Review Article

酶替代疗法治疗与酶缺乏相关的遗传性疾病

卷 29, 期 3, 2022

发表于: 26 May, 2021

页: [489 - 525] 页: 37

弟呕挨: 10.2174/0929867328666210526144654

价格: $65

摘要

人类基因突变可能导致功能蛋白的丧失,导致疾病。在这些遗传性疾病中,很大一类与代谢酶的缺乏有关,导致底物浓度的增加和催化反应产生的代谢物的损失。基于小分子的治疗作用的鉴定对药物化学家来说是一个挑战,因为目标缺失。替代方法基于生物学,包括基因和干细胞治疗,CRISPR / Cas9技术,不同类型的RNA和酶替代疗法(ERT)。本文将重点介绍后一种方法,自20世纪90年代以来已成功应用于治疗许多罕见疾病,其中大多数是溶酶体贮积病或代谢性疾病。到目前为止,FDA / EMA已经批准了十几种酶用于溶酶体储存障碍,只有少数酶用于代谢疾病。用于替代疗法的酶主要在哺乳动物细胞中产生,一些在植物细胞和酵母中产生,并进一步加工以获得活性,高生物利用度,可降解性较低的产品。ERT功效增加仍在研究中的问题是优化酶与细胞膜和内化的相互作用,免疫原性的降低以及当需要靶向神经元细胞时克服血脑屏障限制。总体而言,ERT在治疗许多遗传性罕见疾病方面已经证明了其有效性和安全性,既挽救了新生儿的生命,又改善了患者的生活质量,并且是靶向生物制剂的一个非常成功的例子。

关键词: 酶缺乏症,遗传性疾病,重组蛋白,细胞内化,甘露糖6-磷酸,溶酶体储存障碍,代谢性疾病,生物制剂。

[1]
Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2020, 48(D1), D845-D855.
[PMID: 31680165]
[2]
Tambuyzer, E.; Vandendriessche, B.; Austin, C.P.; Brooks, P.J.; Larsson, K.; Miller Needleman, K.I.; Valentine, J.; Davies, K.; Groft, S.C.; Preti, R.; Oprea, T.I.; Prunotto, M. Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nat. Rev. Drug Discov., 2020, 19(2), 93-111.
[http://dx.doi.org/10.1038/s41573-019-0049-9] [PMID: 31836861]
[3]
Baldo, B.A. Enzymes approved for human therapy: Indications, mechanisms and adverse effects. BioDrugs. Clin. Immunotherap. Biopharm. Gene Ther., 2015, 29(1), 31-55.
[4]
Tambuyzer, E. Rare diseases, orphan drugs and their regulation: Questions and misconceptions. Nat. Rev. Drug Discov., 2010, 9(12), 921-929.
[http://dx.doi.org/10.1038/nrd3275] [PMID: 21060315]
[5]
Tran, M.L.; Génisson, Y.; Ballereau, S.; Dehoux, C. Second-generation pharmacological chaperones: Beyond inhibitors. Molecules, 2020, 25(14)E3145
[http://dx.doi.org/10.3390/molecules25143145] [PMID: 32660097]
[6]
Han, T.U.; Sam, R.; Sidransky, E. Small molecule chaperones for the treatment of gaucher disease and gba1-associated parkinson disease. Front. Cell Dev. Biol., 2020, 8, 271.
[7]
Keeling, K.M.; Xue, X.; Gunn, G.; Bedwell, D.M. Therapeutics based on stop codon readthrough. Annu. Rev. Genomics Hum. Genet., 2014, 15, 371-394.
[http://dx.doi.org/10.1146/annurev-genom-091212-153527]
[8]
Biffi, A. Gene therapy for lysosomal storage disorders: A good start. Hum. Mol. Genet., 2016, 25(R1), R65-R75.
[http://dx.doi.org/10.1093/hmg/ddv457] [PMID: 26604151]
[9]
Cring, M.R.; Sheffield, V.C. Gene therapy and gene correction: targets, progress, and challenges for treating human diseases. Gene Ther., 2020.
[http://dx.doi.org/10.1038/s41434-020-00197-8] [PMID: 33037407]
[10]
Leal, A.F.; Espejo-Mojica, A.J.; Sánchez, O.F.; Ramírez, C.M.; Reyes, L.H.; Cruz, J.C.; Alméciga-Díaz, C.J. Lysosomal storage diseases: Current therapies and future alternatives. J. Mol. Med. (Berl.), 2020, 98(7), 931-946.
[http://dx.doi.org/10.1007/s00109-020-01935-6] [PMID: 32529345]
[11]
Yang, L.; Chen, J. A tale of two moieties: Rapidly evolving crispr/cas-based genome editing. Trends Biochem. Sci., 2020, 45(10), 874-888.
[http://dx.doi.org/10.1016/j.tibs.2020.06.003] [PMID: 32616331]
[12]
Labrou, N.E. Preface. Recent Pat. Biotechnol., 2019, 13(1), 2.
[http://dx.doi.org/10.2174/187220831301190201121944] [PMID: 30810100]
[13]
Troy, S.; Wasilewski, M.; Beusmans, J.; Godfrey, C.J. pharmacokinetic modeling of intrathecally administered recombinant human arylsulfatase a (tak-611) in children with metachromatic leukodystrophy. Clin. Pharmacol. Ther., 2020, 107(6), 1394-1404.
[http://dx.doi.org/10.1002/cpt.1752] [PMID: 31868225]
[14]
Martín-Banderas, L.; Holgado, M.A.; Durán-Lobato, M.; Infante, J.J.; Álvarez-Fuentes, J.; Fernández-Arévalo, M. Role of nanotechnology for enzyme replacement therapy in lysosomal diseases. A focus on gaucher’s disease. Curr. Med. Chem., 2016, 23(9), 929-952.
[http://dx.doi.org/10.2174/0929867323666160210130608] [PMID: 26860997]
[15]
Datta, S.; Rajnish, K.N.; George Priya Doss, C.; Melvin Samuel, S.; Selvarajan, E.; Zayed, H. Enzyme therapy: A forerunner in catalyzing a healthy society? Expert Opin. Biol. Ther., 2020, 20(10), 1151-1174.
[http://dx.doi.org/10.1080/14712598.2020.1787980] [PMID: 32597245]
[16]
Lachmann, R.H. Enzyme replacement therapy for lysosomal storage diseases. Curr. Opin. Pediatr., 2011, 23(6), 588-593.
[http://dx.doi.org/10.1097/MOP.0b013e32834c20d9] [PMID: 21946346]
[17]
Platt, F.M.; d’Azzo, A.; Davidson, B.L.; Neufeld, E.F.; Tifft, C.J. Lysosomal storage diseases. Nat. Rev. Dis. Primers, 2018, 4(1), 27.
[http://dx.doi.org/10.1038/s41572-018-0025-4] [PMID: 30275469]
[18]
Thomas, R.; Kermode, A.R. Enzyme enhancement therapeutics for lysosomal storage diseases: Current status and perspective. Mol. Genet. Metab., 2019, 126(2), 83-97.
[http://dx.doi.org/10.1016/j.ymgme.2018.11.011] [PMID: 30528228]
[19]
Deegan, P.B.; Cox, T.M. Imiglucerase in the treatment of Gaucher disease: A history and perspective. Drug Des. Devel. Ther., 2012, 6, 81-106.
[20]
Giraldo, P. Current and emerging pharmacotherapy for gaucher disease. Clin. Rev. Bone Miner. Metab., 2019, 17(3), 142-151.
[http://dx.doi.org/10.1007/s12018-019-09267-x]
[21]
Elstein, D.; Hollak, C.; Aerts, J.M.F.G.; van Weely, S.; Maas, M.; Cox, T.M.; Lachmann, R.H.; Hrebicek, M.; Platt, F.M.; Butters, T.D.; Dwek, R.A.; Zimran, A. Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) in type I Gaucher disease. J. Inherit. Metab. Dis., 2004, 27(6), 757-766.
[http://dx.doi.org/10.1023/B:BOLI.0000045756.54006.17] [PMID: 15505381]
[22]
Cox, T.; Lachmann, R.; Hollak, C.; Aerts, J.; van Weely, S.; Hrebícek, M.; Platt, F.; Butters, T.; Dwek, R.; Moyses, C.; Gow, I.; Elstein, D.; Zimran, A. Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet, 2000, 355(9214), 1481-1485.
[http://dx.doi.org/10.1016/S0140-6736(00)02161-9] [PMID: 10801168]
[23]
Lukina, E.; Watman, N.; Arreguin, E.A.; Dragosky, M.; Iastrebner, M.; Rosenbaum, H.; Phillips, M.; Pastores, G.M.; Kamath, R.S.; Rosenthal, D.I.; Kaper, M.; Singh, T.; Puga, A.C.; Peterschmitt, M.J. Improvement in hematological, visceral, and skeletal manifestations of Gaucher disease type 1 with oral eliglustat tartrate (Genz-112638) treatment: 2-year results of a phase 2 study. Blood, 2010, 116(20), 4095-4098.
[http://dx.doi.org/10.1182/blood-2010-06-293902] [PMID: 20713962]
[24]
Furbish, F.S.; Blair, H.E.; Shiloach, J.; Pentchev, P.G.; Brady, R.O. Enzyme replacement therapy in Gaucher’s disease: large-scale purification of glucocerebrosidase suitable for human administration. Proc. Natl. Acad. Sci. USA, 1977, 74(8), 3560-3563.
[http://dx.doi.org/10.1073/pnas.74.8.3560] [PMID: 269414]
[25]
Barton, N.W.; Furbish, F.S.; Murray, G.J.; Garfield, M.; Brady, R.O. Therapeutic response to intravenous infusions of glucocerebrosidase in a patient with Gaucher disease. Proc. Natl. Acad. Sci. USA, 1990, 87(5), 1913-1916.
[http://dx.doi.org/10.1073/pnas.87.5.1913] [PMID: 2308952]
[26]
Furbish, F.S.; Steer, C.J.; Krett, N.L.; Barranger, J.A. Uptake and distribution of placental glucocerebrosidase in rat hepatic cells and effects of sequential deglycosylation. Biochim. Biophys. Acta, 1981, 673(4), 425-434.
[http://dx.doi.org/10.1016/0304-4165(81)90474-8] [PMID: 6784774]
[27]
Reczek, D.; Schwake, M.; Schröder, J.; Hughes, H.; Blanz, J.; Jin, X.; Brondyk, W.; Van Patten, S.; Edmunds, T.; Saftig, P. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell, 2007, 131(4), 770-783.
[http://dx.doi.org/10.1016/j.cell.2007.10.018] [PMID: 18022370]
[28]
Barton, N.W.; Brady, R.O.; Dambrosia, J.M.; Di Bisceglie, A.M.; Doppelt, S.H.; Hill, S.C.; Mankin, H.J.; Murray, G.J.; Parker, R.I.; Argoff, C.E. Replacement therapy for inherited enzyme deficiency--macrophage-targeted glucocerebrosidase for Gaucher’s disease. N. Engl. J. Med., 1991, 324(21), 1464-1470.
[http://dx.doi.org/10.1056/NEJM199105233242104] [PMID: 2023606]
[29]
Grabowski, G.A.; Barton, N.W.; Pastores, G.; Dambrosia, J.M.; Banerjee, T.K.; McKee, M.A.; Parker, C.; Schiffmann, R.; Hill, S.C.; Brady, R.O. Enzyme therapy in type 1 Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann. Intern. Med., 1995, 122(1), 33-39.
[http://dx.doi.org/10.7326/0003-4819-122-1-199501010-00005] [PMID: 7985893]
[30]
Andersson, H.C.; Charrow, J.; Kaplan, P.; Mistry, P.; Pastores, G.M.; Prakash-Cheng, A.; Rosenbloom, B.E.; Scott, C.R.; Wappner, R.S.; Weinreb, N.J. Individualization of long-term enzyme replacement therapy for Gaucher disease. Genetics in medicine : Official journal of the American College of Medical Genetics,, 2005, 7(2), 105-110.
[31]
Pastores, G.M. Recombinant glucocerebrosidase (imiglucerase) as a therapy for Gaucher disease. BioDrugs : Clinical immunotherapeutics, biopharmaceuticals and gene therapy, 2010, 24(1), 41-47.
[32]
Hollak, C.E.; Aerts, J.M.; Goudsmit, R.; Phoa, S.S.; Ek, M.; van Weely, S.; von dem Borne, A.E.; van Oers, M.H. Individualised low-dose alglucerase therapy for type 1 Gaucher’s disease. Lancet, 1995, 345(8963), 1474-1478.
[http://dx.doi.org/10.1016/S0140-6736(95)91037-9] [PMID: 7769902]
[33]
Richards, S.M.; Olson, T.A.; McPherson, J.M. Antibody response in patients with Gaucher disease after repeated infusion with macrophage-targeted glucocerebrosidase. Blood, 1993, 82(5), 1402-1409.
[http://dx.doi.org/10.1182/blood.V82.5.1402.1402] [PMID: 8364193]
[34]
Van Patten, S.M.; Hughes, H.; Huff, M.R.; Piepenhagen, P.A.; Waire, J.; Qiu, H.; Ganesa, C.; Reczek, D.; Ward, P.V.; Kutzko, J.P.; Edmunds, T. Effect of mannose chain length on targeting of glucocerebrosidase for enzyme replacement therapy of Gaucher disease. Glycobiology, 2007, 17(5), 467-478.
[http://dx.doi.org/10.1093/glycob/cwm008] [PMID: 17251309]
[35]
Elstein, D.; Foldes, A.J.; Zahrieh, D.; Cohn, G.M.; Djordjevic, M.; Brutaru, C.; Zimran, A. Significant and continuous improvement in bone mineral density among type 1 Gaucher disease patients treated with velaglucerase alfa: 69-month experience, including dose reduction. Blood Cells Mol. Dis., 2011, 47(1), 56-61.
[http://dx.doi.org/10.1016/j.bcmd.2011.04.005] [PMID: 21536468]
[36]
Zimran, A.; Altarescu, G.; Philips, M.; Attias, D.; Jmoudiak, M.; Deeb, M.; Wang, N.; Bhirangi, K.; Cohn, G.M.; Elstein, D. Phase 1/2 and extension study of velaglucerase alfa replacement therapy in adults with type 1 Gaucher disease: 48-month experience. Blood, 2010, 115(23), 4651-4656.
[http://dx.doi.org/10.1182/blood-2010-02-268649] [PMID: 20299511]
[37]
Shaaltiel, Y.; Bartfeld, D.; Hashmueli, S.; Baum, G.; Brill-Almon, E.; Galili, G.; Dym, O.; Boldin-Adamsky, S.A.; Silman, I.; Sussman, J.L.; Futerman, A.H.; Aviezer, D. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol. J., 2007, 5(5), 579-590.
[http://dx.doi.org/10.1111/j.1467-7652.2007.00263.x] [PMID: 17524049]
[38]
Zimran, A.; Brill-Almon, E.; Chertkoff, R.; Petakov, M.; Blanco-Favela, F.; Muñoz, E.T.; Solorio-Meza, S.E.; Amato, D.; Duran, G.; Giona, F.; Heitner, R.; Rosenbaum, H.; Giraldo, P.; Mehta, A.; Park, G.; Phillips, M.; Elstein, D.; Altarescu, G.; Szleifer, M.; Hashmueli, S.; Aviezer, D. Pivotal trial with plant cell-expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for Gaucher disease. Blood, 2011, 118(22), 5767-5773.
[http://dx.doi.org/10.1182/blood-2011-07-366955] [PMID: 21900191]
[39]
Zimran, A.; Wajnrajch, M.; Hernandez, B.; Pastores, G.M. Taliglucerase alfa: Safety and efficacy across 6 clinical studies in adults and children with Gaucher disease. Orphanet J. Rare Dis., 2018, 13(1), 36.
[http://dx.doi.org/10.1186/s13023-018-0776-8] [PMID: 29471850]
[40]
Kuter, D.J.; Wajnrajch, M.; Hernandez, B.; Wang, R.; Chertkoff, R.; Zimran, A. Open-label, expanded access study of taliglucerase alfa in patients with Gaucher disease requiring enzyme replacement therapy. Blood Cells Mol. Dis., 2020, 82102418
[http://dx.doi.org/10.1016/j.bcmd.2020.102418]
[41]
Lee, B.H.; Abdalla, A.F.; Choi, J.H.; Beshlawy, A.E.; Kim, G.H.; Heo, S.H.; Megahed, A.M.H.; Elsayed, M.A.L.; Barakat, T.E.M.; Eid, K.M.A.E.; El-Tagui, M.H.; Mahmoud, M.M.H.; Fateen, E.; Park, J.Y.; Yoo, H.W. A multicenter, open-label, phase III study of Abcertin in Gaucher disease. Medicine (Baltimore), 2017, 96(45)e8492
[http://dx.doi.org/10.1097/MD.0000000000008492] [PMID: 29137040]
[42]
Sun, Y.; Liou, B.; Chu, Z.; Fannin, V.; Blackwood, R.; Peng, Y.; Grabowski, G.A.; Davis, H.W.; Qi, X. Systemic enzyme delivery by blood-brain barrier-penetrating SapC-DOPS nanovesicles for treatment of neuronopathic Gaucher disease. EBioMedicine, 2020, 55102735
[43]
Ishii, S.; Chang, H-H.; Kawasaki, K.; Yasuda, K.; Wu, H-L.; Garman, S.C.; Fan, J.Q. Mutant α-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: Biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem. J., 2007, 406(2), 285-295.
[http://dx.doi.org/10.1042/BJ20070479] [PMID: 17555407]
[44]
Kizhner, T.; Azulay, Y.; Hainrichson, M.; Tekoah, Y.; Arvatz, G.; Shulman, A.; Ruderfer, I.; Aviezer, D.; Shaaltiel, Y. Characterization of a chemically modified plant cell culture expressed human α-Galactosidase-A enzyme for treatment of Fabry disease. Mol. Genet. Metab., 2015, 114(2), 259-267.
[http://dx.doi.org/10.1016/j.ymgme.2014.08.002] [PMID: 25155442]
[45]
Arends, M.; Biegstraaten, M.; Hughes, D.A.; Mehta, A.; Elliott, P.M.; Oder, D.; Watkinson, O.T.; Vaz, F.M.; van Kuilenburg, A.B.P.; Wanner, C.; Hollak, C.E.M. Retrospective study of long-term outcomes of enzyme replacement therapy in Fabry disease: Analysis of prognostic factors. PLoS One, 2017, 12(8)e0182379
[http://dx.doi.org/10.1371/journal.pone.0182379] [PMID: 28763515]
[46]
Felis, A.; Whitlow, M.; Kraus, A.; Warnock, D.G.; Wallace, E. Current and investigational therapeutics for fabry disease. Kidney Int. Rep., 2019, 5(4), 407-413.
[http://dx.doi.org/10.1016/j.ekir.2019.11.013] [PMID: 32274449]
[47]
Germain, D.P.; Elliott, P.M.; Falissard, B.; Fomin, V.V.; Hilz, M.J.; Jovanovic, A.; Kantola, I.; Linhart, A.; Mignani, R.; Namdar, M.; Nowak, A.; Oliveira, J.P.; Pieroni, M.; Viana-Baptista, M.; Wanner, C.; Spada, M. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry disease: A systematic literature review by a European panel of experts. Mol. Genet. Metab. Rep., 2019, 19100454
[http://dx.doi.org/10.1016/j.ymgmr.2019.100454]
[48]
Lukas, J.; Pockrandt, A-M.; Seemann, S.; Sharif, M.; Runge, F.; Pohlers, S.; Zheng, C.; Gläser, A.; Beller, M.; Rolfs, A.; Giese, A-K. Enzyme enhancers for the treatment of Fabry and Pompe disease. Mol. Ther., 2015, 23(3), 456-464.
[http://dx.doi.org/10.1038/mt.2014.224] [PMID: 25409744]
[49]
Svarstad, E.; Marti, H.P. The Changing Landscape of Fabry Disease Clinical journal of the american society of nephrology, 2020. .CJN.09480819,
[50]
Jung, S.C.; Han, I.P.; Limaye, A.; Xu, R.; Gelderman, M.P.; Zerfas, P.; Tirumalai, K.; Murray, G.J.; During, M.J.; Brady, R.O.; Qasba, P. Adeno-associated viral vector-mediated gene transfer results in long-term enzymatic and functional correction in multiple organs of Fabry mice. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2676-2681.
[http://dx.doi.org/10.1073/pnas.051634498] [PMID: 11226298]
[51]
Park, J.; Murray, G.J.; Limaye, A.; Quirk, J.M.; Gelderman, M.P.; Brady, R.O.; Qasba, P. Long-term correction of globotriaosylceramide storage in Fabry mice by recombinant adeno-associated virus-mediated gene transfer. Proc. Natl. Acad. Sci. USA, 2003, 100(6), 3450-3454.
[http://dx.doi.org/10.1073/pnas.0537900100] [PMID: 12624185]
[52]
Takenaka, T.; Murray, G.J.; Qin, G.; Quirk, J.M.; Ohshima, T.; Qasba, P.; Clark, K.; Kulkarni, A.B.; Brady, R.O.; Medin, J.A. Long-term enzyme correction and lipid reduction in multiple organs of primary and secondary transplanted Fabry mice receiving transduced bone marrow cells. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7515-7520.
[http://dx.doi.org/10.1073/pnas.120177997] [PMID: 10840053]
[53]
Zhu, X.; Yin, L.; Theisen, M.; Zhuo, J.; Siddiqui, S.; Levy, B.; Presnyak, V.; Frassetto, A.; Milton, J.; Salerno, T.; Benenato, K.E.; Milano, J.; Lynn, A.; Sabnis, S.; Burke, K.; Besin, G.; Lukacs, C.M.; Guey, L.T.; Finn, P.F.; Martini, P.G.V. Systemic mRNA therapy for the treatment of fabry disease: Preclinical studies in wild-type mice, fabry mouse model, and wild-type non-human primates. Am. J. Hum. Genet., 2019, 104(4), 625-637.
[http://dx.doi.org/10.1016/j.ajhg.2019.02.003] [PMID: 30879639]
[54]
Shin, S.H.; Murray, G.J.; Kluepfel-Stahl, S.; Cooney, A.M.; Quirk, J.M.; Schiffmann, R.; Brady, R.O.; Kaneski, C.R. Screening for pharmacological chaperones in Fabry disease. Biochem. Biophys. Res. Commun., 2007, 359(1), 168-173.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.082] [PMID: 17532296]
[55]
Guérard, N.; Oder, D.; Nordbeck, P.; Zwingelstein, C.; Morand, O.; Welford, R.W.D.; Dingemanse, J.; Wanner, C. Lucerastat, an iminosugar for substrate reduction therapy: Tolerability, pharmacodynamics, and pharmacokinetics in patients with fabry disease on enzyme replacement. Clin. Pharmacol. Ther., 2018, 103(4), 703-711.
[http://dx.doi.org/10.1002/cpt.790] [PMID: 28699267]
[56]
Welford, R.W.D.; Mühlemann, A.; Garzotti, M.; Rickert, V.; Groenen, P.M.A.; Morand, O.; Üçeyler, N.; Probst, M.R. Glucosylceramide synthase inhibition with lucerastat lowers globotriaosylceramide and lysosome staining in cultured fibroblasts from Fabry patients with different mutation types. Hum. Mol. Genet., 2018, 27(19), 3392-3403.
[http://dx.doi.org/10.1093/hmg/ddy248] [PMID: 29982630]
[57]
Sunder-Plassmann, G.; Schiffmann, R.; Nicholls, K. Migalastat for the treatment of Fabry disease. Expert Opin. Orphan Drugs, 2018, 6(5), 301-309.
[http://dx.doi.org/10.1080/21678707.2018.1469978]
[58]
van der Veen, S.J.; Hollak, C.E.M.; van Kuilenburg, A.B.P.; Langeveld, M. Developments in the treatment of Fabry disease. J. Inherit. Metab. Dis., 2020, 43(5), 908-921.
[http://dx.doi.org/10.1002/jimd.12228] [PMID: 32083331]
[59]
Brady, R.O.; Murray, G.J.; Moore, D.F.; Schiffmann, R. Enzyme replacement therapy in Fabry disease. J. Inherit. Metab. Dis., 2001, 24(Suppl. 2), 18-24.
[http://dx.doi.org/10.1023/A:1012451320105]
[60]
Schiffmann, R.; Murray, G.J.; Treco, D.; Daniel, P.; Sellos-Moura, M.; Myers, M.; Quirk, J.M.; Zirzow, G.C.; Borowski, M.; Loveday, K.; Anderson, T.; Gillespie, F.; Oliver, K.L.; Jeffries, N.O.; Doo, E.; Liang, T.J.; Kreps, C.; Gunter, K.; Frei, K.; Crutchfield, K.; Selden, R.F.; Brady, R.O. Infusion of alpha-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease. Proc. Natl. Acad. Sci. USA, 2000, 97(1), 365-370.
[http://dx.doi.org/10.1073/pnas.97.1.365] [PMID: 10618424]
[61]
Ruderfer, I.; Shulman, A.; Kizhner, T.; Azulay, Y.; Nataf, Y.; Tekoah, Y.; Shaaltiel, Y. Development and analytical characterization of pegunigalsidase alfa, a chemically cross-linked plant recombinant human α-galactosidase-a for treatment of fabry disease. Bioconjug. Chem., 2018, 29(5), 1630-1639.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00133] [PMID: 29698600]
[62]
Kytidou, K.; Beenakker, T.J.M.; Westerhof, L.B.; Hokke, C.H.; Moolenaar, G.F.; Goosen, N.; Mirzaian, M.; Ferraz, M.J.; de Geus, M.; Kallemeijn, W.W.; Overkleeft, H.S.; Boot, R.G.; Schots, A.; Bosch, D.; Aerts, J. Human alpha galactosidases transiently produced in nicotiana benthamiana leaves: New insights in substrate specificities with relevance for fabry disease. Front. Plant Sci., 2017, 8, 1026.
[63]
Nakamura, K.; Kawashima, S.; Tozawa, H.; Yamaoka, M.; Yamamoto, T.; Tanaka, N.; Yamamoto, R.; Okuyama, T.; Eto, Y. Pharmacokinetics and pharmacodynamics of JR-051, a biosimilar of agalsidase beta, in healthy adults and patients with Fabry disease: Phase I and II/III clinical studies. Mol. Genet. Metab., 2020, 130(3), 215-224.
[http://dx.doi.org/10.1016/j.ymgme.2020.04.003] [PMID: 32389574]
[64]
Brady, R.O.; Tallman, J.F.; Johnson, W.G.; Gal, A.E.; Leahy, W.R.; Quirk, J.M.; Dekaban, A.S. Replacement therapy for inherited enzyme deficiency. Use of purified ceramidetrihexosidase in Fabry’s disease. N. Engl. J. Med., 1973, 289(1), 9-14.
[http://dx.doi.org/10.1056/NEJM197307052890103] [PMID: 4196713]
[65]
Desnick, R.J.; Dean, K.J.; Grabowski, G.; Bishop, D.F.; Sweeley, C.C. Enzyme therapy in Fabry disease: differential in vivo plasma clearance and metabolic effectiveness of plasma and splenic alpha-galactosidase A isozymes. Proc. Natl. Acad. Sci. USA, 1979, 76(10), 5326-5330.
[http://dx.doi.org/10.1073/pnas.76.10.5326] [PMID: 228284]
[66]
Eng, C.M.; Guffon, N.; Wilcox, W.R.; Germain, D.P.; Lee, P.; Waldek, S.; Caplan, L.; Linthorst, G.E.; Desnick, R.J. Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry’s disease. N. Engl. J. Med., 2001, 345(1), 9-16.
[http://dx.doi.org/10.1056/NEJM200107053450102] [PMID: 11439963]
[67]
Schiffmann, R.; Goker-Alpan, O.; Holida, M.; Giraldo, P.; Barisoni, L.; Colvin, R.B.; Jennette, C.J.; Maegawa, G.; Boyadjiev, S.A.; Gonzalez, D.; Nicholls, K.; Tuffaha, A.; Atta, M.G.; Rup, B.; Charney, M.R.; Paz, A.; Szlaifer, M.; Alon, S.; Brill-Almon, E.; Chertkoff, R.; Hughes, D. Pegunigalsidase alfa, a novel PEGylated enzyme replacement therapy for Fabry disease, provides sustained plasma concentrations and favorable pharmacodynamics: A 1-year Phase 1/2 clinical trial. J. Inherit. Metab. Dis., 2019, 42(3), 534-544.
[http://dx.doi.org/10.1002/jimd.12080] [PMID: 30834538]
[68]
Park, J.H.; Park, H.H.; Choi, S.S.; Park, T.H. Stabilization of enzymes by the recombinant 30Kc19 protein. Process Biochem., 2012, 47(1), 164-169.
[http://dx.doi.org/10.1016/j.procbio.2011.10.022]
[69]
Lee, H.J.; Park, H.H.; Sohn, Y.; Ryu, J.; Park, J.H.; Rhee, W.J.; Park, T.H. α-Galactosidase delivery using 30Kc19-human serum albumin nanoparticles for effective treatment of Fabry disease. Appl. Microbiol. Biotechnol., 2016, 100(24), 10395-10402.
[http://dx.doi.org/10.1007/s00253-016-7689-z] [PMID: 27353764]
[70]
Kytidou, K.; Beekwilder, J.; Artola, M.; van Meel, E.; Wilbers, R.H.P.; Moolenaar, G.F.; Goosen, N.; Ferraz, M.J.; Katzy, R.; Voskamp, P.; Florea, B.I.; Hokke, C.H.; Overkleeft, H.S.; Schots, A.; Bosch, D.; Pannu, N.; Aerts, J.M.F.G. Nicotiana benthamiana α-galactosidase A1.1 can functionally complement human α-galactosidase A deficiency associated with Fabry disease. J. Biol. Chem., 2018, 293(26), 10042-10058.
[http://dx.doi.org/10.1074/jbc.RA118.001774] [PMID: 29674318]
[71]
van der Ploeg, A.T.; Reuser, A.J. Pompe’s disease. Lancet, 2008, 372(9646), 1342-1353.
[http://dx.doi.org/10.1016/S0140-6736(08)61555-X] [PMID: 18929906]
[72]
Kohler, L.; Puertollano, R.; Raben, N. Pompe disease: From basic science to therapy. Neurotherapeutics, 2018, 15(4), 928-942.
[http://dx.doi.org/10.1007/s13311-018-0655-y] [PMID: 30117059]
[73]
Prater, S.N.; Patel, T.T.; Buckley, A.F.; Mandel, H.; Vlodavski, E.; Banugaria, S.G.; Feeney, E.J.; Raben, N.; Kishnani, P.S. Skeletal muscle pathology of infantile Pompe disease during long-term enzyme replacement therapy. Orphanet J. Rare Dis., 2013, 8, 90.
[http://dx.doi.org/10.1186/1750-1172-8-90]
[74]
Schoser, B.; Stewart, A.; Kanters, S.; Hamed, A.; Jansen, J.; Chan, K.; Karamouzian, M.; Toscano, A. Survival and long-term outcomes in late-onset Pompe disease following alglucosidase alfa treatment: A systematic review and meta-analysis. J. Neurol., 2017, 264(4), 621-630.
[http://dx.doi.org/10.1007/s00415-016-8219-8] [PMID: 27372449]
[75]
Raben, N.; Danon, M.; Gilbert, A.L.; Dwivedi, S.; Collins, B.; Thurberg, B.L.; Mattaliano, R.J.; Nagaraju, K.; Plotz, P.H. Enzyme replacement therapy in the mouse model of Pompe disease. Mol. Genet. Metab., 2003, 80(1-2), 159-169.
[http://dx.doi.org/10.1016/j.ymgme.2003.08.022] [PMID: 14567965]
[76]
Xu, S.; Lun, Y.; Frascella, M.; Garcia, A.; Soska, R.; Nair, A.; Ponery, A.S.; Schilling, A.; Feng, J.; Tuske, S.; Valle, M.C.D.; Martina, J.A.; Ralston, E.; Gotschall, R.; Valenzano, K.J.; Puertollano, R.; Do, H.V.; Raben, N.; Khanna, R. Improved efficacy of a next-generation ERT in murine Pompe disease. JCI Insight, 2019, 4(5)125358
[http://dx.doi.org/10.1172/jci.insight.125358] [PMID: 30843882]
[77]
Khanna, R.; Flanagan, J.J.; Feng, J.; Soska, R.; Frascella, M.; Pellegrino, L.J.; Lun, Y.; Guillen, D.; Lockhart, D.J.; Valenzano, K.J. The pharmacological chaperone AT2220 increases recombinant human acid α-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease. PLoS One, 2012, 7(7), e40776-e40776.
[http://dx.doi.org/10.1371/journal.pone.0040776] [PMID: 22815812]
[78]
Puzzo, F.; Colella, P.; Biferi, M.G.; Bali, D.; Paulk, N.K.; Vidal, P.; Collaud, F.; Simon-Sola, M.; Charles, S.; Hardet, R.; Leborgne, C.; Meliani, A.; Cohen-Tannoudji, M.; Astord, S.; Gjata, B.; Sellier, P.; van Wittenberghe, L.; Vignaud, A.; Boisgerault, F.; Barkats, M.; Laforet, P.; Kay, M.A.; Koeberl, D.D.; Ronzitti, G.; Mingozzi, F. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase. Sci. Transl. Med., 2017, 9(418)eaam6375
[http://dx.doi.org/10.1126/scitranslmed.aam6375] [PMID: 29187643]
[79]
Clayton, N.P.; Nelson, C.A.; Weeden, T.; Taylor, K.M.; Moreland, R.J.; Scheule, R.K.; Phillips, L.; Leger, A.J.; Cheng, S.H.; Wentworth, B.M. Antisense oligonucleotide-mediated suppression of muscle glycogen synthase 1 synthesis as an approach for substrate reduction therapy of pompe disease. Mol. Ther. Nucleic Acids, 2014, 3(10)e206
[http://dx.doi.org/10.1038/mtna.2014.57] [PMID: 25350581]
[80]
Van Hove, J.L.; Yang, H.W.; Wu, J.Y.; Brady, R.O.; Chen, Y.T. High-level production of recombinant human lysosomal acid alpha-glucosidase in Chinese hamster ovary cells which targets to heart muscle and corrects glycogen accumulation in fibroblasts from patients with Pompe disease. Proc. Natl. Acad. Sci. USA, 1996, 93(1), 65-70.
[http://dx.doi.org/10.1073/pnas.93.1.65] [PMID: 8552676]
[81]
Bijvoet, A.G.; Van Hirtum, H.; Kroos, M.A.; Van de Kamp, E.H.; Schoneveld, O.; Visser, P.; Brakenhoff, J.P.; Weggeman, M.; van Corven, E.J.; Van der Ploeg, A.T.; Reuser, A.J. Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Hum. Mol. Genet., 1999, 8(12), 2145-2153.
[http://dx.doi.org/10.1093/hmg/8.12.2145] [PMID: 10545593]
[82]
Zhu, Y.; Jiang, J.L.; Gumlaw, N.K.; Zhang, J.; Bercury, S.D.; Ziegler, R.J.; Lee, K.; Kudo, M.; Canfield, W.M.; Edmunds, T.; Jiang, C.; Mattaliano, R.J.; Cheng, S.H. Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Molecular therapy : The journal of the American Society of Gene Therapy, 2009, 17(6), 954-963.
[83]
Zhu, Y.; Li, X.; McVie-Wylie, A.; Jiang, C.; Thurberg, B.L.; Raben, N.; Mattaliano, R.J.; Cheng, S.H. Carbohydrate-remodelled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Biochem. J., 2005, 389(Pt 3), 619-628.
[http://dx.doi.org/10.1042/BJ20050364] [PMID: 15839836]
[84]
Maga, J.A.; Zhou, J.; Kambampati, R.; Peng, S.; Wang, X.; Bohnsack, R.N.; Thomm, A.; Golata, S.; Tom, P.; Dahms, N.M.; Byrne, B.J.; LeBowitz, J.H. Glycosylation-independent lysosomal targeting of acid α-glucosidase enhances muscle glycogen clearance in pompe mice. J. Biol. Chem., 2013, 288(3), 1428-1438.
[http://dx.doi.org/10.1074/jbc.M112.438663] [PMID: 23188827]
[85]
Pena, L.D.M.; Barohn, R.J.; Byrne, B.J.; Desnuelle, C.; Goker-Alpan, O.; Ladha, S.; Laforêt, P.; Mengel, K.E.; Pestronk, A.; Pouget, J.; Schoser, B.; Straub, V.; Trivedi, J.; Van Damme, P.; Vissing, J.; Young, P.; Kacena, K.; Shafi, R.; Thurberg, B.L.; Culm-Merdek, K.; van der Ploeg, A.T. Safety, tolerability, pharmacokinetics, pharmacodynamics, and exploratory efficacy of the novel enzyme replacement therapy avalglucosidase alfa (neoGAA) in treatment-naïve and alglucosidase alfa-treated patients with late-onset Pompe disease: A phase 1, open-label, multicenter, multinational, ascending dose study. Neuromuscul. Disord., 2019, 29(3), 167-186.
[http://dx.doi.org/10.1016/j.nmd.2018.12.004] [PMID: 30770310]
[86]
Tiels, P.; Baranova, E.; Piens, K.; De Visscher, C.; Pynaert, G.; Nerinckx, W.; Stout, J.; Fudalej, F.; Hulpiau, P.; Tännler, S.; Geysens, S.; Van Hecke, A.; Valevska, A.; Vervecken, W.; Remaut, H.; Callewaert, N. A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes. Nat. Biotechnol., 2012, 30(12), 1225-1231.
[http://dx.doi.org/10.1038/nbt.2427] [PMID: 23159880]
[87]
Zhou, Z.; Austin, G.L.; Shaffer, R.; Armstrong, D.D.; Gentry, M.S. Antibody-mediated enzyme therapeutics and applications in glycogen storage diseases. Trends Mol. Med., 2019, 25(12), 1094-1109.
[http://dx.doi.org/10.1016/j.molmed.2019.08.005] [PMID: 31522955]
[88]
Yi, H.; Sun, T.; Armstrong, D.; Borneman, S.; Yang, C.; Austin, S.; Kishnani, P.S.; Sun, B. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease. J. Mol. Med. (Berl.), 2017, 95(5), 513-521.
[http://dx.doi.org/10.1007/s00109-017-1505-9] [PMID: 28154884]
[89]
Kishnani, P.; Lachmann, R.; Mozaffar, T.; Walters, C.; Case, L.; Appleby, M.; Libri, V.; Kak, M.; Wencel, M.; Landy, H. Safety and efficacy of VAL-1221, a novel fusion protein targeting cytoplasmic glycogen, in patients with late-onset Pompe disease. Mol. Genet. Metab., 2019, 126(2), S85-S86.
[http://dx.doi.org/10.1016/j.ymgme.2018.12.211]
[90]
Fecarotta, S.; Tarallo, A.; Damiano, C.; Minopoli, N.; Parenti, G. Pathogenesis of Mucopolysaccharidoses, an Update. Int. J. Mol. Sci., 2020, 21(7)E2515
[http://dx.doi.org/10.3390/ijms21072515] [PMID: 32260444]
[91]
Muenzer, J. Overview of the mucopolysaccharidoses. Rheumatology (Oxford, England), 2011, 50(Suppl. 5), v4-v12.
[http://dx.doi.org/10.1093/rheumatology/ker394]
[92]
Neufeld, E.F.; Muenzer, J. The online metabolic and molecular bases of inherited disease, 8; Scriver, C.; Beaudet, A.; Sly, W; Valle, D., Ed.; OMMBID, McGraw-Hill Medical: New York, NY, USA, 2001, pp. 3421-3452.
[93]
Giugliani, R.; Federhen, A.; Vairo, F.; Vanzella, C.; Pasqualim, G.; da Silva, L.M.; Giugliani, L.; de Boer, A.P.; de Souza, C.F.; Matte, U.; Baldo, G. Emerging drugs for the treatment of mucopolysaccharidoses. Expert Opin. Emerg. Drugs, 2016, 21(1), 9-26.
[http://dx.doi.org/10.1517/14728214.2016.1123690] [PMID: 26751109]
[94]
Parini, R.; Deodato, F. Intravenous enzyme replacement therapy in mucopolysaccharidoses: Clinical effectiveness and limitations. Int. J. Mol. Sci., 2020, 21(8)E2975
[http://dx.doi.org/10.3390/ijms21082975] [PMID: 32340185]
[95]
Davies, G.; Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure (London, England : 1993),, 1995, 3(9), 853-859.
[96]
Hampe, C.S.; Eisengart, J.B.; Lund, T.C.; Orchard, P.J.; Swietlicka, M.; Wesley, J.; McIvor, R.S.; Mucopolysaccharidosis Type, I. Mucopolysaccharidosis type I: A review of the natural history and molecular pathology. Cells, 2020, 9(8)E1838
[http://dx.doi.org/10.3390/cells9081838] [PMID: 32764324]
[97]
Brooks, D.A. Alpha-L-iduronidase and enzyme replacement therapy for mucopolysaccharidosis I. Expert Opin. Biol. Ther., 2002, 2(8), 967-976.
[http://dx.doi.org/10.1517/14712598.2.8.967] [PMID: 12517274]
[98]
Jameson, E.; Jones, S.; Remmington, T. Enzyme replacement therapy with laronidase (Aldurazyme®) for treating mucopolysaccharidosis type I. Cochrane Database Syst. Rev., 2019, 6(6)CD009354
[http://dx.doi.org/10.1002/14651858.CD009354.pub5] [PMID: 31211405]
[99]
Wraith, E.J.; Hopwood, J.J.; Fuller, M.; Meikle, P.J.; Brooks, D.A. Laronidase treatment of mucopolysaccharidosis I. BioDrugs : Clinical immunotherapeutics, biopharmaceuticals and gene therapy 2005, 19(1), 1-7.
[100]
Tsukimura, T.; Tajima, Y.; Kawashima, I.; Fukushige, T.; Kanzaki, T.; Kanekura, T.; Ikekita, M.; Sugawara, K.; Suzuki, T.; Togawa, T.; Sakuraba, H. Uptake of a recombinant human alpha-L-iduronidase (laronidase) by cultured fibroblasts and osteoblasts. Biol. Pharm. Bull., 2008, 31(9), 1691-1695.
[http://dx.doi.org/10.1248/bpb.31.1691] [PMID: 18758061]
[101]
Wraith, J.E.; Clarke, L.A.; Beck, M.; Kolodny, E.H.; Pastores, G.M.; Muenzer, J.; Rapoport, D.M.; Berger, K.I.; Swiedler, S.J.; Kakkis, E.D.; Braakman, T.; Chadbourne, E.; Walton-Bowen, K.; Cox, G.F. Enzyme replacement therapy for mucopolysaccharidosis I: A randomized, double-blinded, placebo-controlled, multinational study of recombinant human alpha-L-iduronidase (laronidase). J. Pediatr., 2004, 144(5), 581-588.
[http://dx.doi.org/10.1016/j.jpeds.2004.01.046] [PMID: 15126990]
[102]
Boado, R.J.; Hui, E.K.; Lu, J.Z.; Pardridge, W.M. AGT-181: Axpression in CHO cells and pharmacokinetics, safety, and plasma iduronidase enzyme activity in Rhesus monkeys. J. Biotechnol., 2009, 144(2), 135-141.
[http://dx.doi.org/10.1016/j.jbiotec.2009.08.019] [PMID: 19735678]
[103]
Boado, R.J.; Pardridge, W.M. Brain and organ uptake in the rhesus monkey in vivo of recombinant iduronidase compared to an insulin receptor antibody-iduronidase fusion protein. Mol. Pharm., 2017, 14(4), 1271-1277.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01166] [PMID: 28279069]
[104]
Taylor, M.; Khan, S.; Stapleton, M.; Wang, J.; Chen, J.; Wynn, R.; Yabe, H.; Chinen, Y.; Boelens, J.J.; Mason, R.W.; Kubaski, F.; Horovitz, D.D.G.; Barth, A.L.; Serafini, M.; Bernardo, M.E.; Kobayashi, H.; Orii, K.E.; Suzuki, Y.; Orii, T.; Tomatsu, S. Hematopoietic stem cell transplantation for mucopolysaccharidoses: Past, present, and future. Biology of blood and marrow transplantation. Journal of the American Society for Blood and Marrow Transplantation, 2019, 25(7), e226-e246.
[105]
Poletto, E.; Baldo, G.; Gomez-Ospina, N. Genome editing for mucopolysaccharidoses. Int. J. Mol. Sci., 2020, 21(2)E500
[http://dx.doi.org/10.3390/ijms21020500] [PMID: 31941077]
[106]
Kubaski, F.; de Oliveira Poswar, F.; Michelin-Tirelli, K.; Matte, U.D.S.; Horovitz, D.D.; Barth, A.L.; Baldo, G.; Vairo, F.; Giugliani, R. Mucopolysaccharidosis Type I.Diagnostics (Basel, Switzerland); , 2020; 10, . (3)
[107]
Wilson, P.J.; Morris, C.P.; Anson, D.S.; Occhiodoro, T.; Bielicki, J.; Clements, P.R.; Hopwood, J.J. Hunter syndrome: Isolation of an iduronate-2-sulfatase cDNA clone and analysis of patient DNA. Proc. Natl. Acad. Sci. USA, 1990, 87(21), 8531-8535.
[http://dx.doi.org/10.1073/pnas.87.21.8531] [PMID: 2122463]
[108]
Scarpa, M. Evaluation of idursulfase for the treatment of mucopolysaccharidosis II (Hunter syndrome). Expert Opin. Orphan Drugs, 2013, 1(1), 89-98.
[http://dx.doi.org/10.1517/21678707.2013.738182]
[109]
Jones, S.A.; Almássy, Z.; Beck, M.; Burt, K.; Clarke, J.T.; Giugliani, R.; Hendriksz, C.; Kroepfl, T.; Lavery, L.; Lin, S.P.; Malm, G.; Ramaswami, U.; Tincheva, R.; Wraith, J.E. Mortality and cause of death in mucopolysaccharidosis type II-a historical review based on data from the Hunter Outcome Survey (HOS). J. Inherit. Metab. Dis., 2009, 32(4), 534-543.
[http://dx.doi.org/10.1007/s10545-009-1119-7] [PMID: 19597960]
[110]
Bielicki, J.; Freeman, C.; Clements, P.R.; Hopwood, J.J. Human liver iduronate-2-sulphatase. Purification, characterization and catalytic properties. Biochem. J., 1990, 271(1), 75-86.
[http://dx.doi.org/10.1042/bj2710075] [PMID: 2222422]
[111]
Whiteman, D.A.; Kimura, A. Development of idursulfase therapy for mucopolysaccharidosis type II (Hunter syndrome): The past, the present and the future. Drug Des. Devel. Ther., 2017, 11, 2467-2480.
[112]
Muenzer, J.; Gucsavas-Calikoglu, M.; McCandless, S.E.; Schuetz, T.J.; Kimura, A. A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Mol. Genet. Metab., 2007, 90(3), 329-337.
[http://dx.doi.org/10.1016/j.ymgme.2006.09.001] [PMID: 17185020]
[113]
Heartlein, M.; Kimura, A. Orphan drugs and rare diseases; Pryde, D.C; Palmer, M.J., Ed.; The Royal Society of Chemistry: London, UK, 2014, pp. 164-182.
[http://dx.doi.org/10.1039/9781782624202-00164]
[114]
Burton, B.K.; Whiteman, D.A. Incidence and timing of infusion-related reactions in patients with mucopolysaccharidosis type II (Hunter syndrome) on idursulfase therapy in the real-world setting: A perspective from the Hunter Outcome Survey (HOS). Mol. Genet. Metab., 2011, 103(2), 113-120.
[http://dx.doi.org/10.1016/j.ymgme.2011.02.018] [PMID: 21439875]
[115]
Giugliani, R.; Hwu, W.L.; Tylki-Szymanska, A.; Whiteman, D.A.; Pano, A. A multicenter, open-label study evaluating safety and clinical outcomes in children (1.4-7.5 years) with Hunter syndrome receiving idursulfase enzyme replacement therapy. Genetics in medicine : Official journal of the American College of Medical Genetics 2014, 16(6), 435-441.
[116]
Chung, Y.K.; Sohn, Y.B.; Sohn, J.M.; Lee, J.; Chang, M.S.; Kwun, Y.; Kim, C.H.; Lee, J.Y.; Yook, Y.J.; Ko, A.R.; Jin, D.K. A biochemical and physicochemical comparison of two recombinant enzymes used for enzyme replacement therapies of hunter syndrome. Glycoconj. J., 2014, 31(4), 309-315.
[http://dx.doi.org/10.1007/s10719-014-9523-0] [PMID: 24781369]
[117]
Prasad, V.K.; Kurtzberg, J. Transplant outcomes in mucopolysaccharidoses. Semin. Hematol., 2010, 47(1), 59-69.
[http://dx.doi.org/10.1053/j.seminhematol.2009.10.008] [PMID: 20109613]
[118]
Marucha, J.; Tylki-Szymańska, A.; Jakóbkiewicz-Banecka, J.; Piotrowska, E.; Kloska, A.; Czartoryska, B.; Węgrzyn, G. Improvement in the range of joint motion in seven patients with mucopolysaccharidosis type II during experimental gene expression-targeted isoflavone therapy (GET IT). Am. J. Med. Genet. A., 2011, 155A(9), 2257-2262.
[http://dx.doi.org/10.1002/ajmg.a.34146] [PMID: 21834048]
[119]
Sawamoto, K.; Alméciga-Díaz, C.J.; Mackenzie, W.G.; Mason, R.W.; Orii, T.; Tomatsu, S. Mucopolysaccharidoses Update (2 Volume Set); Tomatsu, S.; Lavery, C.; Giugliani, R.; Harmatz, P.; Scarpa, M.; Węgrzyn, G; Orii, T., Ed.; Nova Science Publishers: New York, NY, USA, 2018, pp. 235-271.
[120]
Lim, C.T.; Horwitz, A.L. Purification and properties of human N-acetylgalactosamine-6-sulfate sulfatase. Biochim. Biophys. Acta, 1981, 657(2), 344-355.
[http://dx.doi.org/10.1016/0005-2744(81)90320-X] [PMID: 7213753]
[121]
Masue, M.; Sukegawa, K.; Orii, T.; Hashimoto, T. N-acetylgalactosamine-6-sulfate sulfatase in human placenta: purification and characteristics. J. Biochem., 1991, 110(6), 965-970.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a123697] [PMID: 1794986]
[122]
Regier, D.S.; Tanpaiboon, P. Role of elosulfase alfa in mucopolysaccharidosis IVA. Appl. Clin. Genet., 2016, 9, 67-74.
[http://dx.doi.org/10.2147/TACG.S69080]
[123]
Sanford, M.; Lo, J.H. Elosulfase alfa: First global approval. Drugs, 2014, 74(6), 713-718.
[http://dx.doi.org/10.1007/s40265-014-0210-z] [PMID: 24700469]
[124]
Hendriksz, C.J.; Burton, B.; Fleming, T.R.; Harmatz, P.; Hughes, D.; Jones, S.A.; Lin, S.P.; Mengel, E.; Scarpa, M.; Valayannopoulos, V.; Giugliani, R.; Slasor, P.; Lounsbury, D.; Dummer, W. Efficacy and safety of enzyme replacement therapy with BMN 110 (elosulfase alfa) for Morquio A syndrome (mucopolysaccharidosis IVA): A phase 3 randomised placebo-controlled study. J. Inherit. Metab. Dis., 2014, 37(6), 979-990.
[http://dx.doi.org/10.1007/s10545-014-9715-6] [PMID: 24810369]
[125]
Dvorak-Ewell, M.; Wendt, D.; Hague, C.; Christianson, T.; Koppaka, V.; Crippen, D.; Kakkis, E.; Vellard, M. Enzyme replacement in a human model of mucopolysaccharidosis IVA in vitro and its biodistribution in the cartilage of wild type mice. PLoS One, 2010, 5(8)e12194
[http://dx.doi.org/10.1371/journal.pone.0012194] [PMID: 20808938]
[126]
Hendriksz, C.J. Elosulfase alfa (BMN 110) for the treatment of mucopolysaccharidosis IVA (Morquio A Syndrome). Expert Rev. Clin. Pharmacol., 2016, 9(12), 1521-1532.
[http://dx.doi.org/10.1080/17512433.2017.1260000] [PMID: 27855521]
[127]
Doherty, C.; Stapleton, M.; Piechnik, M.; Mason, R.W.; Mackenzie, W.G.; Yamaguchi, S.; Kobayashi, H.; Suzuki, Y.; Tomatsu, S. Effect of enzyme replacement therapy on the growth of patients with Morquio A. J. Hum. Genet., 2019, 64(7), 625-635.
[http://dx.doi.org/10.1038/s10038-019-0604-6] [PMID: 31019230]
[128]
Sawamoto, K.; Álvarez González, J.V.; Piechnik, M.; Otero, F.J.; Couce, M.L.; Suzuki, Y.; Tomatsu, S.; Mucopolysaccharidosis, I.V.A. Mucopolysaccharidosis IVA: Diagnosis, treatment, and management. Int. J. Mol. Sci., 2020, 21(4)E1517
[http://dx.doi.org/10.3390/ijms21041517] [PMID: 32102177]
[129]
Harmatz, P.; Shediac, R.; Mucopolysaccharidosis, V.I.; Mucopolysaccharidosis, V.I. Pathophysiology, diagnosis and treatment. Frontiers in bioscience (Landmark edition),, 2017, 22, 385-406.
[130]
Vairo, F.; Federhen, A.; Baldo, G.; Riegel, M.; Burin, M.; Leistner-Segal, S.; Giugliani, R. Diagnostic and treatment strategies in mucopolysaccharidosis VI. The application of clinical , 2015, 8, 245-255.
[131]
Valayannopoulos, V.; Nicely, H.; Harmatz, P.; Turbeville, S.; Mucopolysaccharidosis, V.I.; Mucopolysaccharidosis, V.I. Orphanet J. Rare Dis., 2010, 5(1), 5.
[http://dx.doi.org/10.1186/1750-1172-5-5] [PMID: 20385007]
[132]
Taylor, J.A.; Gibson, G.J.; Brooks, D.A.; Hopwood, J.J. Human N-acetylgalactosamine-4-sulphatase biosynthesis and maturation in normal, Maroteaux-Lamy and multiple-sulphatase-deficient fibroblasts. Biochem. J., 1990, 268(2), 379-386.
[http://dx.doi.org/10.1042/bj2680379] [PMID: 2114091]
[133]
Harmatz, P.; Whitley, C.B.; Waber, L.; Pais, R.; Steiner, R.; Plecko, B.; Kaplan, P.; Simon, J.; Butensky, E.; Hopwood, J.J. Enzyme replacement therapy in mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). J. Pediatr., 2004, 144(5), 574-580.
[http://dx.doi.org/10.1016/j.jpeds.2004.03.018] [PMID: 15126989]
[134]
Hendriksz, C.J.; Giugliani, R.; Harmatz, P.; Lampe, C.; Martins, A.M.; Pastores, G.M.; Steiner, R.D.; Leão Teles, E.; Valayannopoulos, V. Design, baseline characteristics, and early findings of the MPS VI (mucopolysaccharidosis VI) Clinical Surveillance Program (CSP). J. Inherit. Metab. Dis., 2013, 36(2), 373-384.
[http://dx.doi.org/10.1007/s10545-011-9410-9] [PMID: 22127392]
[135]
Giugliani, R.; Herber, S.; Lapagesse, L.; de Pinto, C.; Baldo, G. herapy for mucopolysaccharidosis VI: (Maroteaux-Lamy syndrome) present status and prospects. Pediatr. Endocrinol. Rev., 2014, 12(Suppl. 1), 152-158.
[136]
Islam, M.R.; Tomatsu, S.; Shah, G.N.; Grubb, J.H.; Jain, S.; Sly, W.S. Active site residues of human beta-glucuronidase. Evidence for Glu(540) as the nucleophile and Glu(451) as the acid-base residue. J. Biol. Chem., 1999, 274(33), 23451-23455.
[http://dx.doi.org/10.1074/jbc.274.33.23451] [PMID: 10438523]
[137]
Nakamura, T.; Takagaki, K.; Majima, M.; Kimura, S.; Kubo, K.; Endoss, M. A new type of exo-beta-glucuronidase acting only on non-sulfated glycosaminoglycans. J. Biol. Chem., 1990, 265(10), 5390-5397.
[http://dx.doi.org/10.1016/S0021-9258(19)39371-8] [PMID: 2108135]
[138]
Tomatsu, S.; Montaño, A.M.; Dung, V.C.; Grubb, J.H.; Sly, W.S. Mutations and polymorphisms in GUSB gene in mucopolysaccharidosis VII (Sly Syndrome). Hum. Mutat., 2009, 30(4), 511-519.
[http://dx.doi.org/10.1002/humu.20828] [PMID: 19224584]
[139]
Zhou, J.; Lin, J.; Leung, W.T.; Wang, L. A basic understanding of mucopolysaccharidosis: Incidence, clinical features, diagnosis, and management. Intractable Rare Dis. Res., 2020, 9(1), 1-9.
[http://dx.doi.org/10.5582/irdr.2020.01011] [PMID: 32201668]
[140]
Hassan, M.I.; Waheed, A.; Grubb, J.H.; Klei, H.E.; Korolev, S.; Sly, W.S. High resolution crystal structure of human β-glucuronidase reveals structural basis of lysosome targeting. PLoS One, 2013, 8(11)e79687
[http://dx.doi.org/10.1371/journal.pone.0079687] [PMID: 24260279]
[141]
Jain, S.; Drendel, W.B.; Chen, Z.W.; Mathews, F.S.; Sly, W.S.; Grubb, J.H. Structure of human beta-glucuronidase reveals candidate lysosomal targeting and active-site motifs. Nat. Struct. Biol., 1996, 3(4), 375-381.
[http://dx.doi.org/10.1038/nsb0496-375] [PMID: 8599764]
[142]
Naz, H.; Islam, A.; Waheed, A.; Sly, W.S.; Ahmad, F.; Hassan, I. Human β-glucuronidase: structure, function, and application in enzyme replacement therapy. Rejuvenation Res., 2013, 16(5), 352-363.
[http://dx.doi.org/10.1089/rej.2013.1407] [PMID: 23777470]
[143]
Cadaoas, J.; Boyle, G.; Jungles, S.; Cullen, S.; Vellard, M.; Grubb, J.H.; Jurecka, A.; Sly, W.; Kakkis, E. Vestronidase alfa: Recombinant human β-glucuronidase as an enzyme replacement therapy for MPS VII. Mol. Genet. Metab., 2020, 130(1), 65-76.
[http://dx.doi.org/10.1016/j.ymgme.2020.02.009] [PMID: 32192868]
[144]
McCafferty, E.H.; Scott, L.J. Vestronidase Alfa: A Review in Mucopolysaccharidosis VII. BioDrugs : Clinical immunotherapeutics, biopharmaceuticals and gene therapy,, 2019, 33(2), 233-240.
[145]
Wang, R.Y.; da Silva Franco, J.F.; López-Valdez, J.; Martins, E.; Sutton, V.R.; Whitley, C.B.; Zhang, L.; Cimms, T.; Marsden, D.; Jurecka, A.; Harmatz, P. The long-term safety and efficacy of vestronidase alfa, rhGUS enzyme replacement therapy, in subjects with mucopolysaccharidosis VII. Mol. Genet. Metab., 2020, 129(3), 219-227.
[http://dx.doi.org/10.1016/j.ymgme.2020.01.003] [PMID: 32063397]
[146]
Grubb, J.H.; Vogler, C.; Levy, B.; Galvin, N.; Tan, Y.; Sly, W.S. Chemically modified beta-glucuronidase crosses blood-brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2616-2621.
[http://dx.doi.org/10.1073/pnas.0712147105] [PMID: 18268347]
[147]
Huynh, H.T.; Grubb, J.H.; Vogler, C.; Sly, W.S. Biochemical evidence for superior correction of neuronal storage by chemically modified enzyme in murine mucopolysaccharidosis VII. Proc. Natl. Acad. Sci. USA, 2012, 109(42), 17022-17027.
[http://dx.doi.org/10.1073/pnas.1214779109] [PMID: 23027951]
[148]
Ponder, K.P.; Haskins, M.E. Gene therapy for mucopolysaccharidosis. Expert Opin. Biol. Ther., 2007, 7(9), 1333-1345.
[http://dx.doi.org/10.1517/14712598.7.9.1333] [PMID: 17727324]
[149]
Aguisanda, F.; Thorne, N.; Zheng, W. Targeting wolman disease and cholesteryl ester storage disease: Disease pathogenesis and therapeutic development. Curr. Chem. Genomics Transl. Med., 2017, 11, 1-18.
[150]
Ameis, D.; Merkel, M.; Eckerskorn, C.; Greten, H. Purification, characterization and molecular cloning of human hepatic lysosomal acid lipase. Eur. J. Biochem., 1994, 219(3), 905-914.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb18572.x] [PMID: 8112342]
[151]
Li, F.; Zhang, H. Lysosomal acid lipase in lipid metabolism and beyond. Arterioscler. Thromb. Vasc. Biol., 2019, 39(5), 850-856.
[http://dx.doi.org/10.1161/ATVBAHA.119.312136] [PMID: 30866656]
[152]
Erwin, A.L. The role of sebelipase alfa in the treatment of lysosomal acid lipase deficiency. Therap. Adv. Gastroenterol., 2017, 10(7), 553-562.
[http://dx.doi.org/10.1177/1756283X17705775] [PMID: 28804516]
[153]
Pastores, G.M.; Hughes, D.A. Lysosomal acid lipase deficiency: Therapeutic options. Drug Des. Devel. Ther., 2020, 14, 591-601.
[154]
Shirley, M. Sebelipase alfa: first global approval. Drugs, 2015, 75(16), 1935-1940.
[http://dx.doi.org/10.1007/s40265-015-0479-6] [PMID: 26452566]
[155]
Balwani, M.; Breen, C.; Enns, G.M.; Deegan, P.B.; Honzík, T.; Jones, S.; Kane, J.P.; Malinova, V.; Sharma, R.; Stock, E.O.; Valayannopoulos, V.; Wraith, J.E.; Burg, J.; Eckert, S.; Schneider, E.; Quinn, A.G. Clinical effect and safety profile of recombinant human lysosomal acid lipase in patients with cholesteryl ester storage disease. Hepatology, 2013, 58(3), 950-957.
[http://dx.doi.org/10.1002/hep.26289] [PMID: 23348766]
[156]
Burton, B.K.; Balwani, M.; Feillet, F.; Barić, I.; Burrow, T.A.; Camarena Grande, C.; Coker, M.; Consuelo-Sánchez, A.; Deegan, P.; Di Rocco, M.; Enns, G.M.; Erbe, R.; Ezgu, F.; Ficicioglu, C.; Furuya, K.N.; Kane, J.; Laukaitis, C.; Mengel, E.; Neilan, E.G.; Nightingale, S.; Peters, H.; Scarpa, M.; Schwab, K.O.; Smolka, V.; Valayannopoulos, V.; Wood, M.; Goodman, Z.; Yang, Y.; Eckert, S.; Rojas-Caro, S.; Quinn, A.G. A phase 3 trial of sebelipase alfa in lysosomal acid lipase deficiency. N. Engl. J. Med., 2015, 373(11), 1010-1020.
[http://dx.doi.org/10.1056/NEJMoa1501365] [PMID: 26352813]
[157]
Jones, S.A.; Rojas-Caro, S.; Quinn, A.G.; Friedman, M.; Marulkar, S.; Ezgu, F.; Zaki, O.; Gargus, J.J.; Hughes, J.; Plantaz, D.; Vara, R.; Eckert, S.; Arnoux, J.B.; Brassier, A.; Le Quan Sang, K.H.; Valayannopoulos, V. Survival in infants treated with sebelipase Alfa for lysosomal acid lipase deficiency: An open-label, multicenter, dose-escalation study. Orphanet J. Rare Dis., 2017, 12(1), 25.
[http://dx.doi.org/10.1186/s13023-017-0587-3] [PMID: 28179030]
[158]
Öckerman, P.A. A generalised storage disorder resembling Hurler’s syndrome. Lancet, 1967, 290(7509), 239-241.
[http://dx.doi.org/10.1016/S0140-6736(67)92303-3]
[159]
Ceccarini, M.R.; Codini, M.; Conte, C.; Patria, F.; Cataldi, S.; Bertelli, M.; Albi, E.; Beccari, T. Alpha-mannosidosis: Therapeutic strategies. Int. J. Mol. Sci., 2018, 19(5)E1500
[http://dx.doi.org/10.3390/ijms19051500] [PMID: 29772816]
[160]
Malm, D.; Nilssen, Ø. Orphanet journal of rare diseases, Orphanet J. Rare Dis., 2008, 3, 21.
[161]
Nilssen, O.; Berg, T.; Rubenthiran, U.; Hansen, G.M.; Riise, H.M.F.; Tranebjaerg, L.; Malm, D.; Tollersrud, O.K. Alpha-mannosidosis - functional cloning of the alpha-mannosidase gene and identification of a mutation in affected siblings. Am. J. Hum. Genet., 1995, 57(4), 195-195.
[162]
Paciotti, S.; Codini, M.; Tasegian, A.; Ceccarini, M.R.; Cataldi, S.; Arcuri, C.; Fioretti, B.; Albi, E.; Beccari, T. Lysosomal alpha-mannosidase and alpha-mannosidosis. Frontiers in bioscience (Landmark edition), 2017, 22, 157-167.
[163]
Poupetová, H.; Ledvinová, J.; Berná, L.; Dvoráková, L.; Kozich, V.; Elleder, M. The birth prevalence of lysosomal storage disorders in the Czech Republic: Comparison with data in different populations. J. Inherit. Metab. Dis., 2010, 33(4), 387-396.
[http://dx.doi.org/10.1007/s10545-010-9093-7] [PMID: 20490927]
[164]
Berg, T.; Riise, H.M.; Hansen, G.M.; Malm, D.; Tranebjaerg, L.; Tollersrud, O.K.; Nilssen, O. Spectrum of mutations in alpha-mannosidosis. Am. J. Hum. Genet., 1999, 64(1), 77-88.
[http://dx.doi.org/10.1086/302183] [PMID: 9915946]
[165]
Borgwardt, L.; Stensland, H.M.F.R.; Olsen, K.J.; Wibrand, F.; Klenow, H.B.; Beck, M.; Amraoui, Y.; Arash, L.; Fogh, J.; Nilssen, Ø.; Dali, C.I.; Lund, A.M. Alpha-mannosidosis: correlation between phenotype, genotype and mutant MAN2B1 subcellular localisation. Orphanet J. Rare Dis., 2015, 10(1), 70.
[http://dx.doi.org/10.1186/s13023-015-0286-x] [PMID: 26048034]
[166]
Stinchi, S.; Lüllmann-Rauch, R.; Hartmann, D.; Coenen, R.; Beccari, T.; Orlacchio, A.; von Figura, K.; Saftig, P. Targeted disruption of the lysosomal alpha-mannosidase gene results in mice resembling a mild form of human alpha-mannosidosis. Hum. Mol. Genet., 1999, 8(8), 1365-1372.
[http://dx.doi.org/10.1093/hmg/8.8.1365] [PMID: 10400983]
[167]
Nilssen, O.; Berg, T.; Riise, H.M.; Ramachandran, U.; Evjen, G.; Hansen, G.M.; Malm, D.; Tranebjaerg, L.; Tollersrud, O.K. alpha-Mannosidosis: functional cloning of the lysosomal alpha-mannosidase cDNA and identification of a mutation in two affected siblings. Hum. Mol. Genet., 1997, 6(5), 717-726.
[http://dx.doi.org/10.1093/hmg/6.5.717] [PMID: 9158146]
[168]
Tollersrud, O.K.; Berg, T.; Healy, P.; Evjen, G.; Ramachandran, U.; Nilssen, O. Purification of bovine lysosomal alpha-mannosidase, characterization of its gene and determination of two mutations that cause alpha-mannosidosis. Eur. J. Biochem., 1997, 246(2), 410-419.
[http://dx.doi.org/10.1111/j.1432-1033.1997.00410.x] [PMID: 9208932]
[169]
Heikinheimo, P.; Helland, R.; Leiros, H.K.; Leiros, I.; Karlsen, S.; Evjen, G.; Ravelli, R.; Schoehn, G.; Ruigrok, R.; Tollersrud, O.K.; McSweeney, S.; Hough, E. The structure of bovine lysosomal alpha-mannosidase suggests a novel mechanism for low-pH activation. J. Mol. Biol., 2003, 327(3), 631-644.
[http://dx.doi.org/10.1016/S0022-2836(03)00172-4] [PMID: 12634058]
[170]
Riise Stensland, H.M.; Klenow, H.B.; Van Nguyen, L.; Hansen, G.M.; Malm, D.; Nilssen, Ø. Identification of 83 novel alpha-mannosidosis-associated sequence variants: functional analysis of MAN2B1 missense mutations. Hum. Mutat., 2012, 33(3), 511-520.
[http://dx.doi.org/10.1002/humu.22005] [PMID: 22161967]
[171]
Danielsen, E.R.; Lund, A.M.; Thomsen, C. Cerebral magnetic resonance spectroscopy demonstrates long-term effect of bone marrow transplantation in α-mannosidosis. JIMD Rep., 2013, 11, 49-52.
[http://dx.doi.org/10.1007/8904_2013_221]
[172]
Mynarek, M.; Tolar, J.; Albert, M.H.; Escolar, M.L.; Boelens, J.J.; Cowan, M.J.; Finnegan, N.; Glomstein, A.; Jacobsohn, D.A.; Kühl, J.S.; Yabe, H.; Kurtzberg, J.; Malm, D.; Orchard, P.J.; Klein, C.; Lücke, T.; Sykora, K.W. Allogeneic hematopoietic SCT for alpha-mannosidosis: An analysis of 17 patients. Bone Marrow Transplant., 2012, 47(3), 352-359.
[http://dx.doi.org/10.1038/bmt.2011.99] [PMID: 21552297]
[173]
Borgwardt, L.; Dali, C.I.; Fogh, J.; Månsson, J.E.; Olsen, K.J.; Beck, H.C.; Nielsen, K.G.; Nielsen, L.H.; Olsen, S.O.; Riise Stensland, H.M.; Nilssen, O.; Wibrand, F.; Thuesen, A.M.; Pearl, T.; Haugsted, U.; Saftig, P.; Blanz, J.; Jones, S.A.; Tylki-Szymanska, A.; Guffon-Fouiloux, N.; Beck, M.; Lund, A.M. Enzyme replacement therapy for alpha-mannosidosis: 12 months follow-up of a single centre, randomised, multiple dose study. J. Inherit. Metab. Dis., 2013, 36(6), 1015-1024.
[http://dx.doi.org/10.1007/s10545-013-9595-1] [PMID: 23494656]
[174]
Borgwardt, L.; Guffon, N.; Amraoui, Y.; Jones, S.A.; De Meirleir, L.; Lund, A.M.; Gil-Campos, M.; Van den Hout, J.M.P.; Tylki-Szymanska, A.; Geraci, S.; Ardigò, D.; Cattaneo, F.; Harmatz, P.; Phillips, D. Health related quality of life, disability, and pain in alpha mannosidosis:Long-term data of enzyme replacement therapy with velmanase alfa (human recombinant alpha mannosidase). J. Inborn Errors Metab. Screen., 2018, 6.
[175]
Lund, A.M.; Borgwardt, L.; Cattaneo, F.; Ardigò, D.; Geraci, S.; Gil-Campos, M.; De Meirleir, L.; Laroche, C.; Dolhem, P.; Cole, D.; Tylki-Szymanska, A.; Lopez-Rodriguez, M.; Guillén-Navarro, E.; Dali, C.I.; Héron, B.; Fogh, J.; Muschol, N.; Phillips, D.; Van den Hout, J.M.H.; Jones, S.A.; Amraoui, Y.; Harmatz, P.; Guffon, N. Comprehensive long-term efficacy and safety of recombinant human alpha-mannosidase (velmanase alfa) treatment in patients with alpha-mannosidosis. J. Inherit. Metab. Dis., 2018, 41(6), 1225-1233.
[http://dx.doi.org/10.1007/s10545-018-0175-2] [PMID: 29725868]
[176]
Roces, D.P.; Lüllmann-Rauch, R.; Peng, J.; Balducci, C.; Andersson, C.; Tollersrud, O.; Fogh, J.; Orlacchio, A.; Beccari, T.; Saftig, P.; von Figura, K. Efficacy of enzyme replacement therapy in alpha-mannosidosis mice: A preclinical animal study. Hum. Mol. Genet., 2004, 13(18), 1979-1988.
[http://dx.doi.org/10.1093/hmg/ddh220] [PMID: 15269179]
[177]
Blanz, J.; Stroobants, S.; Lüllmann-Rauch, R.; Morelle, W.; Lüdemann, M.; D’Hooge, R.; Reuterwall, H.; Michalski, J.C.; Fogh, J.; Andersson, C.; Saftig, P. Reversal of peripheral and central neural storage and ataxia after recombinant enzyme replacement therapy in alpha-mannosidosis mice. Hum. Mol. Genet., 2008, 17(22), 3437-3445.
[http://dx.doi.org/10.1093/hmg/ddn237] [PMID: 18713755]
[178]
Stroobants, S.; Damme, M.; Van der Jeugd, A.; Vermaercke, B.; Andersson, C.; Fogh, J.; Saftig, P.; Blanz, J.; D’Hooge, R. Long-term enzyme replacement therapy improves neurocognitive functioning and hippocampal synaptic plasticity in immune-tolerant alpha-mannosidosis mice. Neurobiol. Dis., 2017, 106, 255-268.
[http://dx.doi.org/10.1016/j.nbd.2017.07.013]
[179]
D’Azzo, A.; Hoogeveen, A.; Reuser, A.J.; Robinson, D.; Galjaard, H. Molecular defect in combined beta-galactosidase and neuraminidase deficiency in man. Proc. Natl. Acad. Sci. USA, 1982, 79(15), 4535-4539.
[http://dx.doi.org/10.1073/pnas.79.15.4535] [PMID: 6812049]
[180]
Galjart, N.J.; Gillemans, N.; Harris, A.; van der Horst, G.T.J.; Verheijen, F.W.; Galjaard, H.; D’Azzo, A. Expression of cDNA encoding the human “protective protein≓ associated with lysosomal β-galactosidase and neuraminidase: Homology to yeast proteases. Cell, 1988, 54(6), 755-764.
[http://dx.doi.org/10.1016/S0092-8674(88)90999-3] [PMID: 3136930]
[181]
Karimzadeh, P.; Naderi, S.; Modarresi, F.; Dastsooz, H.; Nemati, H.; Farokhashtiani, T.; Shamsian, B.S.; Inaloo, S.; Faghihi, M.A. Case reports of juvenile GM1 gangliosidosisis type II caused by mutation in GLB1 gene. BMC Med. Genet., 2017, 18(1), 73.
[http://dx.doi.org/10.1186/s12881-017-0417-4] [PMID: 28716012]
[182]
Brunetti-Pierri, N.; Scaglia, F. GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol. Genet. Metab., 2008, 94(4), 391-396.
[http://dx.doi.org/10.1016/j.ymgme.2008.04.012] [PMID: 18524657]
[183]
Chen, J.C.; Luu, A.R.; Wise, N.; Angelis, R.; Agrawal, V.; Mangini, L.; Vincelette, J.; Handyside, B.; Sterling, H.; Lo, M.J.; Wong, H.; Galicia, N.; Pacheco, G.; Van Vleet, J.; Giaramita, A.; Fong, S.; Roy, S.M.; Hague, C.; Lawrence, R.; Bullens, S.; Christianson, T.M.; d’Azzo, A.; Crawford, B.E.; Bunting, S.; LeBowitz, J.H.; Yogalingam, G. Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice. J. Biol. Chem., 2020, 295(39), 13532-13555.
[http://dx.doi.org/10.1074/jbc.RA119.009811] [PMID: 31481471]
[184]
Deodato, F.; Procopio, E.; Rampazzo, A.; Taurisano, R.; Donati, M.A.; Dionisi-Vici, C.; Caciotti, A.; Morrone, A.; Scarpa, M. The treatment of juvenile/adult GM1-gangliosidosis with Miglustat may reverse disease progression. Metab. Brain Dis., 2017, 32(5), 1529-1536.
[http://dx.doi.org/10.1007/s11011-017-0044-y] [PMID: 28577204]
[185]
Elliot-Smith, E.; Speak, A.O.; Lloyd-Evans, E.; Smith, D.A.; van der Spoel, A.C.; Jeyakumar, M.; Butters, T.D.; Dwek, R.A.; d’Azzo, A.; Platt, F.M. Beneficial effects of substrate reduction therapy in a mouse model of GM1 gangliosidosis. Mol. Genet. Metab., 2008, 94(2), 204-211.
[http://dx.doi.org/10.1016/j.ymgme.2008.02.005] [PMID: 18387328]
[186]
Suzuki, Y.; Ichinomiya, S.; Kurosawa, M.; Matsuda, J.; Ogawa, S.; Iida, M.; Kubo, T.; Tabe, M.; Itoh, M.; Higaki, K.; Nanba, E.; Ohno, K. Therapeutic chaperone effect of N-octyl 4-epi-β-valienamine on murine G(M1)-gangliosidosis. Mol. Genet. Metab., 2012, 106(1), 92-98.
[http://dx.doi.org/10.1016/j.ymgme.2012.02.012] [PMID: 22436580]
[187]
Cesani, M.; Lorioli, L.; Grossi, S.; Amico, G.; Fumagalli, F.; Spiga, I.; Filocamo, M.; Biffi, A. Mutation update of ARSA and PSAP genes causing metachromatic leukodystrophy. Hum. Mutat., 2016, 37(1), 16-27.
[http://dx.doi.org/10.1002/humu.22919] [PMID: 26462614]
[188]
Guo, L.; Jin, B.; Zhang, Y.; Wang, J. Identification of a missense ARSA mutation in metachromatic leukodystrophy and its potential pathogenic mechanism. Mol. Genet. Genomic Med., 2020, 8(11)e1478
[http://dx.doi.org/10.1002/mgg3.1478] [PMID: 32875726]
[189]
Lukatela, G.; Krauss, N.; Theis, K.; Selmer, T.; Gieselmann, V.; von Figura, K.; Saenger, W. Crystal structure of human arylsulfatase A: The aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis. Biochemistry, 1998, 37(11), 3654-3664.
[http://dx.doi.org/10.1021/bi9714924] [PMID: 9521684]
[190]
Schmidt, B.; Selmer, T.; Ingendoh, A.; von Figura, K. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell, 1995, 82(2), 271-278.
[http://dx.doi.org/10.1016/0092-8674(95)90314-3] [PMID: 7628016]
[191]
Schlotawa, L.; Adang, L.A.; Radhakrishnan, K.; Ahrens-Nicklas, R.C. Multiple sulfatase deficiency: A disease comprising mucopolysaccharidosis, sphingolipidosis, and more caused by a defect in posttranslational modification. Int. J. Mol. Sci., 2020, 21(10)E3448
[http://dx.doi.org/10.3390/ijms21103448] [PMID: 32414121]
[192]
Chen, X.; Gill, D.; Shaw, P.; Ouvrier, R.; Troedson, C. Outcome of early juvenile onset metachromatic leukodystrophy after unrelated cord blood transplantation: A case series and review of the literature. J. Child Neurol., 2016, 31(3), 338-344.
[http://dx.doi.org/10.1177/0883073815595078] [PMID: 26187619]
[193]
Matzner, U.; Hartmann, D.; Lüllmann-Rauch, R.; Coenen, R.; Rothert, F.; Månsson, J.E.; Fredman, P.; D’Hooge, R.; De Deyn, P.P.; Gieselmann, V. Bone marrow stem cell-based gene transfer in a mouse model for metachromatic leukodystrophy: effects on visceral and nervous system disease manifestations. Gene Ther., 2002, 9(1), 53-63.
[http://dx.doi.org/10.1038/sj.gt.3301593] [PMID: 11850723]
[194]
Sessa, M.; Lorioli, L.; Fumagalli, F.; Acquati, S.; Redaelli, D.; Baldoli, C.; Canale, S.; Lopez, I.D.; Morena, F.; Calabria, A.; Fiori, R.; Silvani, P.; Rancoita, P.M.; Gabaldo, M.; Benedicenti, F.; Antonioli, G.; Assanelli, A.; Cicalese, M.P.; Del Carro, U.; Sora, M.G.; Martino, S.; Quattrini, A.; Montini, E.; Di Serio, C.; Ciceri, F.; Roncarolo, M.G.; Aiuti, A.; Naldini, L.; Biffi, A. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: An ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet, 2016, 388(10043), 476-487.
[http://dx.doi.org/10.1016/S0140-6736(16)30374-9] [PMID: 27289174]
[195]
Meneghini, V.; Lattanzi, A.; Tiradani, L.; Bravo, G.; Morena, F.; Sanvito, F.; Calabria, A.; Bringas, J.; Fisher-Perkins, J.M.; Dufour, J.P.; Baker, K.C.; Doglioni, C.; Montini, E.; Bunnell, B.A.; Bankiewicz, K.; Martino, S.; Naldini, L.; Gritti, A. Pervasive supply of therapeutic lysosomal enzymes in the CNS of normal and Krabbe-affected non-human primates by intracerebral lentiviral gene therapy. EMBO Mol. Med., 2016, 8(5), 489-510.
[http://dx.doi.org/10.15252/emmm.201505850] [PMID: 27025653]
[196]
Piguet, F.; Sondhi, D.; Piraud, M.; Fouquet, F.; Hackett, N.R.; Ahouansou, O.; Vanier, M.T.; Bieche, I.; Aubourg, P.; Crystal, R.G.; Cartier, N.; Sevin, C. Correction of brain oligodendrocytes by AAVrh.10 intracerebral gene therapy in metachromatic leukodystrophy mice. Hum. Gene Ther., 2012, 23(8), 903-914.
[http://dx.doi.org/10.1089/hum.2012.015] [PMID: 22642214]
[197]
Matzner, U.; Herbst, E.; Hedayati, K.K.; Lüllmann-Rauch, R.; Wessig, C.; Schröder, S.; Eistrup, C.; Möller, C.; Fogh, J.; Gieselmann, V. Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy. Hum. Mol. Genet., 2005, 14(9), 1139-1152.
[http://dx.doi.org/10.1093/hmg/ddi126] [PMID: 15772092]
[198]
i Dali, C.; Lund, A.M. Annual clinical genetics meeting of the american college of medical genetics and genomics, Tampa, FL, USA 2009.
[199]
Schuster, T.; Mühlstein, A.; Yaghootfam, C.; Maksimenko, O.; Shipulo, E.; Gelperina, S.; Kreuter, J.; Gieselmann, V.; Matzner, U. Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A. Journal of controlled release : Official journal of the Controlled Release Society, 2017, 253, 1-10.
[200]
Böckenhoff, A.; Cramer, S.; Wölte, P.; Knieling, S.; Wohlenberg, C.; Gieselmann, V.; Galla, H.J.; Matzner, U. Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A. J. Neurosci., 2014, 34(9), 3122-3129.
[http://dx.doi.org/10.1523/JNEUROSCI.4785-13.2014] [PMID: 24573272]
[201]
Wright, T.; Li, A.; Lotterhand, J.; Graham, A.R.; Huang, Y.; Avila, N.; Pan, J. Nonclinical comparability studies of recombinant human arylsulfatase A addressing manufacturing process changes. PLoS One, 2018, 13(4)e0195186
[http://dx.doi.org/10.1371/journal.pone.0195186] [PMID: 29672630]
[202]
McGovern, M.M.; Avetisyan, R.; Sanson, B.J.; Lidove, O. Disease manifestations and burden of illness in patients with acid sphingomyelinase deficiency (ASMD). Orphanet J. Rare Dis., 2017, 12(1), 41.
[http://dx.doi.org/10.1186/s13023-017-0572-x] [PMID: 28228103]
[203]
Schuchman, E.H. The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease. J. Inherit. Metab. Dis., 2007, 30(5), 654-663.
[http://dx.doi.org/10.1007/s10545-007-0632-9] [PMID: 17632693]
[204]
Jenkins, R.W.; Canals, D.; Hannun, Y.A. Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell. Signal., 2009, 21(6), 836-846.
[http://dx.doi.org/10.1016/j.cellsig.2009.01.026] [PMID: 19385042]
[205]
Zeidan, Y.H.; Hannun, Y.A. The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation. Curr. Mol. Med., 2010, 10(5), 454-466.
[http://dx.doi.org/10.2174/156652410791608225] [PMID: 20540705]
[206]
Thurberg, B.L.; Diaz, G.A.; Lachmann, R.H.; Schiano, T.; Wasserstein, M.P.; Ji, A.J.; Zaher, A.; Peterschmitt, M.J. Long-term efficacy of olipudase alfa in adults with acid sphingomyelinase deficiency (ASMD): Further clearance of hepatic sphingomyelin is associated with additional improvements in pro- and anti-atherogenic lipid profiles after 42 months of treatment. Mol. Genet. Metab., 2020, 131(1-2), 245-252.
[http://dx.doi.org/10.1016/j.ymgme.2020.06.010] [PMID: 32620536]
[207]
Horinouchi, K.; Erlich, S.; Perl, D.P.; Ferlinz, K.; Bisgaier, C.L.; Sandhoff, K.; Desnick, R.J.; Stewart, C.L.; Schuchman, E.H. Acid sphingomyelinase deficient mice: A model of types A and B Niemann-Pick disease. Nat. Genet., 1995, 10(3), 288-293.
[http://dx.doi.org/10.1038/ng0795-288] [PMID: 7670466]
[208]
Otterbach, B.; Stoffel, W. Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann-Pick disease). Cell, 1995, 81(7), 1053-1061.
[http://dx.doi.org/10.1016/S0092-8674(05)80010-8] [PMID: 7600574]
[209]
Zhou, Y.F.; Metcalf, M.C.; Garman, S.C.; Edmunds, T.; Qiu, H.; Wei, R.R. Human acid sphingomyelinase structures provide insight to molecular basis of Niemann-Pick disease. Nat. Commun., 2016, 7(13082)
[http://dx.doi.org/10.1038/ncomms13082]
[210]
He, X.; Miranda, S.R.; Xiong, X.; Dagan, A.; Gatt, S.; Schuchman, E.H. Characterization of human acid sphingomyelinase purified from the media of overexpressing Chinese hamster ovary cells. Biochim. Biophys. Acta, 1999, 1432(2), 251-264.
[http://dx.doi.org/10.1016/S0167-4838(99)00069-2] [PMID: 10407147]
[211]
Miranda, S.R.; He, X.; Simonaro, C.M.; Gatt, S.; Dagan, A.; Desnick, R.J.; Schuchman, E.H. Infusion of recombinant human acid sphingomyelinase into niemann-pick disease mice leads to visceral, but not neurological, correction of the pathophysiology. FASEB J., 2000, 14(13), 1988-1995.
[http://dx.doi.org/10.1096/fj.00-0014com] [PMID: 11023983]
[212]
McGovern, M.M.; Wasserstein, M.P.; Kirmse, B.; Duvall, W.L.; Schiano, T.; Thurberg, B.L.; Richards, S.; Cox, G.F. Novel first-dose adverse drug reactions during a phase I trial of olipudase alfa (recombinant human acid sphingomyelinase) in adults with Niemann-Pick disease type B (acid sphingomyelinase deficiency). Genetics in medicine : Official journal of the American College of Medical Genetics, 2016, 18(1), 34-40.
[213]
Thurberg, B.L.; Wasserstein, M.P.; Jones, S.A.; Schiano, T.D.; Cox, G.F.; Puga, A.C. Clearance of hepatic sphingomyelin by olipudase alfa is associated with improvement in lipid profiles in acid sphingomyelinase deficiency. Am. J. Surg. Pathol., 2016, 40(9), 1232-1242.
[http://dx.doi.org/10.1097/PAS.0000000000000659] [PMID: 27340749]
[214]
Wasserstein, M.; Dionisi-Vici, C.; Giugliani, R.; Hwu, W.L.; Lidove, O.; Lukacs, Z.; Mengel, E.; Mistry, P.K.; Schuchman, E.H.; McGovern, M. Recommendations for clinical monitoring of patients with acid sphingomyelinase deficiency (ASMD). Mol. Genet. Metab., 2019, 126(2), 98-105.
[http://dx.doi.org/10.1016/j.ymgme.2018.11.014] [PMID: 30514648]
[215]
Wasserstein, M.P.; Diaz, G.A.; Lachmann, R.H.; Jouvin, M.H.; Nandy, I.; Ji, A.J.; Puga, A.C. olipudase alfa for treatment of acid sphingomyelinase deficiency (ASMD): Safety and efficacy in adults treated for 30 months. J. Inherit. Metab. Dis., 2018, 41(5), 829-838.
[http://dx.doi.org/10.1007/s10545-017-0123-6] [PMID: 29305734]
[216]
Muro, S.; Schuchman, E.H.; Muzykantov, V.R. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis. Molecular therapy : The journal of the American Society of Gene Therapy 2006, 13(1), 135-141.
[217]
Aldosari, M.H.; de Vries, R.P.; Rodriguez, L.R.; Hesen, N.A.; Beztsinna, N.; van Kuilenburg, A.B.P.; Hollak, C.E.M.; Schellekens, H.; Mastrobattista, E. iposometargeted recombinant human acid sphingomyelinase: Production, formulation, and in vitro evaluation. European journal of pharmaceutics and biopharmaceutics : Official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2019, 137, 185-195.
[218]
Giblett, E.R.; Anderson, J.E.; Cohen, F.; Pollara, B.; Meuwissen, H.J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet, 1972, 2(7786), 1067-1069.
[http://dx.doi.org/10.1016/S0140-6736(72)92345-8] [PMID: 4117384]
[219]
Walter, J.E. Hematology, Immunology and Genetics (Third Edition); Ohls, R.K.; Maheshwari, A.; Christensen, R.D., Eds.; Elsevier: Philadelphia , 2019; pp. 173-193.
[220]
Ugochukwu, E.; Zhang, Y.; Hapka, E.; Yue, W.W.; Bray, J.E.; Muniz, J.; Burgess-Brown, N.; Chaikuad, A.; von Delft, F.; Bountra, C.; Arrowsmith, C.H.; Weigelt, J.; Edwards, A.; Kavanagh, K.L.; Oppermann, U. 2009. (SGC), S.G.C.
[221]
Maier, S.A.; Galellis, J.R.; McDermid, H.E. Phylogenetic analysis reveals a novel protein family closely related to adenosine deaminase. J. Mol. Evol., 2005, 61(6), 776-794.
[http://dx.doi.org/10.1007/s00239-005-0046-y] [PMID: 16245011]
[222]
Moens, L.; Hershfield, M.; Arts, K.; Aksentijevich, I.; Meyts, I. Human adenosine deaminase 2 deficiency: A multi-faceted inborn error of immunity. Immunol. Rev., 2019, 287(1), 62-72.
[http://dx.doi.org/10.1111/imr.12722] [PMID: 30565235]
[223]
Murakami, E.; Bao, H.; Mosley, R.T.; Du, J.; Sofia, M.J.; Furman, P.A. Adenosine deaminase-like protein 1 (ADAL1): Characterization and substrate specificity in the hydrolysis of N(6)- or O(6)-substituted purine or 2-aminopurine nucleoside monophosphates. J. Med. Chem., 2011, 54(16), 5902-5914.
[http://dx.doi.org/10.1021/jm200650j] [PMID: 21755941]
[224]
Zavialov, A.V.; Yu, X.; Spillmann, D.; Lauvau, G.; Zavialov, A.V. Structural basis for the growth factor activity of human adenosine deaminase ADA2. J. Biol. Chem., 2010, 285(16), 12367-12377.
[http://dx.doi.org/10.1074/jbc.M109.083527] [PMID: 20147294]
[225]
Aldrich, M.B.; Chen, W.; Blackburn, M.R.; Martinez-Valdez, H.; Datta, S.K.; Kellems, R.E. Impaired germinal center maturation in adenosine deaminase deficiency. J. Immunol., 2003, 171(10), 5562-5570.
[http://dx.doi.org/10.4049/jimmunol.171.10.5562] [PMID: 14607964]
[226]
Apasov, S.G.; Blackburn, M.R.; Kellems, R.E.; Smith, P.T.; Sitkovsky, M.V. Adenosine deaminase deficiency increases thymic apoptosis and causes defective T cell receptor signaling. J. Clin. Invest., 2001, 108(1), 131-141.
[http://dx.doi.org/10.1172/JCI200110360] [PMID: 11435465]
[227]
Benveniste, P.; Zhu, W.; Cohen, A. Interference with thymocyte differentiation by an inhibitor of S-adenosylhomocysteine hydrolase. J. Immunol., 1995, 155(2), 536-544.
[PMID: 7608534]
[228]
Gangi-Peterson, L.; Sorscher, D.H.; Reynolds, J.W.; Kepler, T.B.; Mitchell, B.S. Nucleotide pool imbalance and adenosine deaminase deficiency induce alterations of N-region insertions during V(D)J recombination. J. Clin. Invest., 1999, 103(6), 833-841.
[http://dx.doi.org/10.1172/JCI4320] [PMID: 10079104]
[229]
Blackburn, M.R.; Kellems, R.E. Adenosine deaminase deficiency: metabolic basis of immune deficiency and pulmonary inflammation. Adv. Immunol., 2005, 86, 1-41.
[http://dx.doi.org/10.1016/S0065-2776(04)86001-2]
[230]
Bradford, K.L.; Moretti, F.A.; Carbonaro-Sarracino, D.A.; Gaspar, H.B.; Kohn, D.B. Adenosine Deaminase (ADA)-Deficient Severe Combined Immune Deficiency (SCID): Molecular pathogenesis and clinical manifestations. J. Clin. Immunol., 2017, 37(7), 626-637.
[http://dx.doi.org/10.1007/s10875-017-0433-3] [PMID: 28842866]
[231]
Grunebaum, E.; Cutz, E.; Roifman, C.M. Pulmonary alveolar proteinosis in patients with adenosine deaminase deficiency. J. Allergy Clin. Immunol., 2012, 129(6), 1588-1593.
[http://dx.doi.org/10.1016/j.jaci.2012.02.003] [PMID: 22409989]
[232]
Whitmore, K.V.; Gaspar, H.B. Adenosine deaminase deficiency - more than just an immunodeficiency. Front. Immunol., 2016, 7(314), 314.
[http://dx.doi.org/10.3389/fimmu.2016.00314] [PMID: 27579027]
[233]
Polmar, S.H.; Stern, R.C.; Schwartz, A.L.; Wetzler, E.M.; Chase, P.A.; Hirschhorn, R. Enzyme replacement therapy for adenosine deaminase deficiency and severe combined immunodeficiency. N. Engl. J. Med., 1976, 295(24), 1337-1343.
[http://dx.doi.org/10.1056/NEJM197612092952402] [PMID: 980079]
[234]
Kelly, M.A.; Vestling, M.M.; Murphy, C.M.; Hua, S.; Sumpter, T.; Fenselau, C. Primary structure of bovine adenosine deaminase. J. Pharm. Biomed. Anal., 1996, 14(11), 1513-1519.
[http://dx.doi.org/10.1016/0731-7085(96)01845-6] [PMID: 8877857]
[235]
Davis, S.; Abuchowski, A.; Park, Y.K.; Davis, F.F. Alteration of the circulating life and antigenic properties of bovine adenosine deaminase in mice by attachment of polyethylene glycol. Clin. Exp. Immunol., 1981, 46(3), 649-652.
[PMID: 7337981]
[236]
Fishburn, C.S. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J. Pharm. Sci., 2008, 97(10), 4167-4183.
[http://dx.doi.org/10.1002/jps.21278] [PMID: 18200508]
[237]
Booth, C.; Gaspar, H.B. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biologics : Targets & therapy,, 2009, 3, 349-358.
[238]
Murguia-Favela, L.; Min, W.; Loves, R.; Leon-Ponte, M.; Grunebaum, E. Comparison of elapegademase and pegademase in ADA-deficient patients and mice. Clin. Exp. Immunol., 2020, 200(2), 176-184.
[http://dx.doi.org/10.1111/cei.13420] [PMID: 31989577]
[239]
Chan, B.; Wara, D.; Bastian, J.; Hershfield, M.S.; Bohnsack, J.; Azen, C.G.; Parkman, R.; Weinberg, K.; Kohn, D.B. Long-term efficacy of enzyme replacement therapy for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID). Clin. Immunol., 2005, 117(2), 133-143.
[http://dx.doi.org/10.1016/j.clim.2005.07.006] [PMID: 16112907]
[240]
Hershfield, M.S. PEG-ADA replacement therapy for adenosine deaminase deficiency: an update after 8.5 years. Clin. Immunol. Immunopathol., 1995, 76(3 Pt 2), S228-S232.
[http://dx.doi.org/10.1016/S0090-1229(95)90306-2] [PMID: 7554473]
[241]
Hershfield, M.S.; Buckley, R.H.; Greenberg, M.L.; Melton, A.L.; Schiff, R.; Hatem, C.; Kurtzberg, J.; Markert, M.L.; Kobayashi, R.H.; Kobayashi, A.L. Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase. N. Engl. J. Med., 1987, 316(10), 589-596.
[http://dx.doi.org/10.1056/NEJM198703053161005] [PMID: 3807953]
[242]
Hershfield, M.S.; Chaffee, S.; Sorensen, R.U. Enzyme replacement therapy with polyethylene glycol-adenosine deaminase in adenosine deaminase deficiency: Overview and case reports of three patients, including two now receiving gene therapy. Pediatr. Res., 1993, 33(1)(Suppl.), S42-S47.
[http://dx.doi.org/10.1203/00006450-199333011-00009] [PMID: 8433874]
[243]
Lainka, E.; Hershfield, M.S.; Santisteban, I.; Bali, P.; Seibt, A.; Neubert, J.; Friedrich, W.; Niehues, T. polyethylene glycol-conjugated adenosine deaminase (ADA) therapy provides temporary immune reconstitution to a child with delayed-onset ADA deficiency. Clin. Diagn. Lab. Immunol., 2005, 12(7), 861-866.
[http://dx.doi.org/10.1128/CDLI.12.7.861-866.2005] [PMID: 16002636]
[244]
Tartibi, H.M.; Hershfield, M.S.; Bahna, S.L.A. 24-Year enzyme replacement therapy in an adenosine-deaminase-deficient patient. Pediatrics, 2016, 137(1)
[http://dx.doi.org/10.1542/peds.2015-2169] [PMID: 26684479]
[245]
Chaffee, S.; Mary, A.; Stiehm, E.R.; Girault, D.; Fischer, A.; Hershfield, M.S. IgG antibody response to polyethylene glycol-modified adenosine deaminase in patients with adenosine deaminase deficiency. J. Clin. Invest., 1992, 89(5), 1643-1651.
[http://dx.doi.org/10.1172/JCI115761] [PMID: 1569204]
[246]
Kohn, D.B.; Gaspar, H.B. How we manage adenosine deaminase-deficient severe combined immune deficiency (ADA SCID). J. Clin. Immunol., 2017, 37(4), 351-356.
[http://dx.doi.org/10.1007/s10875-017-0373-y] [PMID: 28194615]
[247]
Hassan, A.; Booth, C.; Brightwell, A.; Allwood, Z.; Veys, P.; Rao, K.; Hönig, M.; Friedrich, W.; Gennery, A.; Slatter, M.; Bredius, R.; Finocchi, A.; Cancrini, C.; Aiuti, A.; Porta, F.; Lanfranchi, A.; Ridella, M.; Steward, C.; Filipovich, A.; Marsh, R.; Bordon, V.; Al-Muhsen, S.; Al-Mousa, H.; Alsum, Z.; Al-Dhekri, H.; Al Ghonaium, A.; Speckmann, C.; Fischer, A.; Mahlaoui, N.; Nichols, K.E.; Grunebaum, E.; Al Zahrani, D.; Roifman, C.M.; Boelens, J.; Davies, E.G.; Cavazzana-Calvo, M.; Notarangelo, L.; Gaspar, H.B. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency. Blood, 2012, 120(17), 3615-3624.
[http://dx.doi.org/10.1182/blood-2011-12-396879] [PMID: 22791287]
[248]
Blaese, R.M.; Culver, K.W.; Miller, A.D.; Carter, C.S.; Fleisher, T.; Clerici, M.; Shearer, G.; Chang, L.; Chiang, Y.; Tolstoshev, P.; Greenblatt, J.J.; Rosenberg, S.A.; Klein, H.; Berger, M.; Mullen, C.A.; Ramsey, W.J.; Muul, L.; Morgan, R.A.; Anderson, W.F. T lymphocyte-directed gene therapy for ADA- SCID: Initial trial results after 4 years. Science, 1995, 270(5235), 475-480.
[http://dx.doi.org/10.1126/science.270.5235.475] [PMID: 7570001]
[249]
Aiuti, A.; Roncarolo, M.G.; Naldini, L. Gene therapy for ADA-SCID, the first marketing approval of an ex vivo gene therapy in Europe: Paving the road for the next generation of advanced therapy medicinal products. EMBO Mol. Med., 2017, 9(6), 737-740.
[http://dx.doi.org/10.15252/emmm.201707573] [PMID: 28396566]
[250]
Cicalese, M.P.; Ferrua, F.; Castagnaro, L.; Pajno, R.; Barzaghi, F.; Giannelli, S.; Dionisio, F.; Brigida, I.; Bonopane, M.; Casiraghi, M.; Tabucchi, A.; Carlucci, F.; Grunebaum, E.; Adeli, M.; Bredius, R.G.; Puck, J.M.; Stepensky, P.; Tezcan, I.; Rolfe, K.; De Boever, E.; Reinhardt, R.R.; Appleby, J.; Ciceri, F.; Roncarolo, M.G.; Aiuti, A. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood, 2016, 128(1), 45-54.
[http://dx.doi.org/10.1182/blood-2016-01-688226] [PMID: 27129325]
[251]
Cicalese, M.P.; Ferrua, F.; Castagnaro, L.; Rolfe, K.; De Boever, E.; Reinhardt, R.R.; Appleby, J.; Roncarolo, M.G.; Aiuti, A. Gene therapy for adenosine deaminase deficiency: A comprehensive evaluation of short- and medium-term safety. Molecular therapy : The journal of the American Society of Gene Therapy, 2018, 26(3), 917-931.
[252]
Ferrua, F.; Aiuti, A. Twenty-five years of gene therapy for ADA-SCID: From bubble babies to an approved drug. Hum. Gene Ther., 2017, 28(11), 972-981.
[http://dx.doi.org/10.1089/hum.2017.175] [PMID: 28847159]
[253]
Kelley, W.N.; Rosenbloom, F.M.; Henderson, J.F.; Seegmiller, J.E. A specific enzyme defect in gout associated with overproduction of uric acid. Proc. Natl. Acad. Sci. USA, 1967, 57(6), 1735-1739.
[http://dx.doi.org/10.1073/pnas.57.6.1735] [PMID: 4291947]
[254]
Lesch, M.; Nyhan, W.L. A familial disorder of uric acid metabolism and central nervous system function. Am. J. Med., 1964, 36(4), 561-570.
[http://dx.doi.org/10.1016/0002-9343(64)90104-4] [PMID: 14142409]
[255]
Nyhan, W.L.; Pesek, J.; Sweetman, L.; Carpenter, D.G.; Carter, C.H. Genetics of an x-linked disorder of uric acid metabolism and cerebral function. Pediatr. Res., 1967, 1(1), 5-13.
[http://dx.doi.org/10.1203/00006450-196701000-00001]
[256]
Seegmiller, J.E.; Rosenbloom, F.M.; Kelley, W.N. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science, 1967, 155(3770), 1682-1684.
[http://dx.doi.org/10.1126/science.155.3770.1682] [PMID: 6020292]
[257]
Balendiran, G.K.; Molina, J.A.; Xu, Y.; Torres-Martinez, J.; Stevens, R.; Focia, P.J.; Eakin, A.E.; Sacchettini, J.C.; Craig, S.P. III Ternary complex structure of human HGPRTase, PRPP, Mg2+, and the inhibitor HPP reveals the involvement of the flexible loop in substrate binding. Protein Sci., 1999, 8(5), 1023-1031.
[http://dx.doi.org/10.1110/ps.8.5.1023] [PMID: 10338013]
[258]
Keough, D.T.; Brereton, I.M.; de Jersey, J.; Guddat, L.W. The crystal structure of free human hypoxanthine-guanine phosphoribosyltransferase reveals extensive conformational plasticity throughout the catalytic cycle. J. Mol. Biol., 2005, 351(1), 170-181.
[http://dx.doi.org/10.1016/j.jmb.2005.05.061] [PMID: 15990111]
[259]
Nyhan, W.L. The recognition of Lesch-Nyhan syndrome as an inborn error of purine metabolism. J. Inherit. Metab. Dis., 1997, 20(2), 171-178.
[http://dx.doi.org/10.1023/A:1005348504512] [PMID: 9211189]
[260]
Fu, R.; Chen, C-J.; Jinnah, H.A. Genotypic and phenotypic spectrum in attenuated variants of Lesch-Nyhan disease. Mol. Genet. Metab., 2014, 112(4), 280-285.
[http://dx.doi.org/10.1016/j.ymgme.2014.05.012] [PMID: 24930028]
[261]
Jinnah, H.A.; Ceballos-Picot, I.; Torres, R.J.; Visser, J.E.; Schretlen, D.J.; Verdu, A.; Laróvere, L.E.; Chen, C-J.; Cossu, A.; Wu, C-H.; Sampat, R.; Chang, S-J.; de Kremer, R.D.; Nyhan, W.; Harris, J.C.; Reich, S.G.; Puig, J.G. Attenuated variants of Lesch-Nyhan disease. Brain, 2010, 133(Pt 3), 671-689.
[http://dx.doi.org/10.1093/brain/awq013] [PMID: 20176575]
[262]
Benke, P.J.; Herrick, N.; Hebert, A. Hypoxanthine-guanine phosphoribosyltransferase variant associated with accelerated purine synthesis. J. Clin. Invest., 1973, 52(9), 2234-2240.
[http://dx.doi.org/10.1172/JCI107409] [PMID: 4353774]
[263]
Fu, R.; Jinnah, H.A. Genotype-phenotype correlations in Lesch-Nyhan disease: Moving beyond the gene. J. Biol. Chem., 2012, 287(5), 2997-3008.
[http://dx.doi.org/10.1074/jbc.M111.317701] [PMID: 22157001]
[264]
Ceballos-Picot, I.; Mockel, L.; Potier, M-C.; Dauphinot, L.; Shirley, T.L.; Torero-Ibad, R.; Fuchs, J.; Jinnah, H.A. Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: Implications for Lesch-Nyhan disease pathogenesis. Hum. Mol. Genet., 2009, 18(13), 2317-2327.
[http://dx.doi.org/10.1093/hmg/ddp164] [PMID: 19342420]
[265]
Guibinga, G-H.; Hsu, S.; Friedmann, T. Deficiency of the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase (HPRT) dysregulates neurogenesis. Mol. Ther., 2010, 18(1), 54-62.
[http://dx.doi.org/10.1038/mt.2009.178] [PMID: 19672249]
[266]
Torres, R.J.; Puig, J.G. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J. Rare Dis., 2007, 2(1), 48.
[http://dx.doi.org/10.1186/1750-1172-2-48] [PMID: 18067674]
[267]
Bell, S.; Kolobova, I.; Crapper, L.; Ernst, C. Lesch-Nyhan syndrome: Models, theories, and therapies. Mol. Syndromol., 2016, 7(6), 302-311.
[http://dx.doi.org/10.1159/000449296] [PMID: 27920633]
[268]
Meek, S.; Thomson, A.J.; Sutherland, L.; Sharp, M.G.F.; Thomson, J.; Bishop, V.; Meddle, S.L.; Gloaguen, Y.; Weidt, S.; Singh-Dolt, K.; Buehr, M.; Brown, H.K.; Gill, A.C.; Burdon, T. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: A new rodent model of Lesch-Nyhan Disease. Sci. Rep., 2016, 6(1), 25592.
[http://dx.doi.org/10.1038/srep25592] [PMID: 27185277]
[269]
Zennaro, C.; Tonon, F.; Zarattini, P.; Clai, M.; Corbelli, A.; Carraro, M.; Marchetti, M.; Ronda, L.; Paredi, G.; Rastaldi, M.P.; Percudani, R. The renal phenotype of allopurinol-treated HPRT-deficient mouse. PLoS One, 2017, 12(3)e0173512
[http://dx.doi.org/10.1371/journal.pone.0173512] [PMID: 28282408]
[270]
Zhang, Y.; Li, Q.; Wang, F.; Xing, C. A zebrafish (danio rerio) model for high-throughput screening food and drugs with uric acid-lowering activity. Biochem. Biophys. Res. Commun., 2019, 508(2), 494-498.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.050] [PMID: 30503500]
[271]
De Gregorio, L.; Jinnah, H.A.; Harris, J.C.; Nyhan, W.L.; Schretlen, D.J.; Trombley, L.M.; O’Neill, J.P. Lesch-Nyhan disease in a female with a clinically normal monozygotic twin. Mol. Genet. Metab., 2005, 85(1), 70-77.
[http://dx.doi.org/10.1016/j.ymgme.2004.11.009] [PMID: 15862283]
[272]
Endres, W.; Helmig, M.; Shin, Y.S.; Albert, E.; Wank, R.; Ibel, H.; Weiss, M.; Hadorn, H.B.; Hass, R. Bone marrow transplantation in Lesch-Nyhan disease. J. Inherit. Metab. Dis., 1991, 14(2), 270-271.
[http://dx.doi.org/10.1007/BF01800605] [PMID: 1886412]
[273]
Nyhan, W.L.; Parkman, R.; Page, T.; Gruber, H.E.; Pyati, J.; Jolly, D.; Friedmann, T. Bone marrow transplantation in Lesch-Nyhan disease. Advances in experimental medicine and biology,, 1986, 195(Pt A), 167-170.
[http://dx.doi.org/10.1007/978-1-4684-5104-7_26]
[274]
Watts, R.W.; McKeran, R.O.; Brown, E.; Andrews, T.M.; Griffiths, M.I. Clinical and biochemical studies on treatment of Lesch-Nyhan syndrome. Arch. Dis. Child., 1974, 49(9), 693-702.
[http://dx.doi.org/10.1136/adc.49.9.693] [PMID: 4472817]
[275]
Torres, R.J. Current understanding of Lesch-Nyhan disease and potential therapeutic targets. Expert Opin. Orphan Drugs, 2019, 7(7-8), 349-361.
[http://dx.doi.org/10.1080/21678707.2019.1652597]
[276]
Li, S.; Yang, H.; Guo, Y.; Wei, F.; Yang, X.; Li, D.; Li, M.; Xu, W.; Li, W.; Sun, L.; Gao, Y.; Wang, Y. Comparative efficacy and safety of urate-lowering therapy for the treatment of hyperuricemia: A systematic review and network meta-analysis. Sci. Rep., 2016, 6(1), 33082.
[http://dx.doi.org/10.1038/srep33082] [PMID: 27605442]
[277]
Conley, T.G.; Priest, D.G. Thermodynamics and stoicheiometry of the binding of substrate analogues to uricase. Biochem. J., 1980, 187(3), 727-732.
[http://dx.doi.org/10.1042/bj1870727] [PMID: 6821367]
[278]
Hershfield, M.S.; Roberts, L.J., II; Ganson, N.J.; Kelly, S.J.; Santisteban, I.; Scarlett, E.; Jaggers, D.; Sundy, J.S. Treating gout with pegloticase, a PEGylated urate oxidase, provides insight into the importance of uric acid as an antioxidant in vivo. Proc. Natl. Acad. Sci. USA, 2010, 107(32), 14351-14356.
[http://dx.doi.org/10.1073/pnas.1001072107] [PMID: 20660758]
[279]
Owens, R.E.; Swanson, H.; Twilla, J.D. Hemolytic anemia induced by pegloticase infusion in a patient with G6PD deficiency. J. Clin. Rheumatol., 2016, 22(2), 97-98.
[http://dx.doi.org/10.1097/RHU.0000000000000370] [PMID: 26906307]
[280]
Bomalaski, J.S.; Holtsberg, F.W.; Ensor, C.M.; Clark, M.A. Uricase formulated with polyethylene glycol (uricase-PEG 20): biochemical rationale and preclinical studies. J. Rheumatol., 2002, 29(9), 1942-1949.
[PMID: 12233890]
[281]
Brogard, J.M.; Coumaros, D.; Franckhauser, J.; Stahl, A.; Stahl, J. Enzymatic uricolysis: A study of the effect of a fungal urate-oxydase. Rev. Eur. Etud. Clin. Biol., 1972, 17(9), 890-895.
[PMID: 4631795]
[282]
Pui, C.H.; Relling, M.V.; Lascombes, F.; Harrison, P.L.; Struxiano, A.; Mondesir, J.M.; Ribeiro, R.C.; Sandlund, J.T.; Rivera, G.K.; Evans, W.E.; Mahmoud, H.H. Urate oxidase in prevention and treatment of hyperuricemia associated with lymphoid malignancies. Leukemia, 1997, 11(11), 1813-1816.
[http://dx.doi.org/10.1038/sj.leu.2400850] [PMID: 9369411]
[283]
Alakel, N.; Middeke, J.M.; Schetelig, J.; Bornhäuser, M. Prevention and treatment of tumor lysis syndrome, and the efficacy and role of rasburicase. OncoTargets Ther., 2017, 10, 597-605.
[http://dx.doi.org/10.2147/OTT.S103864]
[284]
Roche, A.; Pérez-Dueñas, B.; Camacho, J.A.; Torres, R.J.; Puig, J.G.; García-Cazorla, A.; Artuch, R. Efficacy of rasburicase in hyperuricemia secondary to Lesch-Nyhan syndrome. Am. J. Kidney Dis., 2009, 53(4), 677-680.
[http://dx.doi.org/10.1053/j.ajkd.2008.09.011] [PMID: 18992978]
[285]
Thumfart, J.; Weschke, B.; Ringe, H.; Weinhold, N.; Müller, D. Acute renal failure unmasking Lesch-Nyhan disease in a patient with tuberous sclerosis complex. Eur. J. Paediatr. Neurol., 2016, 20(4), 649-651.
[http://dx.doi.org/10.1016/j.ejpn.2016.04.014] [PMID: 27185581]
[286]
Bayol, A.; Capdevielle, J.; Malazzi, P.; Buzy, A.; Claude Bonnet, M.; Colloc’h, N.; Mornon, J-P.; Loyaux, D.; Ferrara, P. Modification of a reactive cysteine explains differences between rasburicase and Uricozyme, a natural Aspergillus flavus uricase. Biotechnol. Appl. Biochem., 2002, 36(1), 21-31.
[http://dx.doi.org/10.1042/BA20010083] [PMID: 12149119]
[287]
Pui, C.H.; Mahmoud, H.H.; Wiley, J.M.; Woods, G.M.; Leverger, G.; Camitta, B.; Hastings, C.; Blaney, S.M.; Relling, M.V.; Reaman, G.H. Recombinant urate oxidase for the prophylaxis or treatment of hyperuricemia in patients With leukemia or lymphoma. J. Clin. Oncol., 2001, 19(3), 697-704.
[http://dx.doi.org/10.1200/JCO.2001.19.3.697] [PMID: 11157020]
[288]
Richette, P.; Brière, C.; Hoenen-Clavert, V.; Loeuille, D.; Bardin, T. Rasburicase for tophaceous gout not treatable with allopurinol: An exploratory study. J. Rheumatol., 2007, 34(10), 2093-2098.
[PMID: 17896799]
[289]
Moia, R.; Boggio, E.; Gigliotti, L.; Crisà, E.; De Paoli, L.; Margiotta Casaluci, G.; Rolla, R.; Patriarca, A.; Gaidano, G.; Dianzani, U.; Bruna, R. Anti-rasburicase antibodies induce clinical refractoriness by inhibiting the enzyme catalytic activity. Hematol. Oncol., 2020, 38(2), 204-206.
[http://dx.doi.org/10.1002/hon.2700] [PMID: 31985842]
[290]
Feng, X.; Dong, K.; Pham, D.; Pence, S.; Inciardi, J.; Bhutada, N.S. Efficacy and cost of single-dose rasburicase in prevention and treatment of adult tumour lysis syndrome: A meta-analysis. J. Clin. Pharm. Ther., 2013, 38(4), 301-308.
[http://dx.doi.org/10.1111/jcpt.12061] [PMID: 23550846]
[291]
Cammalleri, L.; Malaguarnera, M. Rasburicase represents a new tool for hyperuricemia in tumor lysis syndrome and in gout. Int. J. Med. Sci., 2007, 4(2), 83-93.
[http://dx.doi.org/10.7150/ijms.4.83] [PMID: 17396159]
[292]
de Bont, J.M.; Pieters, R. Management of hyperuricemia with rasburicase review. Nucleosides Nucleotides Nucleic Acids, 2004, 23(8-9), 1431-1440.
[http://dx.doi.org/10.1081/NCN-200027656] [PMID: 15571272]
[293]
Dinnel, J.; Moore, B.L.; Skiver, B.M.; Bose, P. Rasburicase in the management of tumor lysis: An evidence-based review of its place in therapy. Core Evid., 2015, 10, 23-38.
[294]
Navolanic, P.M.; Pui, C.H.; Larson, R.A.; Bishop, M.R.; Pearce, T.E.; Cairo, M.S.; Goldman, S.C.; Jeha, S.C.; Shanholtz, C.B.; Leonard, J.P.; McCubrey, J.A. Elitek-rasburicase: An effective means to prevent and treat hyperuricemia associated with tumor lysis syndrome, a Meeting Report, Dallas, Texas, January 2002. Leukemia, 2003, 17(3), 499-514.
[http://dx.doi.org/10.1038/sj.leu.2402847] [PMID: 12646938]
[295]
Oldfield, V.; Perry, C.M. Rasburicase: A review of its use in the management of anticancer therapy-induced hyperuricaemia. Drugs, 2006, 66(4), 529-545.
[http://dx.doi.org/10.2165/00003495-200666040-00008] [PMID: 16597166]
[296]
Pui, C-H. Rasburicase: A potent uricolytic agent. Expert Opin. Pharmacother., 2002, 3(4), 433-442.
[http://dx.doi.org/10.1517/14656566.3.4.433] [PMID: 11934348]
[297]
Ueng, S. Rasburicase (Elitek): A novel agent for tumor lysis syndrome. Proc. Bayl. Univ. Med. Cent., 2005, 18(3), 275-279.
[http://dx.doi.org/10.1080/08998280.2005.11928082] [PMID: 16200184]
[298]
Sherman, M.R.; Saifer, M.G.P.; Perez-Ruiz, F. PEG-uricase in the management of treatment-resistant gout and hyperuricemia. Adv. Drug Deliv. Rev., 2008, 60(1), 59-68.
[http://dx.doi.org/10.1016/j.addr.2007.06.011] [PMID: 17826865]
[299]
Lipsky, P.E.; Calabrese, L.H.; Kavanaugh, A.; Sundy, J.S.; Wright, D.; Wolfson, M.; Becker, M.A. Pegloticase immunogenicity: The relationship between efficacy and antibody development in patients treated for refractory chronic gout. Arthritis Res. Ther., 2014, 16(2), R60.
[http://dx.doi.org/10.1186/ar4497] [PMID: 24588936]
[300]
Sundy, J.S.; Becker, M.A.; Baraf, H.S.B.; Barkhuizen, A.; Moreland, L.W.; Huang, W.; Waltrip, R.W., II; Maroli, A.N.; Horowitz, Z.; Investigators, P.P.S. Reduction of plasma urate levels following treatment with multiple doses of pegloticase (polyethylene glycol-conjugated uricase) in patients with treatment-failure gout: Results of a phase II randomized study. Arthritis Rheum., 2008, 58(9), 2882-2891.
[http://dx.doi.org/10.1002/art.23810] [PMID: 18759308]
[301]
Calabrese, L.H.; Kavanaugh, A.; Yeo, A.E.; Lipsky, P.E. Frequency, distribution and immunologic nature of infusion reactions in subjects receiving pegloticase for chronic refractory gout. Arthritis Res. Ther., 2017, 19(1), 191.
[http://dx.doi.org/10.1186/s13075-017-1396-8] [PMID: 28818095]
[302]
Ea, H.K.; Richette, P. Critical appraisal of the role of pegloticase in the management of gout. Open Access Rheumatol. Research and reviews, 2012, 4, 63-70.
[http://dx.doi.org/10.2147/OARRR.S17431]
[303]
Guttmann, A.; Krasnokutsky, S.; Pillinger, M.H.; Berhanu, A. Pegloticase in gout treatment - safety issues, latest evidence and clinical considerations. Ther. Adv. Drug Saf., 2017, 8(12), 379-388.
[http://dx.doi.org/10.1177/2042098617727714] [PMID: 29204266]
[304]
Reinders, M.K.; Jansen, T.L. New advances in the treatment of gout: review of pegloticase. Ther. Clin. Risk Manag., 2010, 6, 543-550.
[http://dx.doi.org/10.2147/TCRM.S6043]
[305]
Schlesinger, N.; Lipsky, P.E. Pegloticase treatment of chronic refractory gout: Update on efficacy and safety. Semin. Arthritis Rheum., 2020, 50(3S)(Suppl.), S31-S38.
[http://dx.doi.org/10.1016/j.semarthrit.2020.04.011] [PMID: 32620200]
[306]
Ramazzina, I.; Folli, C.; Secchi, A.; Berni, R.; Percudani, R. Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nat. Chem. Biol., 2006, 2(3), 144-148.
[http://dx.doi.org/10.1038/nchembio768] [PMID: 16462750]
[307]
Stevenson, W.S.; Hyland, C.D.; Zhang, J-G.; Morgan, P.O.; Willson, T.A.; Gill, A.; Hilton, A.A.; Viney, E.M.; Bahlo, M.; Masters, S.L.; Hennebry, S.; Richardson, S.J.; Nicola, N.A.; Metcalf, D.; Hilton, D.J.; Roberts, A.W.; Alexander, W.S. Deficiency of 5-hydroxyisourate hydrolase causes hepatomegaly and hepatocellular carcinoma in mice. Proc. Natl. Acad. Sci. USA, 2010, 107(38), 16625-16630.
[http://dx.doi.org/10.1073/pnas.1010390107] [PMID: 20823251]
[308]
Oh, J.; Liuzzi, A.; Ronda, L.; Marchetti, M.; Corsini, R.; Folli, C.; Bettati, S.; Rhee, S.; Percudani, R. Diatom allantoin synthase provides structural insights into natural fusion protein therapeutics. ACS Chem. Biol., 2018, 13(8), 2237-2246.
[http://dx.doi.org/10.1021/acschembio.8b00404] [PMID: 29874034]
[309]
Ronda, L.; Marchetti, M.; Piano, R.; Liuzzi, A.; Corsini, R.; Percudani, R.; Bettati, S. A trivalent enzymatic system for uricolytic therapy of HPRT deficiency and Lesch-Nyhan disease. Pharm. Res., 2017, 34(7), 1477-1490.
[http://dx.doi.org/10.1007/s11095-017-2167-6] [PMID: 28508122]
[310]
Hydery, T.; Coppenrath, V.A. A comprehensive review of pegvaliase, an enzyme substitution therapy for the treatment of phenylketonuria. Drug Target Insights, 2019, 13
[http://dx.doi.org/10.1177/1177392819857089]
[311]
Mahan, K.C.; Gandhi, M.A.; Anand, S. Pegvaliase: A novel treatment option for adults with phenylketonuria. Curr. Med. Res. Opin., 2019, 35(4), 647-651.
[http://dx.doi.org/10.1080/03007995.2018.1528215] [PMID: 30247930]
[312]
Bélanger-Quintana, A.; Burlina, A.; Harding, C.O.; Muntau, A.C. Up to date knowledge on different treatment strategies for phenylketonuria. Mol. Genet. Metab., 2011, 104(Suppl. 0), S19-S25.
[http://dx.doi.org/10.1016/j.ymgme.2011.08.009]
[313]
Bell, S.M.; Wendt, D.J.; Zhang, Y.; Taylor, T.W.; Long, S.; Tsuruda, L.; Zhao, B.; Laipis, P.; Fitzpatrick, P.A. Formulation and PEGylation optimization of the therapeutic PEGylated phenylalanine ammonia lyase for the treatment of phenylketonuria. PLoS One, 2017, 12(3)e0173269
[http://dx.doi.org/10.1371/journal.pone.0173269] [PMID: 28282402]
[314]
Jingzhong, L.; Hua, X.; Wei, H.; Zhangling, Z.; Jin, Z.; Qingyuan, L. Cloning and expression of phenylalanine ammonia lyase cDNA in Escherichia coli. Chin. J. Biotechnol., 1998, 14(4), 227-232.
[PMID: 10503639]
[315]
Sarkissian, C.N.; Shao, Z.; Blain, F.; Peevers, R.; Su, H.; Heft, R.; Chang, T.M.; Scriver, C.R. A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proc. Natl. Acad. Sci. USA, 1999, 96(5), 2339-2344.
[http://dx.doi.org/10.1073/pnas.96.5.2339] [PMID: 10051643]
[316]
Schulz, W.; Eiben, H.G.; Hahlbrock, K. Expression in escherichia coli of catalytically active phenylalanine ammonia-lyase from parsley. FEBS Lett., 1989, 258(2), 335-338.
[http://dx.doi.org/10.1016/0014-5793(89)81687-4] [PMID: 2689222]
[317]
Castañeda, M.T.; Adachi, O.; Hours, R.A. Reduction of L-phenylalanine in protein hydrolysates using L-phenylalanine ammonia-lyase from Rhodosporidium toruloides. J. Ind. Microbiol. Biotechnol., 2015, 42(10), 1299-1307.
[http://dx.doi.org/10.1007/s10295-015-1664-z] [PMID: 26243390]
[318]
Sacharow, S.; Papaleo, C.; Almeida, K.; Goodlett, B.; Kritzer, A.; Levy, H.; Martell, L.; Wessel, A.; Viau, K. First 1.5 years of pegvaliase clinic: Experiences and outcomes. Mol. Genet. Metab. Rep., 2020, 24.
[319]
Thomas, J.; Levy, H.; Amato, S.; Vockley, J.; Zori, R.; Dimmock, D.; Harding, C.O.; Bilder, D.A.; Weng, H.H.; Olbertz, J.; Merilainen, M.; Jiang, J.; Larimore, K.; Gupta, S.; Gu, Z.; Northrup, H. Pegvaliase for the treatment of phenylketonuria: Results of a long-term phase 3 clinical trial program (PRISM). Mol. Genet. Metab., 2018, 124(1), 27-38.
[http://dx.doi.org/10.1016/j.ymgme.2018.03.006] [PMID: 29653686]
[320]
Gupta, S.; Lau, K.; Harding, C.O.; Shepherd, G.; Boyer, R.; Atkinson, J.P.; Knight, V.; Olbertz, J.; Larimore, K.; Gu, Z.; Li, M.; Rosen, O.; Zoog, S.J.; Weng, H.H.; Schweighardt, B. Association of immune response with efficacy and safety outcomes in adults with phenylketonuria administered pegvaliase in phase 3 clinical trials. EBioMedicine, 2018, 37, 366-373.
[http://dx.doi.org/10.1016/j.ebiom.2018.10.038]
[321]
Longo, N.; Dimmock, D.; Levy, H.; Viau, K.; Bausell, H.; Bilder, D.A.; Burton, B.; Gross, C.; Northrup, H.; Rohr, F.; Sacharow, S.; Sanchez-Valle, A.; Stuy, M.; Thomas, J.; Vockley, J.; Zori, R.; Harding, C.O. Evidence- and consensus- based recommendations for the use of pegvaliase in adults with phenylketonuria. Genetics in medicine : Official journal of the American College of Medical Genetics, 2019, 21(8), 1851-1867.
[322]
Mays, Z.J.S.; Mohan, K.; Trivedi, V.D.; Chappell, T.C.; Nair, N.U. Directed evolution of Anabaena variabilis phenylalanine ammonia-lyase (PAL) identifies mutants with enhanced activities. Chem. Commun. (Camb.), 2020, 56(39), 5255-5258.
[http://dx.doi.org/10.1039/D0CC00783H] [PMID: 32270162]
[323]
Pereira de Sousa, I.; Gourmel, C.; Berkovska, O.; Burger, M.; Leroux, J.C. A microparticulate based formulation to protect therapeutic enzymes from proteolytic digestion: Phenylalanine ammonia lyase as case study. Sci. Rep., 2020, 10(1), 3651.
[http://dx.doi.org/10.1038/s41598-020-60463-y] [PMID: 32107425]
[324]
Richards, D.Y.; Winn, S.R.; Dudley, S.; Nygaard, S.; Mighell, T.L.; Grompe, M.; Harding, C.O. AAV-Mediated CRISPR/Cas9 gene editing in murine phenylketonuria. Mol. Ther. Methods Clin. Dev., 2020, 17, 234-245.
[325]
Bowden, S.A.; Foster, B.L. Profile of asfotase alfa in the treatment of hypophosphatasia: Design, development, and place in therapy. Drug Des. Devel. Ther., 2018, 12, 3147-3161.
[http://dx.doi.org/10.2147/DDDT.S154922]
[326]
Orimo, H. Pathophysiology of hypophosphatasia and the potential role of asfotase alfa. Ther. Clin. Risk Manag., 2016, 12, 777-786.
[http://dx.doi.org/10.2147/TCRM.S87956]
[327]
Scott, L.J. Asfotase alfa in perinatal/infantile-onset and juvenile-onset hypophosphatasia: A guide to its use in the USA. BioDrugs : Clinical immunotherapeutics, biopharmaceuticals and gene therapy, 2016, 30(1), 41-48.
[328]
Whyte, M.P. Commentary. Clin. Chem., 2018, 64(4), 643-644.
[http://dx.doi.org/10.1373/clinchem.2017.280784] [PMID: 29592907]
[329]
Whyte, M.P.; Greenberg, C.R.; Salman, N.J.; Bober, M.B.; McAlister, W.H.; Wenkert, D.; Van Sickle, B.J.; Simmons, J.H.; Edgar, T.S.; Bauer, M.L.; Hamdan, M.A.; Bishop, N.; Lutz, R.E.; McGinn, M.; Craig, S.; Moore, J.N.; Taylor, J.W.; Cleveland, R.H.; Cranley, W.R.; Lim, R.; Thacher, T.D.; Mayhew, J.E.; Downs, M.; Millán, J.L.; Skrinar, A.M.; Crine, P.; Landy, H. Enzyme-replacement therapy in life-threatening hypophosphatasia. N. Engl. J. Med., 2012, 366(10), 904-913.
[http://dx.doi.org/10.1056/NEJMoa1106173] [PMID: 22397652]
[330]
Mornet, E.; Stura, E.; Lia-Baldini, A.S.; Stigbrand, T.; Ménez, A.; Le Du, M.H. Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization. J. Biol. Chem., 2001, 276(33), 31171-31178.
[http://dx.doi.org/10.1074/jbc.M102788200] [PMID: 11395499]
[331]
Ikeue, R.; Nakamura-Takahashi, A.; Nitahara-Kasahara, Y.; Watanabe, A.; Muramatsu, T.; Sato, T.; Okada, T. Bone-Targeted Alkaline Phosphatase Treatment of Mandibular Bone and Teeth in Lethal Hypophosphatasia via an scAAV8 Vector. Molecular therapy. Methods and clinical developmen, 2018, 10, 361-370.
[http://dx.doi.org/10.1016/j.omtm.2018.08.004]
[332]
Fedde, K.N.; Blair, L.; Silverstein, J.; Coburn, S.P.; Ryan, L.M.; Weinstein, R.S.; Waymire, K.; Narisawa, S.; Millán, J.L.; MacGregor, G.R.; Whyte, M.P. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. Journal of bone and mineral research : The official journal of the American Society for Bone and Mineral Research,, 1999, 14(12), 2015-2026.
[333]
Narisawa, S.; Fröhlander, N.; Millán, J.L. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev. Dyn., 1997, 208(3), 432-446.
[http://dx.doi.org/10.1002/(SICI)1097-0177(199703)208:3<432:AID-AJA13>3.0.CO;2-1] [PMID: 9056646]
[334]
Waymire, K.G.; Mahuren, J.D.; Jaje, J.M.; Guilarte, T.R.; Coburn, S.P.; MacGregor, G.R. Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat. Genet., 1995, 11(1), 45-51.
[http://dx.doi.org/10.1038/ng0995-45] [PMID: 7550313]
[335]
Millán, J.L.; Narisawa, S.; Lemire, I.; Loisel, T.P.; Boileau, G.; Leonard, P.; Gramatikova, S.; Terkeltaub, R.; Camacho, N.P.; McKee, M.D.; Crine, P.; Whyte, M.P. Enzyme replacement therapy for murine hypophosphatasia. Journal of bone and mineral research : The official journal of the American Society for Bone and Mineral Research, 2008, 26(3), 777-787.
[336]
Whyte, M.P.; Simmons, J.H.; Moseley, S.; Fujita, K.P.; Bishop, N.; Salman, N.J.; Taylor, J.; Phillips, D.; McGinn, M.; McAlister, W.H. Asfotase alfa for infants and young children with hypophosphatasia: 7 year outcomes of a single-arm, open-label, phase 2 extension trial. Lancet Diabetes Endocrinol., 2019, 7(2), 93-105.
[http://dx.doi.org/10.1016/S2213-8587(18)30307-3] [PMID: 30558909]
[337]
Nishioka, T.; Tomatsu, S.; Gutierrez, M.A.; Miyamoto, K.; Trandafirescu, G.G.; Lopez, P.L.; Grubb, J.H.; Kanai, R.; Kobayashi, H.; Yamaguchi, S.; Gottesman, G.S.; Cahill, R.; Noguchi, A.; Sly, W.S. Enhancement of drug delivery to bone: Characterization of human tissue-nonspecific alkaline phosphatase tagged with an acidic oligopeptide. Mol. Genet. Metab., 2006, 88(3), 244-255.
[http://dx.doi.org/10.1016/j.ymgme.2006.02.012] [PMID: 16616566]
[338]
Hofmann, C.E.; Harmatz, P.; Vockley, J.; Högler, W.; Nakayama, H.; Bishop, N.; Martos-Moreno, G.Á.; Moseley, S.; Fujita, K.P.; Liese, J.; Rockman-Greenberg, C. Efficacy and safety of asfotase alfa in infants and young children with hypophosphatasia: A phase 2 open-label study. J. Clin. Endocrinol. Metab., 2019, 104(7), 2735-2747.
[http://dx.doi.org/10.1210/jc.2018-02335] [PMID: 30811537]
[339]
Nishizawa, H.; Sato, Y.; Ishikawa, M.; Arakawa, Y.; Iijima, M.; Akiyama, T.; Takano, K.; Watanabe, A.; Kosho, T. Marked motor function improvement in a 32-year-old woman with childhood-onset hypophosphatasia by asfotase alfa therapy: Evaluation based on standardized testing batteries used in Duchenne muscular dystrophy clinical trials. Mol. Genet. Metab. Rep., 2020, 25.
[340]
Whyte, M.P. Hypophosphatasia - aetiology, nosology, pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol., 2016, 12(4), 233-246.
[http://dx.doi.org/10.1038/nrendo.2016.14] [PMID: 26893260]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy