.K.; Perry, J.R.B. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat. Commun., 2015, 6, 8464.
[http://dx.doi.org/10.1038/ncomms9464] [PMID: 26416764]
[8]
Hayes, M.G.; Urbanek, M.; Ehrmann, D.A.; Armstrong, L.L.; Lee, J.Y.; Sisk, R.; Karaderi, T.; Barber, T.M.; McCarthy, M.I.; Franks, S.; Lindgren, C.M.; Welt, C.K.; Diamanti-Kandarakis, E.; Panidis, D.; Goodarzi, M.O.; Azziz, R.; Zhang, Y.; James, R.G.; Olivier, M.; Kissebah, A.H.; Stener-Victorin, E.; Legro, R.S.; Dunaif, A. Reproductive Medicine Network. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat. Commun., 2015, 6, 7502.
[http://dx.doi.org/10.1038/ncomms8502] [PMID: 26284813]
[9]
Dumesic, D.A.; Oberfield, S.E.; Stener-Victorin, E.; Marshall, J.C.; Laven, J.S.; Legro, R.S. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr. Rev., 2015, 36(5), 487-525.
[http://dx.doi.org/10.1210/er.2015-1018] [PMID: 26426951]
[10]
Yu, Y.Y.; Sun, C.X.; Liu, Y.K.; Li, Y.; Wang, L.; Zhang, W. Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome. Fertil. Steril., 2015, 104(1), 145-53.e6.
[http://dx.doi.org/10.1016/j.fertnstert.2015.04.005] [PMID: 25956362]
[11]
Feinberg, A.P. The key role of epigenetics in human disease prevention and mitigation. N. Engl. J. Med., 2018, 378(14), 1323-1334.
[http://dx.doi.org/10.1056/NEJMra1402513] [PMID: 29617578]
[12]
Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology, 2013, 38(1), 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[13]
Mimouni, N.E.H.; Paiva, I.; Barbotin, A.L.; Timzoura, F.E.; Plassard, D.; Le Gras, S.; Ternier, G.; Pigny, P.; Catteau-Jonard, S.; Simon, V.; Prevot, V.; Boutillier, A.L.; Giacobini, P. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process. Cell Metab., 2021, 33(3), 513-530.e8.
[http://dx.doi.org/10.1016/j.cmet.2021.01.004] [PMID: 33539777]
[14]
Sagvekar, P.; Mangoli, V.; Desai, S.; Patil, A.; Mukherjee, S. LINE1 CpG-DNA hypomethylation in granulosa cells and blood leukocytes is associated with PCOS and related traits. J. Clin. Endocrinol. Metab., 2017, 102(4), 1396-1405.
[http://dx.doi.org/10.1210/jc.2016-2645] [PMID: 28324041]
[15]
Jones, M.R.; Brower, M.A.; Xu, N.; Cui, J.; Mengesha, E.; Chen, Y.D.; Taylor, K.D.; Azziz, R.; Goodarzi, M.O. Systems genetics reveals the functional context of PCOS loci and identifies genetic and molecular mechanisms of disease heterogeneity. PLoS Genet., 2015, 11(8), e1005455.
[http://dx.doi.org/10.1371/journal.pgen.1005455] [PMID: 26305227]
[16]
Wang, P.; Zhao, H.; Li, T.; Zhang, W.; Wu, K.; Li, M.; Bian, Y.; Liu, H.; Ning, Y.; Li, G.; Chen, Z.J. Hypomethylation of the LH/choriogonadotropin receptor promoter region is a potential mechanism underlying susceptibility to polycystic ovary syndrome. Endocrinology, 2014, 155(4), 1445-1452.
[http://dx.doi.org/10.1210/en.2013-1764] [PMID: 24527662]
[17]
Sagvekar, P.; Kumar, P.; Mangoli, V.; Desai, S.; Mukherjee, S. DNA methylome profiling of granulosa cells reveals altered methylation in genes regulating vital ovarian functions in polycystic ovary syndrome. Clin. Epigenetics, 2019, 11(1), 61.
[http://dx.doi.org/10.1186/s13148-019-0657-6] [PMID: 30975191]
[18]
Kokosar, M.; Benrick, A.; Perfilyev, A.; Fornes, R.; Nilsson, E.; Maliqueo, M.; Behre, C.J.; Sazonova, A.; Ohlsson, C.; Ling, C.; Stener-Victorin, E. Epigenetic and transcriptional alterations in human adipose tissue of polycystic ovary syndrome. Sci. Rep., 2016, 6, 22883.
[http://dx.doi.org/10.1038/srep22883] [PMID: 26975253]
[19]
Nilsson, E.; Benrick, A.; Kokosar, M.; Krook, A.; Lindgren, E.; Källman, T.; Martis, M.M.; Højlund, K.; Ling, C.; Stener-victorin, E. transcriptional and epigenetic changes influencing skeletal muscle metabolism in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab., 2018, 103(12), 4465-4477.
[http://dx.doi.org/10.1210/jc.2018-00935] [PMID: 30113663]
[20]
Vázquez-Martínez, E.R.; Gómez-Viais, Y.I.; García-Gómez, E.; Reyes-Mayoral, C.; Reyes-Muñoz, E.; Camacho-Arroyo, I.; Cerbón, M. DNA methylation in the pathogenesis of polycystic ovary syndrome. Reproduction, 2019, 158(1), R27-R40.
[http://dx.doi.org/10.1530/REP-18-0449] [PMID: 30959484]
[21]
Xu, N.; Azziz, R.; Goodarzi, M.O. Epigenetics in polycystic ovary syndrome: a pilot study of global DNA methylation. Fertil. Steril., 2010, 94(2), 781-3.e1.
[http://dx.doi.org/10.1016/j.fertnstert.2009.10.020] [PMID: 19939367]
[22]
Li, S.; Zhu, D.; Duan, H.; Ren, A.; Glintborg, D.; Andersen, M.; Skov, V.; Thomassen, M.; Kruse, T.; Tan, Q. Differential DNA methylation patterns of polycystic ovarian syndrome in whole blood of Chinese women. Oncotarget, 2017, 8(13), 20656-20666.
[http://dx.doi.org/10.18632/oncotarget.9327] [PMID: 27192117]
[23]
Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 2003, 4(2), 249-264.
[http://dx.doi.org/10.1093/biostatistics/4.2.249] [PMID: 12925520]
[24]
Horvath, S.; Dong, J. Geometric interpretation of gene coexpression network analysis. PLOS Comput. Biol., 2008, 4(8), e1000117.
[http://dx.doi.org/10.1371/journal.pcbi.1000117] [PMID: 18704157]
[25]
Langfelder, P.; Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9(1), 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[26]
Wei, J.H.; Haddad, A.; Wu, K.J.; Zhao, H.W.; Kapur, P.; Zhang, Z.L.; Zhao, L.Y.; Chen, Z.H.; Zhou, Y.Y.; Zhou, J.C.; Wang, B.; Yu, Y.H.; Cai, M.Y.; Xie, D.; Liao, B.; Li, C.X.; Li, P.X.; Wang, Z.R.; Zhou, F.J.; Shi, L.; Liu, Q.Z.; Gao, Z.L.; He, D.L.; Chen, W.; Hsieh, J.T.; Li, Q.Z.; Margulis, V.; Luo, J.H. A CpG-methylation-based assay to predict survival in clear cell renal cell carcinoma. Nat. Commun., 2015, 6, 8699.
[http://dx.doi.org/10.1038/ncomms9699] [PMID: 26515236]
[27]
Wang, H.; Lengerich, B.J.; Aragam, B.; Xing, E.P. Precision Lasso: accounting for correlations and linear dependencies in high-dimensional genomic data. Bioinformatics, 2019, 35(7), 1181-1187.
[http://dx.doi.org/10.1093/bioinformatics/bty750] [PMID: 30184048]
[28]
Goeman, J.J. L1 penalized estimation in the Cox proportional hazards model. Biom. J., 2010, 52(1), 70-84.
[PMID: 19937997]
[29]
Gui, J.; Li, H. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics, 2005, 21(13), 3001-3008.
[http://dx.doi.org/10.1093/bioinformatics/bti422] [PMID: 15814556]
[30]
Qiu, J.; Peng, B.; Tang, Y.; Qian, Y.; Guo, P.; Li, M.; Luo, J.; Chen, B.; Tang, H.; Lu, C.; Cai, M.; Ke, Z.; He, W.; Zheng, Y.; Xie, D.; Li, B.; Yuan, Y. CpG methylation signature predicts recurrence in early-stage hepatocellular carcinoma: results from a multicenter study. J. Clin. Oncol., 2017, 35(7), 734-742.
[http://dx.doi.org/10.1200/JCO.2016.68.2153] [PMID: 28068175]
[31]
Sveen, A.; Ågesen, T.H.; Nesbakken, A.; Meling, G.I.; Rognum, T.O.; Liestøl, K.; Skotheim, R.I.; Lothe, R.A. ColoGuidePro: a prognostic 7-gene expression signature for stage III colorectal cancer patients. Clin. Cancer Res., 2012, 18(21), 6001-6010.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3302] [PMID: 22991413]
[32]
Rosenfield, R.L.; Ehrmann, D.A. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr. Rev., 2016, 37(5), 467-520.
[http://dx.doi.org/10.1210/er.2015-1104] [PMID: 27459230]
[33]
Dapas, M; Lin, FTJ; Nadkarni, GN; Sisk, R; Legro, RS; Urbanek, M M Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis. PLoS Med 2020, 17(6) e1003132-e
[http://dx.doi.org/10.1371/journal.pmed.1003132]
[34]
Dor, Y.; Cedar, H. Principles of DNA methylation and their implications for biology and medicine. Lancet, 2018, 392(10149), 777-786.
[http://dx.doi.org/10.1016/S0140-6736(18)31268-6] [PMID: 30100054]
[35]
Kachuei, M.; Jafari, F.; Kachuei, A.; Keshteli, A.H. Prevalence of autoimmune thyroiditis in patients with polycystic ovary syndrome. Arch. Gynecol. Obstet., 2012, 285(3), 853-856.
[http://dx.doi.org/10.1007/s00404-011-2040-5] [PMID: 21866332]
[36]
Singla, R.; Gupta, Y.; Khemani, M.; Aggarwal, S. Thyroid disorders and polycystic ovary syndrome: An emerging relationship. Indian J. Endocrinol. Metab., 2015, 19(1), 25-29.
[http://dx.doi.org/10.4103/2230-8210.146860] [PMID: 25593822]
[37]
Escobar-Morreale, H.F.; Roldán-Martín, M.B. Type 1 diabetes and polycystic ovary syndrome: systematic review and meta-analysis. Diabetes Care, 2016, 39(4), 639-648.
[http://dx.doi.org/10.2337/dc15-2577] [PMID: 27208367]
[38]
Diamanti-Kandarakis, E.; Paterakis, T.; Kandarakis, H.A. Indices of low-grade inflammation in polycystic ovary syndrome. Ann. N. Y. Acad. Sci., 2006, 1092, 175-186.
[http://dx.doi.org/10.1196/annals.1365.015] [PMID: 17308143]
[39]
Jamilian, M.; Mansury, S.; Bahmani, F.; Heidar, Z.; Amirani, E.; Asemi, Z. The effects of probiotic and selenium co-supplementation on parameters of mental health, hormonal profiles, and biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome. J. Ovarian Res., 2018, 11(1), 80.
[http://dx.doi.org/10.1186/s13048-018-0457-1] [PMID: 30217229]
[40]
Ghodke-Puranik, Y.; Niewold, T.B. Immunogenetics of systemic lupus erythematosus: A comprehensive review. J. Autoimmun., 2015, 64, 125-136.
[http://dx.doi.org/10.1016/j.jaut.2015.08.004] [PMID: 26324017]
[41]
Cepek, P.; Zajacova, M.; Kotrbova-Kozak, A.; Silhova, E.; Cerna, M. DNA methylation and mRNA expression of HLA-DQA1 alleles in type 1 diabetes mellitus. Immunology, 2016, 148(2), 150-159.
[http://dx.doi.org/10.1111/imm.12593] [PMID: 26854762]
[42]
Imgenberg-Kreuz, J.; Carlsson Almlöf, J.; Leonard, D.; Alexsson, A.; Nordmark, G.; Eloranta, M.L.; Rantapää-Dahlqvist, S.; Bengtsson, A.A.; Jönsen, A.; Padyukov, L.; Gunnarsson, I.; Svenungsson, E.; Sjöwall, C.; Rönnblom, L.; Syvänen, A.C.; Sandling, J.K. DNA methylation mapping identifies gene regulatory effects in patients with systemic lupus erythematosus. Ann. Rheum. Dis., 2018, 77(5), 736-743.
[http://dx.doi.org/10.1136/annrheumdis-2017-212379] [PMID: 29437559]
[43]
Lapeyre-Prost, A.; Terme, M.; Pernot, S.; Pointet, A.L.; Voron, T.; Tartour, E.; Taieb, J. Immunomodulatory Activity of VEGF in cancer. Int. Rev. Cell Mol. Biol., 2017, 330, 295-342.
[http://dx.doi.org/10.1016/bs.ircmb.2016.09.007] [PMID: 28215534]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy